metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­carbonyldi-μ-chlorido-di­chlorido­bis­­(η5-cyclo­penta­dien­yl)diirondigallium(2 Fe—Ga)

crossmark logo

aPO Box 6949, Radford University, Radford, Virginia 24142, USA
*Correspondence e-mail: gharakas@radford.edu

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 19 August 2022; accepted 20 August 2022; online 26 August 2022)

The title compound, [Fe2Ga2(C5H5)2Cl4(CO)4], has an iron–gallium bond distance of 2.3028 (3) Å. The gallium atoms are connected by two bridging chlorine atoms, each gallium also has one terminal chlorine. The mol­ecule has an inversion center located between the gallium atoms. The cyclo­penta­dienyl ligand is disordered over two sites with an occupancy of 0.57 (2) for the major occupied site.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Digallium(II) dichloride has been used in the synthesis of two gallium–ruthenium metal clusters (Harakas & Whittlesey, 1997[Harakas, G. N. & Whittlesey, B. R. (1997). Inorg. Chem. 36, 2704-2707.]). The reaction of Ga2Cl4·1,4 dioxane with [CpFe(CO)2]2 in toluene, followed by work-up with a THF, diethyl ether and pentane solution resulted in the isolation of η5-CpFeGaCl2L, L = 1,4-dioxane or THF (Linti et al., 2001[Linti, G., Li, G. & Pritzkow, H. (2001). J. Organomet. Chem. 626, 82-91.]). The reaction of GaCl3 and K[CpFe(CO)2] in toluene produced [{CpFe(CO)2}(Ga(Cl·GaCl3)(μ-Cl)]2 (Borovik et al., 1999[Borovik, A. S., Bott, S. G. & Barron, A. R. (1999). Organometallics, 18, 2668-2676.]). In the absence of ether solvents, the reaction of Ga2Cl4 with [CpFe(CO)2]2 in toluene produced the title compound, which is a dimeric analog to the compounds isolated by Linti et al. (2001[Linti, G., Li, G. & Pritzkow, H. (2001). J. Organomet. Chem. 626, 82-91.]).

The Fe1—Ga1 bond distance of 2.3028 (3) Å in the title compound (Fig. 1[link]) is similar to the 2.317 and 2.316 Å distances found for the etherate compounds (Linti et al., 2001[Linti, G., Li, G. & Pritzkow, H. (2001). J. Organomet. Chem. 626, 82-91.]) but longer than the 2.286 Å value in [{CpFe(CO)2}(Ga(Cl·GaCl3)(μ-Cl)]2 (Borovik et al., 1999[Borovik, A. S., Bott, S. G. & Barron, A. R. (1999). Organometallics, 18, 2668-2676.]). The gallium–gallium distance of 3.4603 (3) Å is much greater than 2.406 Å for Ga2Cl4·2 (1,4-dioxane) (Beamish et al., 1979[Beamish, J. C., Small, R. W. H. & Worrall, I. J. (1979). Inorg. Chem. 18, 220-223.]), indicating there are no metal–metal bonding inter­actions between the gallium atoms.

[Figure 1]
Figure 1
The title compound with 50% displacement ellipsoids. The H atoms and the minor occupied sites of the disordered atoms have been omitted for clarity. Unlabeled atoms are generated by an inversion center.

Synthesis and crystallization

All manipulations were conducted using inert atmosphere techniques. A stock solution of Ga2Cl4 was produced by the reaction of Ga (5.496 g, 78.83 mmol) with GaCl3 (5.01 g, 28.4 mmol) in 150 ml of toluene. The mixture was heated to reflux for 24 h then cooled to 25°C. In a 150 ml Schlenk flask, [CpFe(CO)2]2 (1.107 g, 3.128 mmol) in 25 ml of toluene was combined with 25 ml of the Ga2Cl4 stock solution. The reaction flask was refluxed for 1 h. The mixture was cooled to room temperature, and the solution was deca­nted away from the residue into a new Schlenk flask. Crystals suitable for X-ray analysis formed after 24 h at 25°C. A single crystal was coated with NVH oil and mounted on a MiTeGen loop under a stream of argon gas then cooled to −75°C for data collection.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link]. The cyclo­penta­dienyl rings were modeled for disorder with two offset ring orientations (C1A—C5A and C1B—C5B) at 0.57 (2):0.43 (2) occupancy, respectively.

