metal-organic compounds
Tetracarbonyldi-μ-chlorido-dichloridobis(η5-cyclopentadienyl)diirondigallium(2 Fe—Ga)
aPO Box 6949, Radford University, Radford, Virginia 24142, USA
*Correspondence e-mail: gharakas@radford.edu
The title compound, [Fe2Ga2(C5H5)2Cl4(CO)4], has an iron–gallium bond distance of 2.3028 (3) Å. The gallium atoms are connected by two bridging chlorine atoms, each gallium also has one terminal chlorine. The molecule has an inversion center located between the gallium atoms. The cyclopentadienyl ligand is disordered over two sites with an occupancy of 0.57 (2) for the major occupied site.
Keywords: crystal structure; iron; gallium.
CCDC reference: 2202575
Structure description
Digallium(II) dichloride has been used in the synthesis of two gallium–ruthenium metal clusters (Harakas & Whittlesey, 1997). The reaction of Ga2Cl4·1,4 dioxane with [CpFe(CO)2]2 in toluene, followed by work-up with a THF, diethyl ether and pentane solution resulted in the isolation of η5-CpFeGaCl2L, L = 1,4-dioxane or THF (Linti et al., 2001). The reaction of GaCl3 and K[CpFe(CO)2] in toluene produced [{CpFe(CO)2}(Ga(Cl·GaCl3)(μ-Cl)]2 (Borovik et al., 1999). In the absence of ether solvents, the reaction of Ga2Cl4 with [CpFe(CO)2]2 in toluene produced the title compound, which is a dimeric analog to the compounds isolated by Linti et al. (2001).
The Fe1—Ga1 bond distance of 2.3028 (3) Å in the title compound (Fig. 1) is similar to the 2.317 and 2.316 Å distances found for the etherate compounds (Linti et al., 2001) but longer than the 2.286 Å value in [{CpFe(CO)2}(Ga(Cl·GaCl3)(μ-Cl)]2 (Borovik et al., 1999). The gallium–gallium distance of 3.4603 (3) Å is much greater than 2.406 Å for Ga2Cl4·2 (1,4-dioxane) (Beamish et al., 1979), indicating there are no metal–metal bonding interactions between the gallium atoms.
Synthesis and crystallization
All manipulations were conducted using inert atmosphere techniques. A stock solution of Ga2Cl4 was produced by the reaction of Ga (5.496 g, 78.83 mmol) with GaCl3 (5.01 g, 28.4 mmol) in 150 ml of toluene. The mixture was heated to reflux for 24 h then cooled to 25°C. In a 150 ml Schlenk flask, [CpFe(CO)2]2 (1.107 g, 3.128 mmol) in 25 ml of toluene was combined with 25 ml of the Ga2Cl4 stock solution. The reaction flask was refluxed for 1 h. The mixture was cooled to room temperature, and the solution was decanted away from the residue into a new Schlenk flask. Crystals suitable for X-ray analysis formed after 24 h at 25°C. A single crystal was coated with NVH oil and mounted on a MiTeGen loop under a stream of argon gas then cooled to −75°C for data collection.
Refinement
Crystal data, data collection, and structure . The cyclopentadienyl rings were modeled for disorder with two offset ring orientations (C1A—C5A and C1B—C5B) at 0.57 (2):0.43 (2) occupancy, respectively.
details are summarized in Table 1Structural data
CCDC reference: 2202575
https://doi.org/10.1107/S241431462200832X/bt4125sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462200832X/bt4125Isup2.hkl
Data collection: APEX3 (Bruker, 2019); cell
SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ShelXle (Hübschle et al., 2011).[Fe2Ga2(C5H5)2Cl4(CO)4] | F(000) = 616 |
Mr = 635.16 | Dx = 2.165 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3567 (3) Å | Cell parameters from 9746 reflections |
b = 7.0331 (2) Å | θ = 2.9–42.0° |
c = 16.5792 (6) Å | µ = 4.76 mm−1 |
β = 91.218 (1)° | T = 198 K |
V = 974.20 (6) Å3 | Cube, orange |
Z = 2 | 0.24 × 0.22 × 0.12 mm |
Bruker D8 Quest Eco, Photon II 7 diffractometer | 5892 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.041 |
phi and ω scans | θmax = 43.1°, θmin = 2.5° |
Absorption correction: multi-scan (Krause et al., 2015) | h = −15→16 |
Tmin = 0.36, Tmax = 0.60 | k = −13→13 |
100078 measured reflections | l = −29→31 |
7242 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0255P)2 + 0.9013P] where P = (Fo2 + 2Fc2)/3 |
S = 1.21 | (Δ/σ)max = 0.001 |
7242 reflections | Δρmax = 0.93 e Å−3 |
164 parameters | Δρmin = −0.99 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ga1 | 0.85697 (2) | 0.66995 (2) | 0.47616 (2) | 0.01798 (4) | |
Fe1 | 0.69410 (2) | 0.68540 (3) | 0.36255 (2) | 0.01656 (4) | |
Cl1 | 0.86625 (6) | 0.86249 (6) | 0.57979 (3) | 0.02919 (8) | |
Cl2 | 0.86216 (4) | 0.37209 (6) | 0.54493 (3) | 0.02429 (7) | |
O1 | 0.50545 (19) | 0.3758 (2) | 0.42638 (10) | 0.0335 (3) | |
O2 | 0.9025 (2) | 0.4232 (3) | 0.28009 (11) | 0.0501 (5) | |
C1 | 0.58075 (19) | 0.4990 (2) | 0.40250 (10) | 0.0221 (3) | |
C2 | 0.8235 (2) | 0.5277 (3) | 0.31382 (11) | 0.0281 (3) | |
C1A | 0.6807 (11) | 0.9801 (13) | 0.3870 (7) | 0.0346 (17) | 0.57 (2) |
H1A | 0.725236 | 1.046554 | 0.435902 | 0.041000* | 0.57 (2) |
C2A | 0.5295 (13) | 0.9041 (14) | 0.3781 (7) | 0.0381 (18) | 0.57 (2) |
H2A | 0.445268 | 0.906758 | 0.420085 | 0.046000* | 0.57 (2) |
C3A | 0.5114 (15) | 0.8261 (14) | 0.3027 (10) | 0.057 (4) | 0.57 (2) |
H3A | 0.411632 | 0.767194 | 0.279609 | 0.068000* | 0.57 (2) |
C4A | 0.653 (2) | 0.8541 (18) | 0.2625 (4) | 0.056 (3) | 0.57 (2) |
H4A | 0.673376 | 0.817989 | 0.205359 | 0.067000* | 0.57 (2) |
C5A | 0.7600 (10) | 0.9482 (15) | 0.3150 (7) | 0.043 (2) | 0.57 (2) |
H5A | 0.871108 | 0.989832 | 0.302262 | 0.052000* | 0.57 (2) |
C1B | 0.627 (4) | 0.956 (3) | 0.3914 (8) | 0.077 (6) | 0.43 (2) |
H1B | 0.628153 | 1.011381 | 0.447019 | 0.092000* | 0.43 (2) |
C2B | 0.4986 (19) | 0.865 (3) | 0.3545 (15) | 0.064 (6) | 0.43 (2) |
H2B | 0.392019 | 0.842282 | 0.379064 | 0.076000* | 0.43 (2) |
C3B | 0.540 (2) | 0.8158 (16) | 0.2786 (11) | 0.050 (4) | 0.43 (2) |
H3B | 0.471033 | 0.750474 | 0.237288 | 0.060000* | 0.43 (2) |
C4B | 0.7000 (17) | 0.878 (2) | 0.2685 (9) | 0.043 (3) | 0.43 (2) |
H4B | 0.763455 | 0.864982 | 0.218325 | 0.052000* | 0.43 (2) |
C5B | 0.7506 (15) | 0.9653 (16) | 0.3384 (12) | 0.052 (4) | 0.43 (2) |
H5B | 0.856690 | 1.027701 | 0.348301 | 0.062000* | 0.43 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ga1 | 0.01699 (6) | 0.01791 (7) | 0.01880 (7) | 0.00328 (5) | −0.00553 (5) | 0.00044 (5) |
Fe1 | 0.01504 (7) | 0.01978 (9) | 0.01474 (8) | 0.00420 (6) | −0.00213 (6) | 0.00057 (6) |
Cl1 | 0.0355 (2) | 0.02587 (18) | 0.02603 (18) | 0.00044 (15) | −0.00416 (15) | −0.00649 (14) |
Cl2 | 0.01591 (12) | 0.02142 (15) | 0.03549 (19) | 0.00060 (11) | −0.00080 (12) | 0.01075 (14) |
O1 | 0.0346 (7) | 0.0321 (7) | 0.0339 (7) | −0.0102 (6) | 0.0019 (5) | −0.0029 (6) |
O2 | 0.0548 (11) | 0.0556 (11) | 0.0403 (9) | 0.0282 (9) | 0.0118 (8) | −0.0069 (8) |
C1 | 0.0212 (6) | 0.0243 (6) | 0.0206 (6) | 0.0006 (5) | −0.0028 (5) | −0.0032 (5) |
C2 | 0.0291 (7) | 0.0332 (8) | 0.0219 (7) | 0.0095 (6) | 0.0018 (6) | −0.0005 (6) |
C1A | 0.048 (3) | 0.0189 (15) | 0.036 (4) | 0.005 (2) | −0.022 (3) | −0.0042 (17) |
C2A | 0.036 (4) | 0.027 (3) | 0.052 (4) | 0.016 (2) | 0.017 (3) | 0.003 (2) |
C3A | 0.047 (4) | 0.036 (3) | 0.085 (9) | 0.018 (3) | −0.051 (5) | −0.012 (4) |
C4A | 0.101 (9) | 0.051 (6) | 0.017 (2) | 0.043 (6) | −0.009 (4) | 0.006 (2) |
C5A | 0.036 (3) | 0.033 (4) | 0.062 (4) | 0.008 (2) | 0.020 (3) | 0.026 (3) |
C1B | 0.154 (18) | 0.049 (9) | 0.026 (3) | 0.066 (10) | −0.003 (9) | −0.003 (5) |
C2B | 0.033 (5) | 0.051 (9) | 0.108 (15) | 0.025 (5) | 0.031 (8) | 0.050 (8) |
C3B | 0.067 (8) | 0.023 (3) | 0.058 (7) | −0.013 (4) | −0.048 (6) | 0.017 (4) |
C4B | 0.050 (5) | 0.030 (3) | 0.051 (7) | 0.011 (3) | 0.029 (5) | 0.019 (4) |
C5B | 0.042 (6) | 0.022 (2) | 0.089 (9) | −0.006 (3) | −0.045 (6) | 0.001 (5) |
Ga1—Cl1 | 2.1877 (5) | Fe1—C5A | 2.088 (8) |
Ga1—Fe1 | 2.3028 (3) | Fe1—C1A | 2.116 (9) |
Ga1—Cl2 | 2.3850 (4) | O1—C1 | 1.146 (2) |
Ga1—Cl2i | 2.3987 (4) | O2—C2 | 1.142 (2) |
Fe1—C1 | 1.7555 (17) | C1A—C2A | 1.377 (11) |
Fe1—C2 | 1.7578 (18) | C1A—C5A | 1.397 (13) |
Fe1—C1B | 2.045 (12) | C2A—C3A | 1.372 (13) |
Fe1—C3A | 2.057 (8) | C3A—C4A | 1.382 (16) |
Fe1—C4A | 2.062 (8) | C4A—C5A | 1.401 (13) |
Fe1—C5B | 2.066 (11) | C1B—C5B | 1.37 (2) |
Fe1—C2B | 2.068 (11) | C1B—C2B | 1.38 (2) |
Fe1—C4B | 2.069 (11) | C2B—C3B | 1.36 (2) |
Fe1—C2A | 2.083 (9) | C3B—C4B | 1.417 (17) |
Fe1—C3B | 2.086 (11) | C4B—C5B | 1.369 (16) |
Cl1—Ga1—Fe1 | 128.582 (16) | C2A—Fe1—C5A | 64.8 (4) |
Cl1—Ga1—Cl2 | 99.687 (18) | C1—Fe1—C1A | 128.9 (3) |
Fe1—Ga1—Cl2 | 115.906 (14) | C2—Fe1—C1A | 137.9 (3) |
Cl1—Ga1—Cl2i | 99.924 (18) | C3A—Fe1—C1A | 65.1 (3) |
Fe1—Ga1—Cl2i | 116.724 (14) | C4A—Fe1—C1A | 65.3 (4) |
Cl2—Ga1—Cl2i | 87.338 (14) | C2A—Fe1—C1A | 38.3 (3) |
C1—Fe1—C2 | 92.53 (9) | C5A—Fe1—C1A | 38.8 (4) |
C1—Fe1—C1B | 117.0 (9) | Ga1—Cl2—Ga1i | 92.662 (14) |
C2—Fe1—C1B | 150.4 (9) | O1—C1—Fe1 | 178.04 (15) |
C1—Fe1—C3A | 98.1 (4) | O2—C2—Fe1 | 177.2 (2) |
C2—Fe1—C3A | 122.6 (5) | C2A—C1A—C5A | 107.3 (8) |
C1—Fe1—C4A | 130.6 (5) | C2A—C1A—Fe1 | 69.6 (5) |
C2—Fe1—C4A | 95.0 (3) | C5A—C1A—Fe1 | 69.5 (5) |
C3A—Fe1—C4A | 39.2 (5) | C3A—C2A—C1A | 109.6 (10) |
C1—Fe1—C5B | 155.8 (6) | C3A—C2A—Fe1 | 69.6 (5) |
C2—Fe1—C5B | 111.5 (6) | C1A—C2A—Fe1 | 72.1 (6) |
C1B—Fe1—C5B | 39.0 (6) | C2A—C3A—C4A | 107.7 (9) |
C1—Fe1—C2B | 92.8 (4) | C2A—C3A—Fe1 | 71.7 (5) |
C2—Fe1—C2B | 148.1 (8) | C4A—C3A—Fe1 | 70.6 (5) |
C1B—Fe1—C2B | 39.2 (6) | C3A—C4A—C5A | 108.1 (7) |
C5B—Fe1—C2B | 65.7 (5) | C3A—C4A—Fe1 | 70.2 (5) |
C1—Fe1—C4B | 142.8 (5) | C5A—C4A—Fe1 | 71.3 (4) |
C2—Fe1—C4B | 92.5 (4) | C1A—C5A—C4A | 107.3 (6) |
C1B—Fe1—C4B | 64.9 (6) | C1A—C5A—Fe1 | 71.7 (5) |
C5B—Fe1—C4B | 38.7 (5) | C4A—C5A—Fe1 | 69.3 (5) |
C2B—Fe1—C4B | 65.3 (5) | C5B—C1B—C2B | 109.0 (10) |
C1—Fe1—C2A | 98.2 (3) | C5B—C1B—Fe1 | 71.3 (7) |
C2—Fe1—C2A | 159.6 (3) | C2B—C1B—Fe1 | 71.3 (7) |
C3A—Fe1—C2A | 38.7 (4) | C3B—C2B—C1B | 108.4 (12) |
C4A—Fe1—C2A | 64.9 (4) | C3B—C2B—Fe1 | 71.6 (7) |
C1—Fe1—C3B | 104.5 (4) | C1B—C2B—Fe1 | 69.5 (7) |
C2—Fe1—C3B | 110.3 (6) | C2B—C3B—C4B | 107.0 (11) |
C1B—Fe1—C3B | 65.1 (5) | C2B—C3B—Fe1 | 70.2 (7) |
C5B—Fe1—C3B | 65.9 (4) | C4B—C3B—Fe1 | 69.4 (7) |
C2B—Fe1—C3B | 38.2 (6) | C5B—C4B—C3B | 108.2 (10) |
C4B—Fe1—C3B | 39.9 (5) | C5B—C4B—Fe1 | 70.5 (7) |
C1—Fe1—C5A | 162.3 (2) | C3B—C4B—Fe1 | 70.7 (6) |
C2—Fe1—C5A | 102.4 (3) | C4B—C5B—C1B | 107.4 (9) |
C3A—Fe1—C5A | 65.8 (4) | C4B—C5B—Fe1 | 70.8 (6) |
C4A—Fe1—C5A | 39.5 (4) | C1B—C5B—Fe1 | 69.7 (7) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
References
Beamish, J. C., Small, R. W. H. & Worrall, I. J. (1979). Inorg. Chem. 18, 220–223. CSD CrossRef CAS Google Scholar
Borovik, A. S., Bott, S. G. & Barron, A. R. (1999). Organometallics, 18, 2668–2676. CSD CrossRef CAS Google Scholar
Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Harakas, G. N. & Whittlesey, B. R. (1997). Inorg. Chem. 36, 2704–2707. CSD CrossRef PubMed CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Linti, G., Li, G. & Pritzkow, H. (2001). J. Organomet. Chem. 626, 82–91. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.