metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­aqua­dodekakis-μ2-chlorido-di­iodido-octa­hedro-hexa­niobium(12 NbNb) tetra­hydro­furan octa­solvate

crossmark logo

aUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
*Correspondence e-mail: Martin.Koeckerling@uni-rostock.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 May 2022; accepted 13 June 2022; online 16 June 2022)

The title compound, [Nb6Cl12I2(H2O)4]·8THF (THF is tetra­hydro­furan, C4H8O), comprises an uncharged niobium cluster unit surrounded by THF solvent mol­ecules. The edges of the {Nb6} octa­hedron are μ2-coordinated by twelve chlorido ligands. Four in-plane (equatorial plane) aqua ligands and two iodido ligands coordinating above and below the plane are bound at the corners of the {Nb6} atomic octa­hedron. O—H⋯O hydrogen bonds are formed between the aqua ligands and the THF solvent mol­ecules; one THF molecule is disordered over two positions with the major component having a site occupancy of 0.64 (2).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cluster complexes of the early transition metals have been the subject of intense research for decades. Hexanuclear {Nb6} cluster complexes represent an inter­esting field of research (Cotton, 1964[Cotton, F. A. (1964). Inorg. Chem. 3, 1217-1220.]; Simon, 1988[Simon, A. (1988). Angew. Chem. 100, 163-188.]). Such compounds are produced via solid-state reactions at high temperatures and then converted into more soluble species by solvent chemistry (Koknat et al., 1974[Koknat, F. W., Parson, J. A. & Vongvusharintra, A. (1974). Inorg. Chem. 13, 1699-1702.]; Lemoine et al., 2019[Lemoine, P., Halet, J.-F. & Cordier, S. (2019). In Ligated Transition Metal Clusters in Solid-State Chemistry: The Legacy of Marcel Sergent, edited by J.-F. Halet, pp. 143-190. Berlin, Heidelberg: Springer.]). The title compound can be obtained by dissolving [Nb6Cl12I2(H2O)4]·4H2O in THF and recrystallization.

The {Nb6} atomic polyhedron is an octa­hedron (Fig. 1[link]) in which two different Nb—Nb bond lengths have to be considered. The niobium atoms located in the equatorial plane (coordination by aqua ligands) have an average Nbeq—Nbeq bond length of 2.896 Å. The niobium atoms above and below this plane (Nbax), which are coordinated by iodido ligands, have Nbax—Nbeq bond lengths averaging at 2.938 Å. Thereby, the {Nb6} atomic octa­hedron is elongated, reflected also by the atomic distances between opposite niobium atoms. Within the equatorial plane they are 4.095 Å on average, and 4.2150 (8) Å between the axial sites. The twelve chlorido ligands of the inner ligand sphere are μ2-bridging over the edges of the {Nb6} atom octa­hedron. The average Nbeq—Cl bond length is 2.469 Å and Nbax—Cl is 2.460 Å. Of the six outer coordin­ation sites, four aqua ligands singly bond to the Nbeq atoms and two iodido ligands to the Nbax atoms with average Nb—O and Nb—I bond lengths of 2.223 and 2.944 Å, respectively. These atom distances indicate a cluster unit with 16 cluster-based electrons. Thus, there is no change of the oxidation state compared to the starting material. Rather strong hydrogen bonds (Steiner, 2002[Steiner, T. (2002). Angew. Chem. 114, 50-80.]) with donor⋯acceptor distances in the range 2.530 (8)–2.68 (5) Å are found between the aqua ligands of the {Nb6} unit and the O atoms of the solvent THF mol­ecules (Table 1[link]). A view of the packing of cluster and THF solvent mol­ecules is given in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5 0.85 1.79 2.642 (7) 180
O1—H1B⋯O6A_a 0.85 1.75 2.60 (3) 178
O1—H1B⋯O6B_b 0.85 1.83 2.68 (5) 173
O2—H2A⋯O7 0.85 1.83 2.639 (7) 158
O2—H2B⋯O8 0.85 1.78 2.634 (7) 180
O3—H3B⋯O9 0.85 1.75 2.601 (8) 179
O3—H3A⋯O10 0.85 1.88 2.637 (8) 148
O4—H4B⋯O11 0.85 1.92 2.613 (8) 138
O4—H4A⋯O12 0.85 2.09 2.530 (8) 112
[Figure 1]
Figure 1
The discrete cluster unit of [Nb6Cl12I2(H2O)4]·8THF with surrounding THF solvent mol­ecules. Atoms are drawn as displacement ellipsoids at the 50% probability level. The {Nb6} metal atom octa­hedron is shown in a polyhedral representation, O—H⋯O hydrogen bonds are shown as red dashed lines. Of the disordered THF mol­ecule, only the major component (A) is shown for better visibility.
[Figure 2]
Figure 2
Arrangement of neutral cluster units and THF solvent mol­ecules in the unit cell in a view along the a axis. The {Nb6} metal atom octa­hedra are shown in a polyhedral representation, and O—H⋯O hydrogen bonds are shown as dashed red lines.

Synthesis and crystallization

Starting from the compound [Nb6Cl12I2(H2O)4]·4H2O (Schäfer et al., 1972[Schäfer, H., Plautz, B. & Plautz, H. (1972). Z. Anorg. Allg. Chem. 392, 10-22.]; Brničević et al., 1981[Brničević, N., Kojić-Prodić, B. & Plavšić, D. (1981). Z. Anorg. Allg. Chem. 478, 200-204.]), the title compound [Nb6Cl12I2(H2O)4]·8THF can be synthesized in moderate yields. 50 mg (36.21 μmol) of [Nb6Cl12I2(H2O)4]·4H2O and 3 ml (36.86 mmol) of THF were placed in a 4 ml vial and heated in a sand bath at 333 K for two days. From the dark-green solution, small black crystals formed together with a larger amount of an amorphous sediment. The crystals were washed several times with THF. 32 mg (16.97 μmol, yield 64%) of [Nb6Cl12I2(H2O)4]·8THF were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One of the solvent THF mol­ecules, O6, C5–C8, is disordered over two sets of sites [ratio 0.64 (2):0.36 (2) for parts A:B], with constraints on some Uij parameters.

Table 2
Experimental details

Crystal data
Chemical formula [Nb6Cl12I2(H2O)4]·8C4H8O
Mr 1885.55
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 123
a, b, c (Å) 19.3389 (7), 18.1968 (7), 34.039 (1)
V3) 11978.6 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.72
Crystal size (mm) 0.23 × 0.16 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 94479, 15885, 11673
Rint 0.050
(sin θ/λ)max−1) 0.683
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.132, 1.06
No. of reflections 15885
No. of parameters 602
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.47, −1.50
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2019[Brandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick 2015); molecular graphics: DIAMOND (Brandenburg, 2019); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetraaquadodekakis-µ2-chlorido-diiodido-octahedro-\ hexaniobium(12 NbNb) tetrahydrofuran octasolvate top
Crystal data top
[Nb6Cl12I2(H2O)4]·8C4H8ODx = 2.091 Mg m3
Mr = 1885.55Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9812 reflections
a = 19.3389 (7) Åθ = 2.5–29.0°
b = 18.1968 (7) ŵ = 2.72 mm1
c = 34.039 (1) ÅT = 123 K
V = 11978.6 (8) Å3Block, black
Z = 80.23 × 0.16 × 0.14 mm
F(000) = 7328
Data collection top
Bruker APEXII CCD
diffractometer
11673 reflections with I > 2σ(I)
Radiation source: microfocus sealed tubeRint = 0.050
φ and ω scansθmax = 29.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2624
k = 2424
94479 measured reflectionsl = 3645
15885 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.132H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0359P)2 + 173.2937P]
where P = (Fo2 + 2Fc2)/3
15885 reflections(Δ/σ)max = 0.001
602 parametersΔρmax = 1.47 e Å3
0 restraintsΔρmin = 1.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were placed in idealized positions and refined using a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nb10.59644 (3)0.17243 (3)0.36689 (2)0.0169 (1)
Nb20.58974 (3)0.31709 (3)0.32845 (2)0.0171 (1)
Nb30.58856 (3)0.30859 (3)0.41313 (2)0.0160 (1)
Nb40.46988 (3)0.21109 (3)0.40986 (2)0.0171 (1)
Nb50.47127 (3)0.21952 (3)0.32502 (2)0.0176 (1)
Nb60.46288 (3)0.35529 (3)0.37133 (2)0.0163 (1)
Cl10.67822 (8)0.22178 (9)0.31834 (5)0.0230 (3)
Cl20.67647 (8)0.21119 (9)0.41928 (5)0.0218 (3)
Cl30.53495 (8)0.09517 (8)0.41480 (5)0.0239 (3)
Cl40.53829 (8)0.10741 (9)0.31292 (5)0.0236 (3)
Cl50.67003 (8)0.38061 (9)0.37308 (4)0.0218 (3)
Cl60.52879 (8)0.25339 (9)0.47005 (4)0.0224 (3)
Cl70.38863 (8)0.14800 (9)0.36529 (5)0.0236 (3)
Cl80.53035 (8)0.2760 (1)0.26799 (4)0.0244 (3)
Cl90.52292 (8)0.43133 (9)0.32239 (4)0.0220 (3)
Cl100.52290 (8)0.42292 (8)0.42386 (4)0.0204 (3)
Cl110.38214 (8)0.30702 (9)0.42091 (4)0.0216 (3)
Cl120.38156 (8)0.31507 (9)0.32027 (4)0.0229 (3)
I10.68739 (2)0.04382 (3)0.36266 (2)0.0287 (1)
I20.36838 (2)0.48292 (3)0.37360 (2)0.0274 (1)
O10.6562 (2)0.3756 (3)0.2855 (1)0.028 (1)
H1A0.69900.36820.28150.042*
H1B0.65070.39290.26250.042*
O20.6540 (2)0.3566 (3)0.4607 (1)0.024 (1)
H2A0.64620.33440.48220.035*
H2B0.65660.40150.46740.035*
O30.4028 (3)0.1542 (3)0.4537 (2)0.030 (1)
H3A0.41570.16530.47680.045*
H3B0.39080.10920.45350.045*
O40.4085 (2)0.1714 (3)0.2773 (1)0.029 (1)
H4A0.37490.19990.27210.044*
H4B0.43350.16610.25700.044*
O50.7892 (3)0.3526 (3)0.2728 (2)0.033 (1)
C10.8400 (4)0.3109 (5)0.2931 (3)0.045 (2)
H1C0.85780.27100.27610.054*
H1D0.81970.28870.31700.054*
C20.8969 (4)0.3623 (5)0.3039 (2)0.040 (2)
H2C0.94210.33670.30440.048*
H2D0.88850.38510.32990.048*
C30.8943 (4)0.4190 (4)0.2714 (2)0.034 (2)
H3C0.91130.46730.28070.041*
H3D0.92230.40340.24850.041*
C40.8184 (4)0.4224 (4)0.2611 (2)0.033 (2)
H4C0.79550.46320.27530.039*
H4D0.81220.43020.23250.039*
O6A_a0.643 (1)0.430 (1)0.2154 (8)0.030 (4)0.64 (2)
C5A_a0.670 (3)0.389 (3)0.179 (2)0.049 (6)0.64 (2)
H5A_a0.69240.34200.18660.059*0.64 (2)
H5B_a0.70260.41940.16390.059*0.64 (2)
C6A_a0.6005 (9)0.3771 (8)0.1577 (5)0.060 (5)0.64 (2)
H6A_a0.60860.36330.13000.072*0.64 (2)
H6B_a0.57320.33790.17060.072*0.64 (2)
C7A_a0.565 (4)0.447 (5)0.160 (3)0.044 (4)0.64 (2)
H7A_a0.51440.44170.15610.053*0.64 (2)
H7B_a0.58330.48310.14100.053*0.64 (2)
C8A_a0.5807 (4)0.4710 (5)0.2025 (3)0.041 (2)0.64 (2)
H8A_a0.58950.52460.20360.050*0.64 (2)
H8B_a0.54110.45960.21990.050*0.64 (2)
O6B_b0.631 (3)0.422 (3)0.212 (2)0.07 (2)0.36 (2)
C5B_b0.659 (5)0.389 (6)0.185 (3)0.049 (6)0.36 (2)
H5C_b0.64360.33720.18510.059*0.36 (2)
H5D_b0.70980.39010.18860.059*0.36 (2)
C6B_b0.639 (1)0.427 (1)0.1452 (6)0.038 (7)0.36 (2)
H6C_b0.66810.46990.13850.045*0.36 (2)
H6D_b0.63620.39250.12280.045*0.36 (2)
C7B_b0.566 (7)0.449 (8)0.162 (5)0.044 (4)0.36 (2)
H7C_b0.54570.49020.14700.053*0.36 (2)
H7D_b0.53380.40680.16140.053*0.36 (2)
C8B_b0.5807 (4)0.4710 (5)0.2025 (3)0.041 (2)0.36 (2)
H8C_b0.59760.52230.20390.050*0.36 (2)
H8D_b0.53960.46550.21960.050*0.36 (2)
O70.6621 (3)0.2999 (4)0.5319 (2)0.043 (1)
C90.7253 (4)0.2924 (5)0.5529 (2)0.038 (2)
H9A0.75680.33370.54680.046*
H9B0.74850.24580.54590.046*
C100.7064 (5)0.2929 (7)0.5958 (3)0.056 (3)
H10A0.72350.24790.60900.068*
H10B0.72620.33640.60910.068*
C110.6288 (5)0.2956 (7)0.5964 (3)0.061 (3)
H11A0.60890.24560.59860.073*
H11B0.61180.32600.61850.073*
C120.6110 (5)0.3297 (6)0.5579 (3)0.047 (2)
H12A0.56370.31580.54950.056*
H12B0.61420.38390.55930.056*
O80.6622 (3)0.4959 (3)0.4812 (1)0.029 (1)
C130.6032 (4)0.5277 (4)0.5017 (2)0.030 (2)
H13A0.61620.54200.52880.036*
H13B0.56460.49210.50300.036*
C140.5828 (5)0.5943 (5)0.4780 (3)0.043 (2)
H14A0.56180.63260.49490.052*
H14B0.54990.58120.45690.052*
C150.6514 (5)0.6195 (5)0.4614 (2)0.043 (2)
H15A0.67790.64840.48090.052*
H15B0.64490.64940.43740.052*
C160.6869 (5)0.5471 (5)0.4522 (2)0.041 (2)
H16A0.67470.53010.42550.050*
H16B0.73770.55230.45400.050*
O90.3659 (4)0.0167 (4)0.4525 (3)0.087 (3)
C170.3983 (8)0.0391 (7)0.4734 (6)0.135 (9)
H17A0.40900.02180.50030.161*
H17B0.44230.05230.46030.161*
C180.3548 (7)0.1018 (6)0.4753 (5)0.087 (4)
H18A0.34230.11270.50290.104*
H18B0.37840.14520.46400.104*
C190.2917 (5)0.0831 (6)0.4520 (4)0.065 (3)
H19A0.29140.10980.42660.078*
H19B0.24920.09570.46670.078*
C200.2968 (6)0.0021 (5)0.4456 (4)0.070 (4)
H20A0.28340.01060.41840.084*
H20B0.26600.02440.46400.084*
O100.3910 (3)0.1938 (5)0.5279 (2)0.064 (2)
C210.4469 (5)0.1819 (9)0.5540 (3)0.082 (4)
H21A0.46790.22950.56150.098*
H21B0.48280.15160.54100.098*
C220.4213 (6)0.145 (1)0.5880 (4)0.122 (8)
H22A0.44500.16240.61200.147*
H22B0.42750.09110.58570.147*
C230.3459 (5)0.1652 (7)0.5885 (3)0.065 (3)
H23A0.31820.12770.60260.078*
H23B0.33860.21360.60110.078*
C240.3284 (5)0.1673 (7)0.5469 (3)0.058 (3)
H24A0.31590.11780.53720.069*
H24B0.28920.20110.54210.069*
O110.4333 (3)0.1077 (5)0.2100 (2)0.063 (2)
C250.4832 (4)0.1328 (6)0.1820 (3)0.050 (2)
H25A0.52130.09680.17950.060*
H25B0.50280.18050.19030.060*
C260.4469 (7)0.141 (1)0.1446 (4)0.106 (6)
H26A0.44380.19320.13740.127*
H26B0.47290.11470.12370.127*
C270.3818 (6)0.1113 (9)0.1478 (3)0.079 (4)
H27A0.37800.06640.13150.095*
H27B0.34690.14720.13850.095*
C280.3694 (4)0.0931 (5)0.1902 (2)0.039 (2)
H28A0.33190.12400.20100.047*
H28B0.35630.04080.19310.047*
O120.2795 (3)0.1498 (4)0.2820 (3)0.064 (2)
C290.2461 (4)0.0793 (5)0.2839 (3)0.043 (2)
H29A0.24880.05860.31080.052*
H29B0.26740.04420.26530.052*
C300.1722 (4)0.0958 (4)0.2727 (2)0.032 (2)
H30A0.16650.09830.24380.039*
H30B0.14000.05860.28350.039*
C310.1614 (4)0.1697 (5)0.2915 (2)0.037 (2)
H31A0.14670.16430.31920.044*
H31B0.12610.19840.27720.044*
C320.2314 (4)0.2065 (4)0.2890 (2)0.034 (2)
H32A0.23220.24270.26730.040*
H32B0.24230.23210.31390.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.0160 (2)0.0185 (3)0.0163 (3)0.0005 (2)0.0003 (2)0.0025 (2)
Nb20.0162 (3)0.0219 (3)0.0134 (2)0.0015 (2)0.0002 (2)0.0005 (2)
Nb30.0174 (3)0.0176 (3)0.0131 (2)0.0013 (2)0.0016 (2)0.0010 (2)
Nb40.0176 (3)0.0184 (3)0.0152 (3)0.0019 (2)0.0025 (2)0.0005 (2)
Nb50.0156 (3)0.0223 (3)0.0150 (3)0.0012 (2)0.0007 (2)0.0043 (2)
Nb60.0163 (2)0.0190 (3)0.0135 (2)0.0008 (2)0.0004 (2)0.0006 (2)
Cl10.0186 (7)0.0289 (8)0.0217 (7)0.0012 (6)0.0042 (6)0.0010 (6)
Cl20.0211 (7)0.0231 (7)0.0212 (7)0.0010 (6)0.0057 (6)0.0016 (6)
Cl30.0259 (8)0.0191 (7)0.0267 (8)0.0008 (6)0.0025 (6)0.0020 (6)
Cl40.0210 (7)0.0245 (8)0.0254 (8)0.0001 (6)0.0024 (6)0.0106 (6)
Cl50.0190 (7)0.0250 (7)0.0214 (7)0.0055 (6)0.0017 (6)0.0001 (6)
Cl60.0286 (8)0.0256 (8)0.0131 (7)0.0015 (6)0.0007 (6)0.0003 (6)
Cl70.0197 (7)0.0237 (7)0.0273 (8)0.0061 (6)0.0012 (6)0.0065 (6)
Cl80.0239 (7)0.0360 (9)0.0133 (7)0.0008 (7)0.0005 (6)0.0024 (6)
Cl90.0226 (7)0.0237 (7)0.0196 (7)0.0007 (6)0.0006 (6)0.0045 (6)
Cl100.0232 (7)0.0190 (7)0.0189 (7)0.0001 (6)0.0029 (6)0.0029 (5)
Cl110.0213 (7)0.0232 (7)0.0203 (7)0.0006 (6)0.0063 (6)0.0009 (6)
Cl120.0188 (7)0.0292 (8)0.0206 (7)0.0017 (6)0.0058 (5)0.0031 (6)
I10.0253 (2)0.0272 (2)0.0336 (2)0.0051 (2)0.0037 (2)0.0057 (2)
I20.0281 (2)0.0276 (2)0.0266 (2)0.0062 (2)0.0003 (2)0.0003 (2)
O10.019 (2)0.042 (3)0.023 (2)0.001 (2)0.005 (2)0.010 (2)
O20.031 (3)0.023 (2)0.017 (2)0.001 (2)0.004 (2)0.002 (2)
O30.035 (3)0.028 (3)0.026 (3)0.004 (2)0.011 (2)0.005 (2)
O40.021 (2)0.042 (3)0.025 (2)0.001 (2)0.003 (2)0.012 (2)
O50.021 (2)0.034 (3)0.044 (3)0.004 (2)0.000 (2)0.008 (2)
C10.034 (4)0.043 (5)0.058 (6)0.008 (4)0.011 (4)0.015 (4)
C20.026 (4)0.057 (5)0.035 (4)0.006 (4)0.003 (3)0.004 (4)
C30.028 (4)0.033 (4)0.042 (4)0.008 (3)0.004 (3)0.014 (3)
C40.027 (4)0.039 (4)0.032 (4)0.003 (3)0.004 (3)0.001 (3)
O6A_a0.020 (6)0.041 (7)0.029 (8)0.001 (5)0.006 (5)0.010 (5)
C5A_a0.04 (2)0.065 (7)0.05 (2)0.02 (1)0.021 (9)0.00 (1)
C6A_a0.08 (1)0.033 (8)0.07 (1)0.004 (8)0.021 (9)0.005 (7)
C7A_a0.041 (5)0.047 (6)0.045 (9)0.004 (5)0.015 (5)0.001 (6)
C8A_a0.036 (4)0.049 (5)0.039 (5)0.011 (4)0.002 (4)0.004 (4)
O6B_b0.05 (3)0.14 (4)0.02 (2)0.04 (2)0.02 (2)0.02 (2)
C5B_b0.04 (2)0.065 (7)0.05 (2)0.02 (1)0.021 (9)0.00 (1)
C6B_b0.06 (2)0.04 (1)0.02 (1)0.01 (1)0.007 (9)0.009 (8)
C7B_b0.041 (5)0.047 (6)0.045 (9)0.004 (5)0.015 (5)0.001 (6)
C8B_b0.036 (4)0.049 (5)0.039 (5)0.011 (4)0.002 (4)0.004 (4)
O70.042 (3)0.065 (4)0.020 (3)0.011 (3)0.005 (2)0.007 (3)
C90.036 (4)0.045 (5)0.034 (4)0.001 (4)0.005 (3)0.001 (4)
C100.043 (5)0.095 (8)0.030 (4)0.009 (5)0.010 (4)0.006 (5)
C110.056 (6)0.094 (9)0.033 (5)0.011 (6)0.002 (4)0.013 (5)
C120.044 (5)0.058 (6)0.038 (5)0.020 (4)0.001 (4)0.012 (4)
O80.031 (3)0.029 (3)0.026 (3)0.000 (2)0.002 (2)0.005 (2)
C130.034 (4)0.037 (4)0.020 (3)0.002 (3)0.006 (3)0.008 (3)
C140.055 (5)0.037 (4)0.039 (5)0.010 (4)0.004 (4)0.008 (4)
C150.073 (6)0.030 (4)0.027 (4)0.001 (4)0.001 (4)0.002 (3)
C160.054 (5)0.037 (4)0.032 (4)0.005 (4)0.021 (4)0.001 (3)
O90.065 (5)0.043 (4)0.154 (9)0.030 (4)0.041 (5)0.040 (5)
C170.09 (1)0.056 (8)0.25 (2)0.022 (7)0.11 (1)0.07 (1)
C180.082 (9)0.045 (6)0.13 (1)0.005 (6)0.017 (8)0.040 (7)
C190.044 (6)0.042 (5)0.11 (1)0.009 (4)0.001 (6)0.013 (6)
C200.050 (6)0.037 (5)0.12 (1)0.005 (5)0.020 (6)0.011 (6)
O100.042 (4)0.114 (7)0.036 (4)0.003 (4)0.010 (3)0.011 (4)
C210.039 (6)0.17 (1)0.039 (6)0.003 (7)0.002 (4)0.021 (7)
C220.052 (7)0.24 (2)0.077 (9)0.03 (1)0.024 (6)0.10 (1)
C230.049 (6)0.094 (9)0.053 (6)0.008 (6)0.020 (5)0.023 (6)
C240.038 (5)0.087 (8)0.048 (6)0.014 (5)0.009 (4)0.008 (5)
O110.034 (3)0.117 (6)0.038 (3)0.006 (4)0.001 (3)0.036 (4)
C250.028 (4)0.065 (6)0.058 (6)0.010 (4)0.008 (4)0.028 (5)
C260.054 (7)0.16 (2)0.10 (1)0.023 (9)0.006 (7)0.07 (1)
C270.061 (7)0.14 (1)0.036 (5)0.044 (8)0.007 (5)0.018 (6)
C280.032 (4)0.051 (5)0.034 (4)0.008 (4)0.001 (3)0.017 (4)
O120.025 (3)0.049 (4)0.119 (7)0.003 (3)0.007 (4)0.037 (4)
C290.021 (4)0.053 (5)0.056 (5)0.003 (4)0.006 (4)0.002 (4)
C300.026 (4)0.038 (4)0.033 (4)0.006 (3)0.001 (3)0.003 (3)
C310.021 (3)0.049 (5)0.039 (4)0.005 (3)0.000 (3)0.002 (4)
C320.029 (4)0.037 (4)0.035 (4)0.002 (3)0.001 (3)0.005 (3)
Geometric parameters (Å, º) top
Nb1—Cl12.457 (2)C6B_b—H6D_b0.9900
Nb1—Cl42.457 (2)C7B_b—H7C_b0.9900
Nb1—Cl32.460 (2)C7B_b—H7D_b0.9900
Nb1—Cl22.464 (2)O7—C91.423 (9)
Nb1—I12.9312 (7)O7—C121.43 (1)
Nb1—Nb42.9367 (8)C9—C101.50 (1)
Nb1—Nb52.9367 (8)C9—H9A0.9900
Nb1—Nb32.9394 (8)C9—H9B0.9900
Nb1—Nb22.9424 (8)C10—C111.50 (1)
Nb2—O12.219 (5)C10—H10A0.9900
Nb2—Cl92.457 (2)C10—H10B0.9900
Nb2—Cl12.461 (2)C11—C121.49 (1)
Nb2—Cl52.461 (2)C11—H11A0.9900
Nb2—Cl82.473 (2)C11—H11B0.9900
Nb2—Nb32.8867 (7)C12—H12A0.9900
Nb2—Nb52.9008 (8)C12—H12B0.9900
Nb2—Nb62.9381 (8)O8—C161.438 (9)
Nb3—O22.233 (4)O8—C131.455 (8)
Nb3—Cl52.462 (2)C13—C141.51 (1)
Nb3—Cl102.464 (2)C13—H13A0.9900
Nb3—Cl22.465 (2)C13—H13B0.9900
Nb3—Cl62.470 (2)C14—C151.51 (1)
Nb3—Nb42.9029 (8)C14—H14A0.9900
Nb3—Nb62.9418 (8)C14—H14B0.9900
Nb4—O32.232 (5)C15—C161.52 (1)
Nb4—Cl32.462 (2)C15—H15A0.9900
Nb4—Cl112.463 (2)C15—H15B0.9900
Nb4—Cl62.467 (2)C16—H16A0.9900
Nb4—Cl72.468 (2)C16—H16B0.9900
Nb4—Nb52.8923 (8)O9—C171.39 (1)
Nb4—Nb62.9366 (8)O9—C201.40 (1)
Nb5—O42.209 (5)C17—C181.42 (2)
Nb5—Cl42.452 (2)C17—H17A0.9900
Nb5—Cl122.461 (2)C17—H17B0.9900
Nb5—Cl72.475 (2)C18—C191.49 (2)
Nb5—Cl82.476 (2)C18—H18A0.9900
Nb5—Nb62.9352 (8)C18—H18B0.9900
Nb6—Cl122.456 (2)C19—C201.49 (1)
Nb6—Cl92.457 (2)C19—H19A0.9900
Nb6—Cl112.461 (2)C19—H19B0.9900
Nb6—Cl102.461 (2)C20—H20A0.9900
Nb6—I22.9563 (7)C20—H20B0.9900
O1—H1A0.8498O10—C211.41 (1)
O1—H1B0.8500O10—C241.46 (1)
O2—H2A0.8499C21—C221.43 (2)
O2—H2B0.8501C21—H21A0.9900
O3—H3A0.8505C21—H21B0.9900
O3—H3B0.8501C22—C231.50 (2)
O4—H4A0.8500C22—H22A0.9900
O4—H4B0.8498C22—H22B0.9900
O5—C11.420 (9)C23—C241.46 (1)
O5—C41.447 (9)C23—H23A0.9900
C1—C21.49 (1)C23—H23B0.9900
C1—H1C0.9900C24—H24A0.9900
C1—H1D0.9900C24—H24B0.9900
C2—C31.51 (1)O11—C251.43 (1)
C2—H2C0.9900O11—C281.432 (9)
C2—H2D0.9900C25—C261.46 (2)
C3—C41.51 (1)C25—H25A0.9900
C3—H3C0.9900C25—H25B0.9900
C3—H3D0.9900C26—C271.37 (2)
C4—H4C0.9900C26—H26A0.9900
C4—H4D0.9900C26—H26B0.9900
O6A_a—C8A_a1.48 (3)C27—C281.50 (1)
O6A_a—C5A_a1.53 (6)C27—H27A0.9900
C5A_a—C6A_a1.55 (7)C27—H27B0.9900
C5A_a—H5A_a0.9900C28—H28A0.9900
C5A_a—H5B_a0.9900C28—H28B0.9900
C6A_a—C7A_a1.46 (8)O12—C321.409 (9)
C6A_a—H6A_a0.9900O12—C291.44 (1)
C6A_a—H6B_a0.9900C29—C301.51 (1)
C7A_a—C8A_a1.5 (1)C29—H29A0.9900
C7A_a—H7A_a0.9900C29—H29B0.9900
C7A_a—H7B_a0.9900C30—C311.50 (1)
C8A_a—H8A_a0.9900C30—H30A0.9900
C8A_a—H8B_a0.9900C30—H30B0.9900
O6B_b—C5B_b1.2 (1)C31—C321.51 (1)
C5B_b—C6B_b1.6 (1)C31—H31A0.9900
C5B_b—H5C_b0.9900C31—H31B0.9900
C5B_b—H5D_b0.9900C32—H32A0.9900
C6B_b—C7B_b1.6 (1)C32—H32B0.9900
C6B_b—H6C_b0.9900
Cl1—Nb1—Cl488.15 (6)Nb2—O1—H1A126.4
Cl1—Nb1—Cl3164.99 (6)Nb2—O1—H1B135.5
Cl4—Nb1—Cl389.96 (6)H1A—O1—H1B91.8
Cl1—Nb1—Cl288.73 (6)Nb3—O2—H2A109.8
Cl4—Nb1—Cl2165.04 (6)Nb3—O2—H2B127.2
Cl3—Nb1—Cl289.28 (6)H2A—O2—H2B103.6
Cl1—Nb1—I182.67 (4)Nb4—O3—H3A109.8
Cl4—Nb1—I181.57 (4)Nb4—O3—H3B126.8
Cl3—Nb1—I182.32 (4)H3A—O3—H3B108.6
Cl2—Nb1—I183.52 (4)Nb5—O4—H4A109.4
Cl1—Nb1—Nb4141.61 (5)Nb5—O4—H4B109.3
Cl4—Nb1—Nb496.11 (4)H4A—O4—H4B109.5
Cl3—Nb1—Nb453.40 (4)C1—O5—C4109.5 (6)
Cl2—Nb1—Nb495.42 (4)O5—C1—C2107.2 (7)
I1—Nb1—Nb4135.71 (2)O5—C1—H1C110.3
Cl1—Nb1—Nb595.59 (4)C2—C1—H1C110.3
Cl4—Nb1—Nb553.17 (4)O5—C1—H1D110.3
Cl3—Nb1—Nb595.17 (4)C2—C1—H1D110.3
Cl2—Nb1—Nb5141.75 (4)H1C—C1—H1D108.5
I1—Nb1—Nb5134.73 (2)C1—C2—C3103.0 (6)
Nb4—Nb1—Nb559.00 (2)C1—C2—H2C111.2
Cl1—Nb1—Nb394.90 (4)C3—C2—H2C111.2
Cl4—Nb1—Nb3141.48 (4)C1—C2—H2D111.2
Cl3—Nb1—Nb395.84 (4)C3—C2—H2D111.2
Cl2—Nb1—Nb353.40 (4)H2C—C2—H2D109.1
I1—Nb1—Nb3136.92 (2)C4—C3—C2103.2 (6)
Nb4—Nb1—Nb359.21 (2)C4—C3—H3C111.1
Nb5—Nb1—Nb388.35 (2)C2—C3—H3C111.1
Cl1—Nb1—Nb253.30 (4)C4—C3—H3D111.1
Cl4—Nb1—Nb294.48 (4)C2—C3—H3D111.1
Cl3—Nb1—Nb2141.71 (4)H3C—C3—H3D109.1
Cl2—Nb1—Nb295.36 (4)O5—C4—C3106.2 (6)
I1—Nb1—Nb2135.96 (2)O5—C4—H4C110.5
Nb4—Nb1—Nb288.31 (2)C3—C4—H4C110.5
Nb5—Nb1—Nb259.13 (2)O5—C4—H4D110.5
Nb3—Nb1—Nb258.78 (2)C3—C4—H4D110.5
O1—Nb2—Cl980.9 (1)H4C—C4—H4D108.7
O1—Nb2—Cl181.0 (1)C8A_a—O6A_a—C5A_a107 (3)
Cl9—Nb2—Cl1161.91 (6)O6A_a—C5A_a—C6A_a99 (3)
O1—Nb2—Cl579.4 (1)O6A_a—C5A_a—H5A_a112.0
Cl9—Nb2—Cl589.21 (6)C6A_a—C5A_a—H5A_a112.0
Cl1—Nb2—Cl588.78 (6)O6A_a—C5A_a—H5B_a112.0
O1—Nb2—Cl882.3 (1)C6A_a—C5A_a—H5B_a112.0
Cl9—Nb2—Cl886.65 (6)H5A_a—C5A_a—H5B_a109.7
Cl1—Nb2—Cl889.63 (6)C7A_a—C6A_a—C5A_a105 (4)
Cl5—Nb2—Cl8161.62 (6)C7A_a—C6A_a—H6A_a110.7
O1—Nb2—Nb3133.5 (1)C5A_a—C6A_a—H6A_a110.7
Cl9—Nb2—Nb397.19 (4)C7A_a—C6A_a—H6B_a110.7
Cl1—Nb2—Nb396.17 (4)C5A_a—C6A_a—H6B_a110.7
Cl5—Nb2—Nb354.11 (4)H6A_a—C6A_a—H6B_a108.8
Cl8—Nb2—Nb3144.22 (4)C6A_a—C7A_a—C8A_a102 (5)
O1—Nb2—Nb5136.4 (1)C6A_a—C7A_a—H7A_a111.4
Cl9—Nb2—Nb595.69 (4)C8A_a—C7A_a—H7A_a111.4
Cl1—Nb2—Nb596.44 (4)C6A_a—C7A_a—H7B_a111.4
Cl5—Nb2—Nb5144.18 (4)C8A_a—C7A_a—H7B_a111.4
Cl8—Nb2—Nb554.17 (4)H7A_a—C7A_a—H7B_a109.3
Nb3—Nb2—Nb590.07 (2)O6A_a—C8A_a—C7A_a108 (3)
O1—Nb2—Nb6134.2 (1)O6A_a—C8A_a—H8A_a110.2
Cl9—Nb2—Nb653.29 (4)C7A_a—C8A_a—H8A_a110.2
Cl1—Nb2—Nb6144.78 (4)O6A_a—C8A_a—H8B_a110.2
Cl5—Nb2—Nb696.26 (4)C7A_a—C8A_a—H8B_a110.2
Cl8—Nb2—Nb695.58 (4)H8A_a—C8A_a—H8B_a108.5
Nb3—Nb2—Nb660.66 (2)O6B_b—C5B_b—C6B_b109 (8)
Nb5—Nb2—Nb660.35 (2)O6B_b—C5B_b—H5C_b109.9
O1—Nb2—Nb1134.2 (1)C6B_b—C5B_b—H5C_b109.9
Cl9—Nb2—Nb1144.85 (4)O6B_b—C5B_b—H5D_b109.9
Cl1—Nb2—Nb153.20 (4)C6B_b—C5B_b—H5D_b109.9
Cl5—Nb2—Nb196.78 (4)H5C_b—C5B_b—H5D_b108.3
Cl8—Nb2—Nb196.90 (5)C7B_b—C6B_b—C5B_b91 (7)
Nb3—Nb2—Nb160.56 (2)C7B_b—C6B_b—H6C_b113.5
Nb5—Nb2—Nb160.34 (2)C5B_b—C6B_b—H6C_b113.5
Nb6—Nb2—Nb191.58 (2)C7B_b—C6B_b—H6D_b113.5
O2—Nb3—Cl580.2 (1)C5B_b—C6B_b—H6D_b113.5
O2—Nb3—Cl1081.6 (1)H6C_b—C6B_b—H6D_b110.8
Cl5—Nb3—Cl1087.84 (6)C6B_b—C7B_b—H7C_b111.0
O2—Nb3—Cl280.1 (1)C6B_b—C7B_b—H7D_b111.0
Cl5—Nb3—Cl289.33 (6)H7C_b—C7B_b—H7D_b109.0
Cl10—Nb3—Cl2161.77 (5)C9—O7—C12108.6 (6)
O2—Nb3—Cl681.7 (1)O7—C9—C10106.2 (7)
Cl5—Nb3—Cl6161.93 (6)O7—C9—H9A110.5
Cl10—Nb3—Cl689.20 (5)C10—C9—H9A110.5
Cl2—Nb3—Cl687.92 (6)O7—C9—H9B110.5
O2—Nb3—Nb2134.3 (1)C10—C9—H9B110.5
Cl5—Nb3—Nb254.08 (4)H9A—C9—H9B108.7
Cl10—Nb3—Nb296.13 (4)C11—C10—C9104.8 (7)
Cl2—Nb3—Nb296.76 (4)C11—C10—H10A110.8
Cl6—Nb3—Nb2143.99 (4)C9—C10—H10A110.8
O2—Nb3—Nb4135.6 (1)C11—C10—H10B110.8
Cl5—Nb3—Nb4144.11 (4)C9—C10—H10B110.8
Cl10—Nb3—Nb496.56 (4)H10A—C10—H10B108.9
Cl2—Nb3—Nb496.26 (4)C12—C11—C10103.5 (8)
Cl6—Nb3—Nb453.95 (4)C12—C11—H11A111.1
Nb2—Nb3—Nb490.04 (2)C10—C11—H11A111.1
O2—Nb3—Nb1133.5 (1)C12—C11—H11B111.1
Cl5—Nb3—Nb196.83 (4)C10—C11—H11B111.1
Cl10—Nb3—Nb1144.85 (4)H11A—C11—H11B109.0
Cl2—Nb3—Nb153.39 (4)O7—C12—C11103.1 (7)
Cl6—Nb3—Nb195.83 (4)O7—C12—H12A111.2
Nb2—Nb3—Nb160.66 (2)C11—C12—H12A111.2
Nb4—Nb3—Nb160.35 (2)O7—C12—H12B111.2
O2—Nb3—Nb6134.9 (1)C11—C12—H12B111.2
Cl5—Nb3—Nb696.15 (4)H12A—C12—H12B109.1
Cl10—Nb3—Nb653.28 (4)C16—O8—C13109.3 (6)
Cl2—Nb3—Nb6144.95 (4)O8—C13—C14105.6 (6)
Cl6—Nb3—Nb696.33 (4)O8—C13—H13A110.6
Nb2—Nb3—Nb660.53 (2)C14—C13—H13A110.6
Nb4—Nb3—Nb660.32 (2)O8—C13—H13B110.6
Nb1—Nb3—Nb691.56 (2)C14—C13—H13B110.6
O3—Nb4—Cl381.6 (1)H13A—C13—H13B108.7
O3—Nb4—Cl1180.0 (1)C13—C14—C15102.3 (7)
Cl3—Nb4—Cl11161.58 (6)C13—C14—H14A111.3
O3—Nb4—Cl681.8 (1)C15—C14—H14A111.3
Cl3—Nb4—Cl688.54 (6)C13—C14—H14B111.3
Cl11—Nb4—Cl688.29 (6)C15—C14—H14B111.3
O3—Nb4—Cl779.9 (1)H14A—C14—H14B109.2
Cl3—Nb4—Cl788.21 (6)C14—C15—C16102.1 (7)
Cl11—Nb4—Cl789.13 (6)C14—C15—H15A111.3
Cl6—Nb4—Cl7161.75 (6)C16—C15—H15A111.3
O3—Nb4—Nb5134.2 (1)C14—C15—H15B111.3
Cl3—Nb4—Nb596.25 (4)C16—C15—H15B111.3
Cl11—Nb4—Nb596.97 (4)H15A—C15—H15B109.2
Cl6—Nb4—Nb5143.93 (4)O8—C16—C15105.7 (6)
Cl7—Nb4—Nb554.31 (4)O8—C16—H16A110.6
O3—Nb4—Nb3135.8 (1)C15—C16—H16A110.6
Cl3—Nb4—Nb396.72 (4)O8—C16—H16B110.6
Cl11—Nb4—Nb396.07 (4)C15—C16—H16B110.6
Cl6—Nb4—Nb354.02 (4)H16A—C16—H16B108.7
Cl7—Nb4—Nb3144.23 (4)C17—O9—C20109.7 (8)
Nb5—Nb4—Nb389.92 (2)O9—C17—C18110 (1)
O3—Nb4—Nb6133.4 (1)O9—C17—H17A109.6
Cl3—Nb4—Nb6145.05 (4)C18—C17—H17A109.6
Cl11—Nb4—Nb653.36 (4)O9—C17—H17B109.6
Cl6—Nb4—Nb696.51 (4)C18—C17—H17B109.6
Cl7—Nb4—Nb696.41 (4)H17A—C17—H17B108.1
Nb5—Nb4—Nb660.47 (2)C17—C18—C19106.1 (9)
Nb3—Nb4—Nb660.50 (2)C17—C18—H18A110.5
O3—Nb4—Nb1134.9 (1)C19—C18—H18A110.5
Cl3—Nb4—Nb153.33 (4)C17—C18—H18B110.5
Cl11—Nb4—Nb1145.08 (4)C19—C18—H18B110.5
Cl6—Nb4—Nb195.94 (4)H18A—C18—H18B108.7
Cl7—Nb4—Nb196.49 (4)C20—C19—C18104.3 (9)
Nb5—Nb4—Nb160.50 (2)C20—C19—H19A110.9
Nb3—Nb4—Nb160.44 (2)C18—C19—H19A110.9
Nb6—Nb4—Nb191.72 (2)C20—C19—H19B110.9
O4—Nb5—Cl480.6 (1)C18—C19—H19B110.9
O4—Nb5—Cl1281.0 (1)H19A—C19—H19B108.9
Cl4—Nb5—Cl12161.67 (6)O9—C20—C19106.4 (9)
O4—Nb5—Cl781.0 (1)O9—C20—H20A110.5
Cl4—Nb5—Cl789.82 (6)C19—C20—H20A110.5
Cl12—Nb5—Cl787.28 (6)O9—C20—H20B110.5
O4—Nb5—Cl880.9 (1)C19—C20—H20B110.5
Cl4—Nb5—Cl888.27 (6)H20A—C20—H20B108.7
Cl12—Nb5—Cl888.88 (6)C21—O10—C24107.8 (8)
Cl7—Nb5—Cl8161.88 (6)O10—C21—C22108.4 (9)
O4—Nb5—Nb4135.1 (1)O10—C21—H21A110.0
Cl4—Nb5—Nb497.38 (4)C22—C21—H21A110.0
Cl12—Nb5—Nb495.53 (4)O10—C21—H21B110.0
Cl7—Nb5—Nb454.06 (4)C22—C21—H21B110.0
Cl8—Nb5—Nb4144.02 (4)H21A—C21—H21B108.4
O4—Nb5—Nb2134.9 (1)C21—C22—C23103 (1)
Cl4—Nb5—Nb295.66 (4)C21—C22—H22A111.1
Cl12—Nb5—Nb297.30 (4)C23—C22—H22A111.1
Cl7—Nb5—Nb2144.04 (4)C21—C22—H22B111.1
Cl8—Nb5—Nb254.06 (4)C23—C22—H22B111.1
Nb4—Nb5—Nb289.97 (2)H22A—C22—H22B109.1
O4—Nb5—Nb6134.3 (1)C24—C23—C22102.7 (9)
Cl4—Nb5—Nb6145.07 (4)C24—C23—H23A111.2
Cl12—Nb5—Nb653.26 (4)C22—C23—H23A111.2
Cl7—Nb5—Nb696.28 (4)C24—C23—H23B111.2
Cl8—Nb5—Nb695.58 (4)C22—C23—H23B111.2
Nb4—Nb5—Nb660.51 (2)H23A—C23—H23B109.1
Nb2—Nb5—Nb660.45 (2)O10—C24—C23104.3 (8)
O4—Nb5—Nb1134.0 (1)O10—C24—H24A110.9
Cl4—Nb5—Nb153.35 (4)C23—C24—H24A110.9
Cl12—Nb5—Nb1144.97 (4)O10—C24—H24B110.9
Cl7—Nb5—Nb196.31 (4)C23—C24—H24B110.9
Cl8—Nb5—Nb196.97 (4)H24A—C24—H24B108.9
Nb4—Nb5—Nb160.50 (2)C25—O11—C28109.1 (7)
Nb2—Nb5—Nb160.53 (2)O11—C25—C26106.8 (8)
Nb6—Nb5—Nb191.75 (2)O11—C25—H25A110.4
Cl12—Nb6—Cl989.46 (6)C26—C25—H25A110.4
Cl12—Nb6—Cl1188.43 (6)O11—C25—H25B110.4
Cl9—Nb6—Cl11164.93 (6)C26—C25—H25B110.4
Cl12—Nb6—Cl10164.84 (6)H25A—C25—H25B108.6
Cl9—Nb6—Cl1089.32 (5)C27—C26—C25110 (1)
Cl11—Nb6—Cl1088.82 (5)C27—C26—H26A109.8
Cl12—Nb6—Nb553.44 (4)C25—C26—H26A109.8
Cl9—Nb6—Nb594.80 (4)C27—C26—H26B109.8
Cl11—Nb6—Nb595.91 (4)C25—C26—H26B109.8
Cl10—Nb6—Nb5141.71 (4)H26A—C26—H26B108.2
Cl12—Nb6—Nb494.55 (4)C26—C27—C28107.9 (9)
Cl9—Nb6—Nb4141.64 (4)C26—C27—H27A110.1
Cl11—Nb6—Nb453.42 (4)C28—C27—H27A110.1
Cl10—Nb6—Nb495.77 (4)C26—C27—H27B110.1
Nb5—Nb6—Nb459.02 (2)C28—C27—H27B110.1
Cl12—Nb6—Nb296.47 (4)H27A—C27—H27B108.4
Cl9—Nb6—Nb253.27 (4)O11—C28—C27105.9 (7)
Cl11—Nb6—Nb2141.81 (4)O11—C28—H28A110.6
Cl10—Nb6—Nb294.90 (4)C27—C28—H28A110.6
Nb5—Nb6—Nb259.19 (2)O11—C28—H28B110.6
Nb4—Nb6—Nb288.39 (2)C27—C28—H28B110.6
Cl12—Nb6—Nb3141.76 (4)H28A—C28—H28B108.7
Cl9—Nb6—Nb395.75 (4)C32—O12—C29110.4 (6)
Cl11—Nb6—Nb395.13 (4)O12—C29—C30103.7 (7)
Cl10—Nb6—Nb353.38 (4)O12—C29—H29A111.0
Nb5—Nb6—Nb388.34 (2)C30—C29—H29A111.0
Nb4—Nb6—Nb359.19 (2)O12—C29—H29B111.0
Nb2—Nb6—Nb358.81 (2)C30—C29—H29B111.0
Cl12—Nb6—I281.77 (4)H29A—C29—H29B109.0
Cl9—Nb6—I282.38 (4)C31—C30—C29101.6 (6)
Cl11—Nb6—I282.55 (4)C31—C30—H30A111.5
Cl10—Nb6—I283.09 (4)C29—C30—H30A111.5
Nb5—Nb6—I2135.19 (2)C31—C30—H30B111.5
Nb4—Nb6—I2135.95 (2)C29—C30—H30B111.5
Nb2—Nb6—I2135.65 (2)H30A—C30—H30B109.3
Nb3—Nb6—I2136.47 (2)C30—C31—C32104.3 (6)
Nb1—Cl1—Nb273.50 (5)C30—C31—H31A110.9
Nb1—Cl2—Nb373.21 (4)C32—C31—H31A110.9
Nb1—Cl3—Nb473.26 (5)C30—C31—H31B110.9
Nb5—Cl4—Nb173.48 (5)C32—C31—H31B110.9
Nb2—Cl5—Nb371.81 (4)H31A—C31—H31B108.9
Nb4—Cl6—Nb372.03 (4)O12—C32—C31106.1 (6)
Nb4—Cl7—Nb571.63 (4)O12—C32—H32A110.5
Nb2—Cl8—Nb571.77 (4)C31—C32—H32A110.5
Nb2—Cl9—Nb673.44 (5)O12—C32—H32B110.5
Nb6—Cl10—Nb373.34 (4)C31—C32—H32B110.5
Nb6—Cl11—Nb473.21 (4)H32A—C32—H32B108.7
Nb6—Cl12—Nb573.30 (4)
C4—O5—C1—C214.9 (9)C20—O9—C17—C1810 (2)
O5—C1—C2—C329.6 (9)O9—C17—C18—C193 (2)
C1—C2—C3—C432.4 (8)C17—C18—C19—C2013 (2)
C1—O5—C4—C36.3 (9)C17—O9—C20—C1918 (2)
C2—C3—C4—O524.3 (8)C18—C19—C20—O918 (2)
C8A_a—O6A_a—C5A_a—C6A_a30 (3)C24—O10—C21—C223 (2)
O6A_a—C5A_a—C6A_a—C7A_a45 (5)O10—C21—C22—C2324 (2)
C5A_a—C6A_a—C7A_a—C8A_a41 (5)C21—C22—C23—C2436 (2)
C5A_a—O6A_a—C8A_a—C7A_a7 (4)C21—O10—C24—C2320 (1)
C6A_a—C7A_a—C8A_a—O6A_a21 (5)C22—C23—C24—O1034 (1)
O6B_b—C5B_b—C6B_b—C7B_b32 (10)C28—O11—C25—C266 (1)
C12—O7—C9—C1020 (1)O11—C25—C26—C279 (2)
O7—C9—C10—C114 (1)C25—C26—C27—C288 (2)
C9—C10—C11—C1225 (1)C25—O11—C28—C271 (1)
C9—O7—C12—C1135 (1)C26—C27—C28—O115 (2)
C10—C11—C12—O736 (1)C32—O12—C29—C3027 (1)
C16—O8—C13—C1412.1 (8)O12—C29—C30—C3136.7 (8)
O8—C13—C14—C1531.5 (8)C29—C30—C31—C3233.1 (8)
C13—C14—C15—C1638.1 (8)C29—O12—C32—C316 (1)
C13—O8—C16—C1512.5 (9)C30—C31—C32—O1217.8 (9)
C14—C15—C16—O831.7 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O50.851.792.642 (7)180
O1—H1B···O6A_a0.851.752.60 (3)178
O1—H1B···O6B_b0.851.832.68 (5)173
O2—H2A···O70.851.832.639 (7)158
O2—H2B···O80.851.782.634 (7)180
O3—H3B···O90.851.752.601 (8)179
O3—H3A···O100.851.882.637 (8)148
O4—H4B···O110.851.922.613 (8)138
O4—H4A···O120.852.092.530 (8)112
C3—H3C···Cl4i0.992.943.930 (8)177
C3—H3D···Cl12ii0.992.953.657 (8)130
C9—H9B···Cl11iii0.992.983.642 (8)125
C14—H14A···Cl6iv0.992.973.931 (9)165
C23—H23A···Cl5v0.992.993.74 (1)134
C31—H31B···Cl8vi0.992.793.778 (8)176
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y+1, z+1; (v) x1/2, y+1/2, z+1; (vi) x1/2, y, z+1/2.
 

Acknowledgements

We gratefully acknowledge the maintenance of the XRD equipment through Dr Alexander Villinger (University of Rostock).

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. KO1616-8-2 to MK).

References

First citationBrandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrničević, N., Kojić–Prodić, B. & Plavšić, D. (1981). Z. Anorg. Allg. Chem. 478, 200–204.  Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A. (1964). Inorg. Chem. 3, 1217–1220.  CrossRef CAS Web of Science Google Scholar
First citationKoknat, F. W., Parson, J. A. & Vongvusharintra, A. (1974). Inorg. Chem. 13, 1699–1702.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLemoine, P., Halet, J.-F. & Cordier, S. (2019). In Ligated Transition Metal Clusters in Solid-State Chemistry: The Legacy of Marcel Sergent, edited by J.-F. Halet, pp. 143–190. Berlin, Heidelberg: Springer.  Google Scholar
First citationSchäfer, H., Plautz, B. & Plautz, H. (1972). Z. Anorg. Allg. Chem. 392, 10–22.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimon, A. (1988). Angew. Chem. 100, 163–188.  CrossRef CAS Google Scholar
First citationSteiner, T. (2002). Angew. Chem. 114, 50–80.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds