organic compounds
3-(Benzo[d]thiazol-2-yl)-2H-chromen-2-one
aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de
In the title compound, C16H9NO2S, the interplanar angle is 6.47 (6)°. An intramolecular S⋯O=C contact of 2.727 (2) Å is observed. The packing is determined by several types of weak interaction (`weak' hydrogen bonds, S⋯S contacts and π–π stacking).
Keywords: benzothiazol; coumarin; chromene; crystal structure.
CCDC reference: 2161632
Structure description
Coumarin (chromen-2-one) derivatives represent a significant class of organic heterocycles; they can be found in various natural or synthetic drug compounds and display a variety of biological activities (Curini et al., 2006), the most noticeable of which are photobiological properties upon irradiation with UV light. Thus, many coumarin derivatives are effective photosensitizers with valuable applications in medicine (Bansal et al., 2013). Because of these photochemical characteristics, together with their practical stability, ease of synthesis and good solubility, have been widely explored as solar energy collectors, charge-transfer agents and non-linear optical materials for photonic and electronic applications (Kim et al., 2011). are one of the most broadly investigated and commercially important classes of organic fluorescent materials. Coumarin dyes fluoresce in the blue–green spectroscopic region and are commonly used in daylight fluorescent pigments, fluorescent probes, and as tunable dye lasers or organic light-emitting diodes (Christie & Lui, 2000). The emission intensity of coumarin chromophores strongly depends on the nature and position of their substituents (Żamojć et al., 2014).
Benzothiazole derivatives also exhibit strong luminescence in solution and in the solid state. Molecules that incorporate benzothiazoles have attracted considerable research interest in the field of organic light-emitting diodes because of their unique electro-optical properties (Wang et al., 2010). Recently, we have synthesized some benzothiazoles (Azzam et al., 2017a,b, 2020a,b,c, 2021; Elgemeie et al., 2000a,b) and coumarin derivatives (Elgemeie, 1989; Elgemeie & Elghandour, 1990; Elgemeie et al., 2015).
As a continuation of our research interest in exploiting new coumarin and benzothiazole derivatives for light-emitting materials, we describe here the synthesis and characterization of a benzothiazole-based coumarin compound. The reaction of N-[2-(benzo[d]thiazol-2-yl)acetyl]benzohydrazide (1) with salicylaldehde (2) was investigated. This gave a product whose was not consistent with the proposed structure N-(3-(benzo[d]thiazol-2-yl)-2-oxoquinolin-1(2H)-yl)benzamide (5). Therefore the X-ray was determined, revealing that 3-(benzo[d]thiazol-2-yl)-2H-chromen-2-one (4) is the sole product in the solid state (Fig. 1). The formation of (4) is assumed to proceed via initial formation of adduct (3) and elimination of benzohydrazide rather than water.
The structure of 4 is shown in Fig. 2. Molecular dimensions may be regarded as normal; a brief selection is presented in Table 1. The ring systems are essentially planar, with r.m.s. deviations of 0.012 Å for the benzothiazole and 0.006 Å for the chromene (including the exocyclic oxygen atom); the interplanar angle is 6.47 (6)°. The intramolecular contact distance S1⋯O2 is 2.727 (2) Å.
|
There are three short intermolecular H⋯O/H⋯N contacts (Table 2), the shortest of which could reasonably be regarded as a `weak' hydrogen bond. Together with an S1⋯S1 contact [3.626 (1) Å, operator −x, 1 − y, 1 − z], this links the molecules to form corrugated sheets lying parallel to the bc plane (Fig. 3). However, this is only one way of considering the packing. The rings also display short contacts between their centroids via x-axis translation [thiazole⋯(benzothiazole benzo) 3.6187 (13) Å, thiazole⋯(coumarin heterocycle) 3.5344 (12) Å, (coumarin heterocycle)⋯(coumarin benzo) 3.4148 (12) Å], although the stacking is somewhat offset. Viewed parallel to the c axis, the rings are seen edge-on in a herringbone pattern.
|
A search of the Cambridge Database (Version 2021.3.0; Groom et al., 2016) for purely organic coumarin derivatives gave 1030 hits with 1299 individual molecules. The mean bond lengths of the coumarin heterocycle (referred to the numbering of 4) are: C15—C16 = 1.442 (15), C16—C8 =1.356 (19), C8—C9 =1.448 (18), C9—O1 =1.375 (14) and O1—C10 =1.378 (11) Å, and the values in 4 (Table 1) are consistent with these mean values. A more specialized search revealed four compounds with simple coumarin derivatives linked to benzo[d]thiazol in the same way as in 4: DARPIX (Ezeh & Harrop, 2012), VIVWEF and VIWDOX (Shi et al., 2019), WINZAU (Jasinski & Paight, 1995). The first three have been used as fluorescent probes, for the detection of biothiols and the evaluation of anti-cancer agents, respectively.
Synthesis and crystallization
A mixture of N-[2-(benzo[d]thiazol-2-yl)acetyl]benzohydrazide 1 (3.11 g, 0.01 mol), salicylaldehyde 2 (1.22 g, 0.01 mol) and ammonium acetate (0.77 g, 0.01 mol) in ethanol (10 mL) was refluxed for 3 h. The precipitate was filtered off and recrystallized from ethanol solution to give pale-yellow crystals in 95% yield, m.p. 501–503 K; IR (KBr, cm−1): υ 3048, 3028 (CH-aromatic), 1715 (C=O), 1557 (C=N) and 1602, 1479 (C=C). 1H NMR (400 MHz DMSO-d6) δ: 7.46–8.21 (m, 8H, 2C6H4), 9.26 (s, 1H, CH-pyran). 13C NMR (100 MHz, DMSO-d6) δ: 116.7, 119.2, 119.8, 122.7, 123.0, 125.7, 125.9, 127.2, 130.7, 134.2, 136.4, 142.5, 152.4, 153.8 (aromatic carbons), 159.9 (C=N), 160.1 (C=O). MS (EI): m/z (%) 281 [M++2] (0.44), 280 [M++1] (0.96), 279 [M+] (4.06), 278 [M+−1] (0.12), 277 [M+−2] (0.17), 105 (100.00), 77 [C6H5]+ (58.06). Analysis: calculated for C16H9NO2S (279.31): C 68.80; H 3.25; N 5.01; S 11.48%. Found: C 68.70; H 3.33; N 5.12; S 11.60%.
The sample consisted of a mass of long, extremely fine needles with an overall matt appearance. Careful separation and cutting provided a single crystal, which proved to be measurable using a high-intensity X-ray source.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3Structural data
CCDC reference: 2161632
https://doi.org/10.1107/S2414314622003327/xi4003sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622003327/xi4003Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314622003327/xi4003Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015a); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015a).C16H9NO2S | F(000) = 576 |
Mr = 279.30 | Dx = 1.537 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 4.60717 (11) Å | Cell parameters from 20622 reflections |
b = 20.7275 (5) Å | θ = 4.1–76.8° |
c = 12.6444 (3) Å | µ = 2.38 mm−1 |
β = 91.911 (2)° | T = 100 K |
V = 1206.81 (5) Å3 | Needle, pale yellow |
Z = 4 | 0.04 × 0.01 × 0.01 mm |
XtaLAB Synergy diffractometer | 2547 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 2528 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.068 |
ω scans | θmax = 77.9°, θmin = 4.1° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −5→5 |
Tmin = 0.696, Tmax = 1.000 | k = −24→26 |
49602 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0479P)2 + 1.2289P] where P = (Fo2 + 2Fc2)/3 |
S = 1.25 | (Δ/σ)max = 0.001 |
2547 reflections | Δρmax = 0.45 e Å−3 |
181 parameters | Δρmin = −0.43 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 3.3898 (0.0014) x + 13.7552 (0.0080) y + 2.0177 (0.0070) z = 8.9676 (0.0037) * 0.0227 (0.0011) S1 * 0.0005 (0.0015) C2 * -0.0077 (0.0015) N3 * -0.0083 (0.0019) C3A * 0.0016 (0.0017) C4 * 0.0176 (0.0017) C5 * 0.0019 (0.0017) C6 * -0.0169 (0.0016) C7 * -0.0115 (0.0018) C7A Rms deviation of fitted atoms = 0.0124 - 3.2516 (0.0012) x + 14.6654 (0.0053) y + 0.7477 (0.0068) z = 9.1325 (0.0065) Angle to previous plane (with approximate esd) = 6.467 ( 0.060 ) * -0.0054 (0.0017) C8 * -0.0016 (0.0018) C9 * 0.0001 (0.0019) C10 * -0.0072 (0.0017) C11 * 0.0011 (0.0017) C12 * -0.0035 (0.0017) C13 * -0.0017 (0.0017) C14 * 0.0079 (0.0019) C15 * 0.0022 (0.0016) C16 * 0.0136 (0.0014) O1 * -0.0054 (0.0014) O2 Rms deviation of fitted atoms = 0.0059 #====================================================================== Short contact: 3.6259 (0.0010) S1 - S1_$4 Operator $4: -x, 1-y, 1-z |
Refinement. The hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic 0.95 Å). The U(H) values were fixed at 1.2 times the equivalent Uiso value of the parent carbon atoms. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.03347 (11) | 0.58024 (2) | 0.44385 (4) | 0.01871 (16) | |
C2 | 0.1290 (5) | 0.63202 (10) | 0.35289 (16) | 0.0179 (4) | |
N3 | 0.0429 (4) | 0.62471 (9) | 0.25396 (14) | 0.0190 (4) | |
C3A | −0.1604 (5) | 0.57600 (10) | 0.24410 (17) | 0.0197 (4) | |
C4 | −0.3012 (5) | 0.55593 (11) | 0.14936 (17) | 0.0227 (5) | |
H4 | −0.257833 | 0.575871 | 0.084112 | 0.027* | |
C5 | −0.5025 (5) | 0.50703 (11) | 0.15244 (18) | 0.0238 (5) | |
H5 | −0.600561 | 0.493791 | 0.088821 | 0.029* | |
C6 | −0.5657 (5) | 0.47627 (11) | 0.24818 (18) | 0.0230 (5) | |
H6 | −0.704244 | 0.442317 | 0.248094 | 0.028* | |
C7 | −0.4295 (5) | 0.49470 (10) | 0.34205 (18) | 0.0208 (4) | |
H7 | −0.471183 | 0.473769 | 0.406635 | 0.025* | |
C7A | −0.2284 (5) | 0.54501 (10) | 0.33950 (16) | 0.0189 (4) | |
C8 | 0.3479 (4) | 0.67984 (10) | 0.38551 (16) | 0.0174 (4) | |
C9 | 0.4134 (5) | 0.68882 (10) | 0.49914 (16) | 0.0186 (4) | |
C10 | 0.7662 (5) | 0.76940 (10) | 0.45552 (16) | 0.0174 (4) | |
C11 | 0.9720 (5) | 0.81249 (10) | 0.49547 (16) | 0.0200 (4) | |
H11 | 1.009311 | 0.816281 | 0.569554 | 0.024* | |
C12 | 1.1223 (5) | 0.84998 (10) | 0.42467 (17) | 0.0208 (4) | |
H12 | 1.262170 | 0.880282 | 0.450509 | 0.025* | |
C13 | 1.0693 (5) | 0.84351 (10) | 0.31510 (17) | 0.0202 (4) | |
H13 | 1.174863 | 0.869054 | 0.267249 | 0.024* | |
C14 | 0.8647 (5) | 0.80021 (10) | 0.27695 (16) | 0.0191 (4) | |
H14 | 0.830301 | 0.796009 | 0.202773 | 0.023* | |
C15 | 0.7059 (4) | 0.76208 (10) | 0.34688 (16) | 0.0173 (4) | |
C16 | 0.4906 (4) | 0.71565 (10) | 0.31393 (16) | 0.0173 (4) | |
H16 | 0.447058 | 0.709837 | 0.240584 | 0.021* | |
O1 | 0.6178 (3) | 0.73370 (7) | 0.52821 (11) | 0.0198 (3) | |
O2 | 0.2995 (4) | 0.65973 (8) | 0.56960 (12) | 0.0247 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0214 (3) | 0.0199 (3) | 0.0150 (3) | −0.00055 (19) | 0.00235 (18) | 0.00232 (18) |
C2 | 0.0205 (10) | 0.0179 (10) | 0.0156 (9) | 0.0036 (8) | 0.0022 (7) | 0.0008 (7) |
N3 | 0.0211 (9) | 0.0194 (9) | 0.0166 (8) | −0.0004 (7) | 0.0017 (7) | −0.0005 (7) |
C3A | 0.0209 (10) | 0.0180 (10) | 0.0203 (10) | 0.0004 (8) | 0.0033 (8) | −0.0002 (8) |
C4 | 0.0265 (11) | 0.0241 (11) | 0.0175 (10) | −0.0013 (9) | 0.0009 (8) | −0.0015 (8) |
C5 | 0.0268 (11) | 0.0234 (11) | 0.0213 (11) | −0.0010 (9) | 0.0017 (8) | −0.0048 (8) |
C6 | 0.0212 (11) | 0.0182 (10) | 0.0300 (12) | −0.0016 (8) | 0.0042 (9) | −0.0026 (9) |
C7 | 0.0212 (10) | 0.0180 (10) | 0.0237 (11) | 0.0006 (8) | 0.0059 (8) | 0.0014 (8) |
C7A | 0.0210 (10) | 0.0180 (10) | 0.0178 (10) | 0.0034 (8) | 0.0026 (8) | 0.0011 (8) |
C8 | 0.0190 (10) | 0.0190 (10) | 0.0142 (9) | 0.0034 (8) | 0.0002 (7) | −0.0005 (7) |
C9 | 0.0207 (10) | 0.0204 (10) | 0.0149 (9) | 0.0024 (8) | 0.0021 (8) | −0.0003 (8) |
C10 | 0.0200 (10) | 0.0171 (10) | 0.0153 (9) | 0.0017 (8) | 0.0026 (7) | 0.0004 (7) |
C11 | 0.0236 (11) | 0.0206 (10) | 0.0158 (9) | 0.0034 (8) | −0.0005 (8) | −0.0034 (8) |
C12 | 0.0217 (10) | 0.0191 (10) | 0.0214 (10) | 0.0002 (8) | −0.0010 (8) | −0.0023 (8) |
C13 | 0.0221 (10) | 0.0193 (10) | 0.0194 (10) | 0.0017 (8) | 0.0024 (8) | 0.0013 (8) |
C14 | 0.0229 (10) | 0.0199 (10) | 0.0145 (9) | 0.0021 (8) | 0.0012 (8) | 0.0008 (8) |
C15 | 0.0201 (10) | 0.0169 (10) | 0.0147 (10) | 0.0027 (8) | −0.0004 (7) | 0.0001 (7) |
C16 | 0.0192 (10) | 0.0197 (10) | 0.0130 (9) | 0.0026 (8) | 0.0007 (7) | −0.0002 (7) |
O1 | 0.0242 (8) | 0.0227 (8) | 0.0125 (7) | −0.0010 (6) | 0.0010 (6) | 0.0005 (6) |
O2 | 0.0303 (8) | 0.0281 (8) | 0.0157 (7) | −0.0034 (7) | 0.0030 (6) | 0.0022 (6) |
S1—C7A | 1.733 (2) | C10—C11 | 1.385 (3) |
S1—C2 | 1.758 (2) | C10—C15 | 1.401 (3) |
C2—N3 | 1.308 (3) | C11—C12 | 1.388 (3) |
C2—C8 | 1.464 (3) | C12—C13 | 1.405 (3) |
N3—C3A | 1.380 (3) | C13—C14 | 1.377 (3) |
C3A—C4 | 1.406 (3) | C14—C15 | 1.409 (3) |
C3A—C7A | 1.411 (3) | C15—C16 | 1.434 (3) |
C4—C5 | 1.375 (3) | C4—H4 | 0.9500 |
C5—C6 | 1.407 (3) | C5—H5 | 0.9500 |
C6—C7 | 1.378 (3) | C6—H6 | 0.9500 |
C7—C7A | 1.396 (3) | C7—H7 | 0.9500 |
C8—C16 | 1.357 (3) | C11—H11 | 0.9500 |
C8—C9 | 1.470 (3) | C12—H12 | 0.9500 |
C9—O2 | 1.210 (3) | C13—H13 | 0.9500 |
C9—O1 | 1.365 (3) | C14—H14 | 0.9500 |
C10—O1 | 1.379 (2) | C16—H16 | 0.9500 |
C7A—S1—C2 | 88.87 (10) | C14—C13—C12 | 120.1 (2) |
N3—C2—C8 | 122.13 (19) | C13—C14—C15 | 120.63 (19) |
N3—C2—S1 | 115.63 (16) | C10—C15—C14 | 117.67 (19) |
C8—C2—S1 | 122.24 (15) | C10—C15—C16 | 118.07 (19) |
C2—N3—C3A | 110.75 (18) | C14—C15—C16 | 124.25 (19) |
N3—C3A—C4 | 125.9 (2) | C8—C16—C15 | 121.26 (19) |
N3—C3A—C7A | 115.15 (19) | C9—O1—C10 | 122.61 (16) |
C4—C3A—C7A | 119.0 (2) | C5—C4—H4 | 120.5 |
C5—C4—C3A | 119.1 (2) | C3A—C4—H4 | 120.5 |
C4—C5—C6 | 121.2 (2) | C4—C5—H5 | 119.4 |
C7—C6—C5 | 120.9 (2) | C6—C5—H5 | 119.4 |
C6—C7—C7A | 118.1 (2) | C7—C6—H6 | 119.5 |
C7—C7A—C3A | 121.7 (2) | C5—C6—H6 | 119.5 |
C7—C7A—S1 | 128.67 (17) | C6—C7—H7 | 121.0 |
C3A—C7A—S1 | 109.57 (16) | C7A—C7—H7 | 121.0 |
C16—C8—C2 | 121.80 (18) | C10—C11—H11 | 120.8 |
C16—C8—C9 | 119.64 (19) | C12—C11—H11 | 120.8 |
C2—C8—C9 | 118.56 (18) | C11—C12—H12 | 119.7 |
O2—C9—O1 | 116.96 (18) | C13—C12—H12 | 119.7 |
O2—C9—C8 | 125.2 (2) | C14—C13—H13 | 119.9 |
O1—C9—C8 | 117.81 (18) | C12—C13—H13 | 119.9 |
O1—C10—C11 | 116.83 (18) | C13—C14—H14 | 119.7 |
O1—C10—C15 | 120.59 (19) | C15—C14—H14 | 119.7 |
C11—C10—C15 | 122.58 (19) | C8—C16—H16 | 119.4 |
C10—C11—C12 | 118.41 (19) | C15—C16—H16 | 119.4 |
C11—C12—C13 | 120.6 (2) | ||
C7A—S1—C2—N3 | 1.07 (17) | C16—C8—C9—O2 | 179.9 (2) |
C7A—S1—C2—C8 | −178.49 (18) | C2—C8—C9—O2 | −0.2 (3) |
C8—C2—N3—C3A | 179.04 (18) | C16—C8—C9—O1 | 0.2 (3) |
S1—C2—N3—C3A | −0.5 (2) | C2—C8—C9—O1 | −179.90 (17) |
C2—N3—C3A—C4 | 179.1 (2) | O1—C10—C11—C12 | −178.97 (18) |
C2—N3—C3A—C7A | −0.5 (3) | C15—C10—C11—C12 | 0.4 (3) |
N3—C3A—C4—C5 | −179.1 (2) | C10—C11—C12—C13 | −0.9 (3) |
C7A—C3A—C4—C5 | 0.5 (3) | C11—C12—C13—C14 | 0.7 (3) |
C3A—C4—C5—C6 | −1.1 (3) | C12—C13—C14—C15 | 0.1 (3) |
C4—C5—C6—C7 | 0.6 (3) | O1—C10—C15—C14 | 179.76 (18) |
C5—C6—C7—C7A | 0.4 (3) | C11—C10—C15—C14 | 0.5 (3) |
C6—C7—C7A—C3A | −1.0 (3) | O1—C10—C15—C16 | −1.3 (3) |
C6—C7—C7A—S1 | 177.72 (17) | C11—C10—C15—C16 | 179.42 (19) |
N3—C3A—C7A—C7 | −179.79 (19) | C13—C14—C15—C10 | −0.7 (3) |
C4—C3A—C7A—C7 | 0.6 (3) | C13—C14—C15—C16 | −179.6 (2) |
N3—C3A—C7A—S1 | 1.3 (2) | C2—C8—C16—C15 | −179.62 (19) |
C4—C3A—C7A—S1 | −178.36 (16) | C9—C8—C16—C15 | 0.3 (3) |
C2—S1—C7A—C7 | 179.9 (2) | C10—C15—C16—C8 | 0.2 (3) |
C2—S1—C7A—C3A | −1.24 (16) | C14—C15—C16—C8 | 179.1 (2) |
N3—C2—C8—C16 | −5.4 (3) | O2—C9—O1—C10 | 179.04 (18) |
S1—C2—C8—C16 | 174.10 (16) | C8—C9—O1—C10 | −1.2 (3) |
N3—C2—C8—C9 | 174.66 (19) | C11—C10—O1—C9 | −178.83 (18) |
S1—C2—C8—C9 | −5.8 (3) | C15—C10—O1—C9 | 1.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O1i | 0.95 | 2.46 | 3.383 (3) | 163 |
C11—H11···N3ii | 0.95 | 2.63 | 3.523 (3) | 156 |
C13—H13···O2iii | 0.95 | 2.65 | 3.314 (3) | 127 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x+1, −y+3/2, z+1/2; (iii) x+1, −y+3/2, z−1/2. |
Acknowledgements
The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.
References
Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036. Web of Science CrossRef CAS PubMed Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194. Web of Science CrossRef CAS PubMed Google Scholar
Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655. Web of Science CrossRef CAS PubMed Google Scholar
Bansal, Y., Sethi, P. & Bansal, G. (2013). Med. Chem. Res. 22, 3049–3060. Web of Science CrossRef CAS Google Scholar
Christie, R. M. & Lui, C. H. (2000). Dyes Pigments, 47, 79–89. CrossRef CAS Google Scholar
Curini, M., Cravotto, G., Epifano, F. & Giannone, G. (2006). Curr. Med. Chem. 13, 199–222. CrossRef PubMed CAS Google Scholar
Elgemeie, G. H. (1989). Chem. Ind. 19, 653–654. Google Scholar
Elgemeie, G. H., Ahmed, K. A., Ahmed, E. A., Helal, M. H. & Masoud, D. M. (2015). Pigm. Resin Technol. 44, 87–93. CrossRef CAS Google Scholar
Elgemeie, G. H. & Elghandour, A. H. (1990). Bull. Chem. Soc. Jpn, 63, 1230–1232. CrossRef CAS Google Scholar
Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon Relat. Elem. 165, 265–272. CrossRef CAS Google Scholar
Elgemeie, G. H., Shams, Z., Elkholy, Y. M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–368. CrossRef CAS Google Scholar
Ezeh, V. C. & Harrop, T. C. (2012). Inorg. Chem. 51, 1213–1215. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jasinski, J. P. & Paight, E. S. (1995). Acta Cryst. C51, 531–533. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kim, G.-J., Lee, K., Kwon, H. & Kim, H.-J. (2011). Org. Lett. 13, 2799–2801. CrossRef CAS PubMed Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, D., Chen, S., Dong, B., Zhang, Y., Sheng, C., James, T. D. & Guo, Y. (2019). Chem. Sci. 10, 3715–3722. CrossRef CAS PubMed Google Scholar
Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Wang, H., Chen, G., Xu, X., Chen, H. & Ji, S. (2010). Dyes Pigments, 86, 238–248. Web of Science CrossRef CAS Google Scholar
Żamojć, K., Wiczk, W., Zaborowski, B., Jacewicz, D. & Chmurzyński, L. (2014). J. Fluoresc. 24, 713–718. PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.