Table 1
Experimental details

Crystal data
Chemical formula [Fe2Ga2(C5H5)2Cl4(CO)4]
Mr 635.16
Crystal system, space group Monoclinic, P21/c
Temperature (K) 198
a, b, c (Å) 8.3567 (3), 7.0331 (2), 16.5792 (6)
β (°) 91.218 (1)
V3) 974.20 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.76
Crystal size (mm) 0.24 × 0.22 × 0.12
 
Data collection
Diffractometer Bruker D8 Quest Eco, Photon II 7
Absorption correction Multi-scan (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.36, 0.60
No. of measured, independent and observed [I > 2σ(I)] reflections 100078, 7242, 5892
Rint 0.041
(sin θ/λ)max−1) 0.962
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.086, 1.21
No. of reflections 7242
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.93, −0.99
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ShelXle (Hübschle et al., 2011).

Tetracarbonyldi-µ-chlorido-dichloridobis(η5-cyclopentadienyl)diirondigallium(2 Fe—Ga) top
Crystal data top
[Fe2Ga2(C5H5)2Cl4(CO)4]F(000) = 616
Mr = 635.16Dx = 2.165 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.3567 (3) ÅCell parameters from 9746 reflections
b = 7.0331 (2) Åθ = 2.9–42.0°
c = 16.5792 (6) ŵ = 4.76 mm1
β = 91.218 (1)°T = 198 K
V = 974.20 (6) Å3Cube, orange
Z = 20.24 × 0.22 × 0.12 mm
Data collection top
Bruker D8 Quest Eco, Photon II 7
diffractometer
5892 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.041
phi and ω scansθmax = 43.1°, θmin = 2.5°
Absorption correction: multi-scan
(Krause et al., 2015)
h = 1516
Tmin = 0.36, Tmax = 0.60k = 1313
100078 measured reflectionsl = 2931
7242 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0255P)2 + 0.9013P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max = 0.001
7242 reflectionsΔρmax = 0.93 e Å3
164 parametersΔρmin = 0.99 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ga10.85697 (2)0.66995 (2)0.47616 (2)0.01798 (4)
Fe10.69410 (2)0.68540 (3)0.36255 (2)0.01656 (4)
Cl10.86625 (6)0.86249 (6)0.57979 (3)0.02919 (8)
Cl20.86216 (4)0.37209 (6)0.54493 (3)0.02429 (7)
O10.50545 (19)0.3758 (2)0.42638 (10)0.0335 (3)
O20.9025 (2)0.4232 (3)0.28009 (11)0.0501 (5)
C10.58075 (19)0.4990 (2)0.40250 (10)0.0221 (3)
C20.8235 (2)0.5277 (3)0.31382 (11)0.0281 (3)
C1A0.6807 (11)0.9801 (13)0.3870 (7)0.0346 (17)0.57 (2)
H1A0.7252361.0465540.4359020.041000*0.57 (2)
C2A0.5295 (13)0.9041 (14)0.3781 (7)0.0381 (18)0.57 (2)
H2A0.4452680.9067580.4200850.046000*0.57 (2)
C3A0.5114 (15)0.8261 (14)0.3027 (10)0.057 (4)0.57 (2)
H3A0.4116320.7671940.2796090.068000*0.57 (2)
C4A0.653 (2)0.8541 (18)0.2625 (4)0.056 (3)0.57 (2)
H4A0.6733760.8179890.2053590.067000*0.57 (2)
C5A0.7600 (10)0.9482 (15)0.3150 (7)0.043 (2)0.57 (2)
H5A0.8711080.9898320.3022620.052000*0.57 (2)
C1B0.627 (4)0.956 (3)0.3914 (8)0.077 (6)0.43 (2)
H1B0.6281531.0113810.4470190.092000*0.43 (2)
C2B0.4986 (19)0.865 (3)0.3545 (15)0.064 (6)0.43 (2)
H2B0.3920190.8422820.3790640.076000*0.43 (2)
C3B0.540 (2)0.8158 (16)0.2786 (11)0.050 (4)0.43 (2)
H3B0.4710330.7504740.2372880.060000*0.43 (2)
C4B0.7000 (17)0.878 (2)0.2685 (9)0.043 (3)0.43 (2)
H4B0.7634550.8649820.2183250.052000*0.43 (2)
C5B0.7506 (15)0.9653 (16)0.3384 (12)0.052 (4)0.43 (2)
H5B0.8566901.0277010.3483010.062000*0.43 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.01699 (6)0.01791 (7)0.01880 (7)0.00328 (5)0.00553 (5)0.00044 (5)
Fe10.01504 (7)0.01978 (9)0.01474 (8)0.00420 (6)0.00213 (6)0.00057 (6)
Cl10.0355 (2)0.02587 (18)0.02603 (18)0.00044 (15)0.00416 (15)0.00649 (14)
Cl20.01591 (12)0.02142 (15)0.03549 (19)0.00060 (11)0.00080 (12)0.01075 (14)
O10.0346 (7)0.0321 (7)0.0339 (7)0.0102 (6)0.0019 (5)0.0029 (6)
O20.0548 (11)0.0556 (11)0.0403 (9)0.0282 (9)0.0118 (8)0.0069 (8)
C10.0212 (6)0.0243 (6)0.0206 (6)0.0006 (5)0.0028 (5)0.0032 (5)
C20.0291 (7)0.0332 (8)0.0219 (7)0.0095 (6)0.0018 (6)0.0005 (6)
C1A0.048 (3)0.0189 (15)0.036 (4)0.005 (2)0.022 (3)0.0042 (17)
C2A0.036 (4)0.027 (3)0.052 (4)0.016 (2)0.017 (3)0.003 (2)
C3A0.047 (4)0.036 (3)0.085 (9)0.018 (3)0.051 (5)0.012 (4)
C4A0.101 (9)0.051 (6)0.017 (2)0.043 (6)0.009 (4)0.006 (2)
C5A0.036 (3)0.033 (4)0.062 (4)0.008 (2)0.020 (3)0.026 (3)
C1B0.154 (18)0.049 (9)0.026 (3)0.066 (10)0.003 (9)0.003 (5)
C2B0.033 (5)0.051 (9)0.108 (15)0.025 (5)0.031 (8)0.050 (8)
C3B0.067 (8)0.023 (3)0.058 (7)0.013 (4)0.048 (6)0.017 (4)
C4B0.050 (5)0.030 (3)0.051 (7)0.011 (3)0.029 (5)0.019 (4)
C5B0.042 (6)0.022 (2)0.089 (9)0.006 (3)0.045 (6)0.001 (5)
Geometric parameters (Å, º) top
Ga1—Cl12.1877 (5)Fe1—C5A2.088 (8)
Ga1—Fe12.3028 (3)Fe1—C1A2.116 (9)
Ga1—Cl22.3850 (4)O1—C11.146 (2)
Ga1—Cl2i2.3987 (4)O2—C21.142 (2)
Fe1—C11.7555 (17)C1A—C2A1.377 (11)
Fe1—C21.7578 (18)C1A—C5A1.397 (13)
Fe1—C1B2.045 (12)C2A—C3A1.372 (13)
Fe1—C3A2.057 (8)C3A—C4A1.382 (16)
Fe1—C4A2.062 (8)C4A—C5A1.401 (13)
Fe1—C5B2.066 (11)C1B—C5B1.37 (2)
Fe1—C2B2.068 (11)C1B—C2B1.38 (2)
Fe1—C4B2.069 (11)C2B—C3B1.36 (2)
Fe1—C2A2.083 (9)C3B—C4B1.417 (17)
Fe1—C3B2.086 (11)C4B—C5B1.369 (16)
Cl1—Ga1—Fe1128.582 (16)C2A—Fe1—C5A64.8 (4)
Cl1—Ga1—Cl299.687 (18)C1—Fe1—C1A128.9 (3)
Fe1—Ga1—Cl2115.906 (14)C2—Fe1—C1A137.9 (3)
Cl1—Ga1—Cl2i99.924 (18)C3A—Fe1—C1A65.1 (3)
Fe1—Ga1—Cl2i116.724 (14)C4A—Fe1—C1A65.3 (4)
Cl2—Ga1—Cl2i87.338 (14)C2A—Fe1—C1A38.3 (3)
C1—Fe1—C292.53 (9)C5A—Fe1—C1A38.8 (4)
C1—Fe1—C1B117.0 (9)Ga1—Cl2—Ga1i92.662 (14)
C2—Fe1—C1B150.4 (9)O1—C1—Fe1178.04 (15)
C1—Fe1—C3A98.1 (4)O2—C2—Fe1177.2 (2)
C2—Fe1—C3A122.6 (5)C2A—C1A—C5A107.3 (8)
C1—Fe1—C4A130.6 (5)C2A—C1A—Fe169.6 (5)
C2—Fe1—C4A95.0 (3)C5A—C1A—Fe169.5 (5)
C3A—Fe1—C4A39.2 (5)C3A—C2A—C1A109.6 (10)
C1—Fe1—C5B155.8 (6)C3A—C2A—Fe169.6 (5)
C2—Fe1—C5B111.5 (6)C1A—C2A—Fe172.1 (6)
C1B—Fe1—C5B39.0 (6)C2A—C3A—C4A107.7 (9)
C1—Fe1—C2B92.8 (4)C2A—C3A—Fe171.7 (5)
C2—Fe1—C2B148.1 (8)C4A—C3A—Fe170.6 (5)
C1B—Fe1—C2B39.2 (6)C3A—C4A—C5A108.1 (7)
C5B—Fe1—C2B65.7 (5)C3A—C4A—Fe170.2 (5)
C1—Fe1—C4B142.8 (5)C5A—C4A—Fe171.3 (4)
C2—Fe1—C4B92.5 (4)C1A—C5A—C4A107.3 (6)
C1B—Fe1—C4B64.9 (6)C1A—C5A—Fe171.7 (5)
C5B—Fe1—C4B38.7 (5)C4A—C5A—Fe169.3 (5)
C2B—Fe1—C4B65.3 (5)C5B—C1B—C2B109.0 (10)
C1—Fe1—C2A98.2 (3)C5B—C1B—Fe171.3 (7)
C2—Fe1—C2A159.6 (3)C2B—C1B—Fe171.3 (7)
C3A—Fe1—C2A38.7 (4)C3B—C2B—C1B108.4 (12)
C4A—Fe1—C2A64.9 (4)C3B—C2B—Fe171.6 (7)
C1—Fe1—C3B104.5 (4)C1B—C2B—Fe169.5 (7)
C2—Fe1—C3B110.3 (6)C2B—C3B—C4B107.0 (11)
C1B—Fe1—C3B65.1 (5)C2B—C3B—Fe170.2 (7)
C5B—Fe1—C3B65.9 (4)C4B—C3B—Fe169.4 (7)
C2B—Fe1—C3B38.2 (6)C5B—C4B—C3B108.2 (10)
C4B—Fe1—C3B39.9 (5)C5B—C4B—Fe170.5 (7)
C1—Fe1—C5A162.3 (2)C3B—C4B—Fe170.7 (6)
C2—Fe1—C5A102.4 (3)C4B—C5B—C1B107.4 (9)
C3A—Fe1—C5A65.8 (4)C4B—C5B—Fe170.8 (6)
C4A—Fe1—C5A39.5 (4)C1B—C5B—Fe169.7 (7)
Symmetry code: (i) x+2, y+1, z+1.
 

References

First citationBeamish, J. C., Small, R. W. H. & Worrall, I. J. (1979). Inorg. Chem. 18, 220–223.  CSD CrossRef CAS Google Scholar
First citationBorovik, A. S., Bott, S. G. & Barron, A. R. (1999). Organometallics, 18, 2668–2676.  CSD CrossRef CAS Google Scholar
First citationBruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarakas, G. N. & Whittlesey, B. R. (1997). Inorg. Chem. 36, 2704–2707.  CSD CrossRef PubMed CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLinti, G., Li, G. & Pritzkow, H. (2001). J. Organomet. Chem. 626, 82–91.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds