organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(Benzo[d]thia­zol-2-yl)-2H-chromen-2-one

crossmark logo

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by C. Massera, Università di Parma, Italy (Received 17 March 2022; accepted 24 March 2022; online 31 March 2022)

In the title compound, C16H9NO2S, the inter­planar angle is 6.47 (6)°. An intra­molecular S⋯O=C contact of 2.727 (2) Å is observed. The packing is determined by several types of weak inter­action (`weak' hydrogen bonds, S⋯S contacts and ππ stacking).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarin (chromen-2-one) derivatives represent a significant class of organic heterocycles; they can be found in various natural or synthetic drug compounds and display a variety of biological activities (Curini et al., 2006[Curini, M., Cravotto, G., Epifano, F. & Giannone, G. (2006). Curr. Med. Chem. 13, 199-222.]), the most noticeable of which are photobiological properties upon irradiation with UV light. Thus, many coumarin derivatives are effective photosensitizers with valuable applications in medicine (Bansal et al., 2013[Bansal, Y., Sethi, P. & Bansal, G. (2013). Med. Chem. Res. 22, 3049-3060.]). Because of these photochemical characteristics, together with their practical stability, ease of synthesis and good solubility, coumarins have been widely explored as solar energy collectors, charge-transfer agents and non-linear optical materials for photonic and electronic applications (Kim et al., 2011[Kim, G.-J., Lee, K., Kwon, H. & Kim, H.-J. (2011). Org. Lett. 13, 2799-2801.]). Coumarins are one of the most broadly investigated and commercially important classes of organic fluorescent materials. Coumarin dyes fluoresce in the blue–green spectroscopic region and are commonly used in daylight fluorescent pigments, fluorescent probes, and as tunable dye lasers or organic light-emitting diodes (Christie & Lui, 2000[Christie, R. M. & Lui, C. H. (2000). Dyes Pigments, 47, 79-89.]). The emission intensity of coumarin chromophores strongly depends on the nature and position of their substituents (Żamojć et al., 2014[Żamojć, K., Wiczk, W., Zaborowski, B., Jacewicz, D. & Chmurzyński, L. (2014). J. Fluoresc. 24, 713-718.]).

Benzo­thia­zole derivatives also exhibit strong luminescence in solution and in the solid state. Mol­ecules that incorporate benzo­thia­zoles have attracted considerable research inter­est in the field of organic light-emitting diodes because of their unique electro-optical properties (Wang et al., 2010[Wang, H., Chen, G., Xu, X., Chen, H. & Ji, S. (2010). Dyes Pigments, 86, 238-248.]). Recently, we have synthesized some benzo­thia­zoles (Azzam et al., 2017a[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820-1822.],b[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041-1043.], 2020a[Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023-30036.],b[Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182-26194.],c[Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640-1655.], 2021[Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891-894.]; Elgemeie et al., 2000a[Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon Relat. Elem. 165, 265-272.],b[Elgemeie, G. H., Shams, Z., Elkholy, Y. M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363-368.]) and coumarin derivatives (Elgemeie, 1989[Elgemeie, G. H. (1989). Chem. Ind. 19, 653-654.]; Elgemeie & Elghandour, 1990[Elgemeie, G. H. & Elghandour, A. H. (1990). Bull. Chem. Soc. Jpn, 63, 1230-1232.]; Elgemeie et al., 2015[Elgemeie, G. H., Ahmed, K. A., Ahmed, E. A., Helal, M. H. & Masoud, D. M. (2015). Pigm. Resin Technol. 44, 87-93.]).

As a continuation of our research inter­est in exploiting new coumarin and benzo­thia­zole derivatives for light-emitting materials, we describe here the synthesis and characterization of a benzo­thia­zole-based coumarin compound. The reaction of N-[2-(benzo[d]thia­zol-2-yl)acet­yl]benzohydrazide (1) with salicylaldehde (2) was investigated. This gave a product whose mass spectrum was not consistent with the proposed structure N-(3-(benzo[d]thia­zol-2-yl)-2-oxoquinolin-1(2H)-yl)benzamide (5). Therefore the X-ray crystal structure was determined, revealing that 3-(benzo[d]thia­zol-2-yl)-2H-chromen-2-one (4) is the sole product in the solid state (Fig. 1[link]). The formation of (4) is assumed to proceed via initial formation of adduct (3) and elimination of benzohydrazide rather than water.

[Figure 1]
Figure 1
Reaction scheme.

The structure of 4 is shown in Fig. 2[link]. Mol­ecular dimensions may be regarded as normal; a brief selection is presented in Table 1[link]. The ring systems are essentially planar, with r.m.s. deviations of 0.012 Å for the benzo­thia­zole and 0.006 Å for the chromene (including the exocyclic oxygen atom); the inter­planar angle is 6.47 (6)°. The intra­molecular contact distance S1⋯O2 is 2.727 (2) Å.

Table 1
Selected geometric parameters (Å, °)

S1—C7A 1.733 (2) C8—C16 1.357 (3)
S1—C2 1.758 (2) C8—C9 1.470 (3)
C2—N3 1.308 (3) C9—O1 1.365 (3)
N3—C3A 1.380 (3) C10—O1 1.379 (2)
C3A—C7A 1.411 (3) C15—C16 1.434 (3)
       
C7A—S1—C2 88.87 (10) N3—C3A—C7A 115.15 (19)
N3—C2—S1 115.63 (16) C3A—C7A—S1 109.57 (16)
C2—N3—C3A 110.75 (18)    
[Figure 2]
Figure 2
The mol­ecule of 4 in the crystal. Ellipsoids represent 50% probability levels.

There are three short inter­molecular H⋯O/H⋯N contacts (Table 2[link]), the shortest of which could reasonably be regarded as a `weak' hydrogen bond. Together with an S1⋯S1 contact [3.626 (1) Å, operator −x, 1 − y, 1 − z], this links the mol­ecules to form corrugated sheets lying parallel to the bc plane (Fig. 3[link]). However, this is only one way of considering the packing. The rings also display short contacts between their centroids via x-axis translation [thia­zole⋯(benzo­thia­zole benzo) 3.6187 (13) Å, thia­zole⋯(coumarin heterocycle) 3.5344 (12) Å, (coumarin heterocycle)⋯(coumarin benzo) 3.4148 (12) Å], although the stacking is somewhat offset. Viewed parallel to the c axis, the rings are seen edge-on in a herringbone pattern.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.95 2.46 3.383 (3) 163
C11—H11⋯N3ii 0.95 2.63 3.523 (3) 156
C13—H13⋯O2iii 0.95 2.65 3.314 (3) 127
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing of 4 viewed parallel to the short a axis. Dashed lines indicate `weak' hydrogen bonds or S⋯S contacts. Hydrogen atoms not involved in hydrogen bonding are omitted.

A search of the Cambridge Database (Version 2021.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for purely organic coumarin derivatives gave 1030 hits with 1299 individual mol­ecules. The mean bond lengths of the coumarin heterocycle (referred to the numbering of 4) are: C15—C16 = 1.442 (15), C16—C8 =1.356 (19), C8—C9 =1.448 (18), C9—O1 =1.375 (14) and O1—C10 =1.378 (11) Å, and the values in 4 (Table 1[link]) are consistent with these mean values. A more specialized search revealed four compounds with simple coumarin derivatives linked to benzo[d]thia­zol in the same way as in 4: DARPIX (Ezeh & Harrop, 2012[Ezeh, V. C. & Harrop, T. C. (2012). Inorg. Chem. 51, 1213-1215.]), VIVWEF and VIWDOX (Shi et al., 2019[Shi, D., Chen, S., Dong, B., Zhang, Y., Sheng, C., James, T. D. & Guo, Y. (2019). Chem. Sci. 10, 3715-3722.]), WINZAU (Jasinski & Paight, 1995[Jasinski, J. P. & Paight, E. S. (1995). Acta Cryst. C51, 531-533.]). The first three have been used as fluorescent probes, for the detection of bio­thiols and the evaluation of anti-cancer agents, respectively.

Synthesis and crystallization

A mixture of N-[2-(benzo[d]thia­zol-2-yl)acet­yl]benzo­hydra­zide 1 (3.11 g, 0.01 mol), salicyl­aldehyde 2 (1.22 g, 0.01 mol) and ammonium acetate (0.77 g, 0.01 mol) in ethanol (10 mL) was refluxed for 3 h. The precipitate was filtered off and recrystallized from ethanol solution to give pale-yellow crystals in 95% yield, m.p. 501–503 K; IR (KBr, cm−1): υ 3048, 3028 (CH-aromatic), 1715 (C=O), 1557 (C=N) and 1602, 1479 (C=C). 1H NMR (400 MHz DMSO-d6) δ: 7.46–8.21 (m, 8H, 2C6H4), 9.26 (s, 1H, CH-pyran). 13C NMR (100 MHz, DMSO-d6) δ: 116.7, 119.2, 119.8, 122.7, 123.0, 125.7, 125.9, 127.2, 130.7, 134.2, 136.4, 142.5, 152.4, 153.8 (aromatic carbons), 159.9 (C=N), 160.1 (C=O). MS (EI): m/z (%) 281 [M++2] (0.44), 280 [M++1] (0.96), 279 [M+] (4.06), 278 [M+−1] (0.12), 277 [M+−2] (0.17), 105 (100.00), 77 [C6H5]+ (58.06). Analysis: calculated for C16H9NO2S (279.31): C 68.80; H 3.25; N 5.01; S 11.48%. Found: C 68.70; H 3.33; N 5.12; S 11.60%.

The sample consisted of a mass of long, extremely fine needles with an overall matt appearance. Careful separation and cutting provided a single crystal, which proved to be measurable using a high-intensity X-ray source.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C16H9NO2S
Mr 279.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 4.60717 (11), 20.7275 (5), 12.6444 (3)
β (°) 91.911 (2)
V3) 1206.81 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.39
Crystal size (mm) 0.04 × 0.01 × 0.01
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.696, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 49602, 2547, 2528
Rint 0.068
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.120, 1.25
No. of reflections 2547
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015a); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015a).

3-(Benzo[d]thiazol-2-yl)-2H-chromen-2-one top
Crystal data top
C16H9NO2SF(000) = 576
Mr = 279.30Dx = 1.537 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 4.60717 (11) ÅCell parameters from 20622 reflections
b = 20.7275 (5) Åθ = 4.1–76.8°
c = 12.6444 (3) ŵ = 2.38 mm1
β = 91.911 (2)°T = 100 K
V = 1206.81 (5) Å3Needle, pale yellow
Z = 40.04 × 0.01 × 0.01 mm
Data collection top
XtaLAB Synergy
diffractometer
2547 independent reflections
Radiation source: micro-focus sealed X-ray tube2528 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.068
ω scansθmax = 77.9°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 55
Tmin = 0.696, Tmax = 1.000k = 2426
49602 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0479P)2 + 1.2289P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max = 0.001
2547 reflectionsΔρmax = 0.45 e Å3
181 parametersΔρmin = 0.43 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 3.3898 (0.0014) x + 13.7552 (0.0080) y + 2.0177 (0.0070) z = 8.9676 (0.0037)

* 0.0227 (0.0011) S1 * 0.0005 (0.0015) C2 * -0.0077 (0.0015) N3 * -0.0083 (0.0019) C3A * 0.0016 (0.0017) C4 * 0.0176 (0.0017) C5 * 0.0019 (0.0017) C6 * -0.0169 (0.0016) C7 * -0.0115 (0.0018) C7A

Rms deviation of fitted atoms = 0.0124

- 3.2516 (0.0012) x + 14.6654 (0.0053) y + 0.7477 (0.0068) z = 9.1325 (0.0065)

Angle to previous plane (with approximate esd) = 6.467 ( 0.060 )

* -0.0054 (0.0017) C8 * -0.0016 (0.0018) C9 * 0.0001 (0.0019) C10 * -0.0072 (0.0017) C11 * 0.0011 (0.0017) C12 * -0.0035 (0.0017) C13 * -0.0017 (0.0017) C14 * 0.0079 (0.0019) C15 * 0.0022 (0.0016) C16 * 0.0136 (0.0014) O1 * -0.0054 (0.0014) O2

Rms deviation of fitted atoms = 0.0059

#======================================================================

Short contact:

3.6259 (0.0010) S1 - S1_$4

Operator $4: -x, 1-y, 1-z

Refinement. The hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic 0.95 Å). The U(H) values were fixed at 1.2 times the equivalent Uiso value of the parent carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.03347 (11)0.58024 (2)0.44385 (4)0.01871 (16)
C20.1290 (5)0.63202 (10)0.35289 (16)0.0179 (4)
N30.0429 (4)0.62471 (9)0.25396 (14)0.0190 (4)
C3A0.1604 (5)0.57600 (10)0.24410 (17)0.0197 (4)
C40.3012 (5)0.55593 (11)0.14936 (17)0.0227 (5)
H40.2578330.5758710.0841120.027*
C50.5025 (5)0.50703 (11)0.15244 (18)0.0238 (5)
H50.6005610.4937910.0888210.029*
C60.5657 (5)0.47627 (11)0.24818 (18)0.0230 (5)
H60.7042440.4423170.2480940.028*
C70.4295 (5)0.49470 (10)0.34205 (18)0.0208 (4)
H70.4711830.4737690.4066350.025*
C7A0.2284 (5)0.54501 (10)0.33950 (16)0.0189 (4)
C80.3479 (4)0.67984 (10)0.38551 (16)0.0174 (4)
C90.4134 (5)0.68882 (10)0.49914 (16)0.0186 (4)
C100.7662 (5)0.76940 (10)0.45552 (16)0.0174 (4)
C110.9720 (5)0.81249 (10)0.49547 (16)0.0200 (4)
H111.0093110.8162810.5695540.024*
C121.1223 (5)0.84998 (10)0.42467 (17)0.0208 (4)
H121.2621700.8802820.4505090.025*
C131.0693 (5)0.84351 (10)0.31510 (17)0.0202 (4)
H131.1748630.8690540.2672490.024*
C140.8647 (5)0.80021 (10)0.27695 (16)0.0191 (4)
H140.8303010.7960090.2027730.023*
C150.7059 (4)0.76208 (10)0.34688 (16)0.0173 (4)
C160.4906 (4)0.71565 (10)0.31393 (16)0.0173 (4)
H160.4470580.7098370.2405840.021*
O10.6178 (3)0.73370 (7)0.52821 (11)0.0198 (3)
O20.2995 (4)0.65973 (8)0.56960 (12)0.0247 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0214 (3)0.0199 (3)0.0150 (3)0.00055 (19)0.00235 (18)0.00232 (18)
C20.0205 (10)0.0179 (10)0.0156 (9)0.0036 (8)0.0022 (7)0.0008 (7)
N30.0211 (9)0.0194 (9)0.0166 (8)0.0004 (7)0.0017 (7)0.0005 (7)
C3A0.0209 (10)0.0180 (10)0.0203 (10)0.0004 (8)0.0033 (8)0.0002 (8)
C40.0265 (11)0.0241 (11)0.0175 (10)0.0013 (9)0.0009 (8)0.0015 (8)
C50.0268 (11)0.0234 (11)0.0213 (11)0.0010 (9)0.0017 (8)0.0048 (8)
C60.0212 (11)0.0182 (10)0.0300 (12)0.0016 (8)0.0042 (9)0.0026 (9)
C70.0212 (10)0.0180 (10)0.0237 (11)0.0006 (8)0.0059 (8)0.0014 (8)
C7A0.0210 (10)0.0180 (10)0.0178 (10)0.0034 (8)0.0026 (8)0.0011 (8)
C80.0190 (10)0.0190 (10)0.0142 (9)0.0034 (8)0.0002 (7)0.0005 (7)
C90.0207 (10)0.0204 (10)0.0149 (9)0.0024 (8)0.0021 (8)0.0003 (8)
C100.0200 (10)0.0171 (10)0.0153 (9)0.0017 (8)0.0026 (7)0.0004 (7)
C110.0236 (11)0.0206 (10)0.0158 (9)0.0034 (8)0.0005 (8)0.0034 (8)
C120.0217 (10)0.0191 (10)0.0214 (10)0.0002 (8)0.0010 (8)0.0023 (8)
C130.0221 (10)0.0193 (10)0.0194 (10)0.0017 (8)0.0024 (8)0.0013 (8)
C140.0229 (10)0.0199 (10)0.0145 (9)0.0021 (8)0.0012 (8)0.0008 (8)
C150.0201 (10)0.0169 (10)0.0147 (10)0.0027 (8)0.0004 (7)0.0001 (7)
C160.0192 (10)0.0197 (10)0.0130 (9)0.0026 (8)0.0007 (7)0.0002 (7)
O10.0242 (8)0.0227 (8)0.0125 (7)0.0010 (6)0.0010 (6)0.0005 (6)
O20.0303 (8)0.0281 (8)0.0157 (7)0.0034 (7)0.0030 (6)0.0022 (6)
Geometric parameters (Å, º) top
S1—C7A1.733 (2)C10—C111.385 (3)
S1—C21.758 (2)C10—C151.401 (3)
C2—N31.308 (3)C11—C121.388 (3)
C2—C81.464 (3)C12—C131.405 (3)
N3—C3A1.380 (3)C13—C141.377 (3)
C3A—C41.406 (3)C14—C151.409 (3)
C3A—C7A1.411 (3)C15—C161.434 (3)
C4—C51.375 (3)C4—H40.9500
C5—C61.407 (3)C5—H50.9500
C6—C71.378 (3)C6—H60.9500
C7—C7A1.396 (3)C7—H70.9500
C8—C161.357 (3)C11—H110.9500
C8—C91.470 (3)C12—H120.9500
C9—O21.210 (3)C13—H130.9500
C9—O11.365 (3)C14—H140.9500
C10—O11.379 (2)C16—H160.9500
C7A—S1—C288.87 (10)C14—C13—C12120.1 (2)
N3—C2—C8122.13 (19)C13—C14—C15120.63 (19)
N3—C2—S1115.63 (16)C10—C15—C14117.67 (19)
C8—C2—S1122.24 (15)C10—C15—C16118.07 (19)
C2—N3—C3A110.75 (18)C14—C15—C16124.25 (19)
N3—C3A—C4125.9 (2)C8—C16—C15121.26 (19)
N3—C3A—C7A115.15 (19)C9—O1—C10122.61 (16)
C4—C3A—C7A119.0 (2)C5—C4—H4120.5
C5—C4—C3A119.1 (2)C3A—C4—H4120.5
C4—C5—C6121.2 (2)C4—C5—H5119.4
C7—C6—C5120.9 (2)C6—C5—H5119.4
C6—C7—C7A118.1 (2)C7—C6—H6119.5
C7—C7A—C3A121.7 (2)C5—C6—H6119.5
C7—C7A—S1128.67 (17)C6—C7—H7121.0
C3A—C7A—S1109.57 (16)C7A—C7—H7121.0
C16—C8—C2121.80 (18)C10—C11—H11120.8
C16—C8—C9119.64 (19)C12—C11—H11120.8
C2—C8—C9118.56 (18)C11—C12—H12119.7
O2—C9—O1116.96 (18)C13—C12—H12119.7
O2—C9—C8125.2 (2)C14—C13—H13119.9
O1—C9—C8117.81 (18)C12—C13—H13119.9
O1—C10—C11116.83 (18)C13—C14—H14119.7
O1—C10—C15120.59 (19)C15—C14—H14119.7
C11—C10—C15122.58 (19)C8—C16—H16119.4
C10—C11—C12118.41 (19)C15—C16—H16119.4
C11—C12—C13120.6 (2)
C7A—S1—C2—N31.07 (17)C16—C8—C9—O2179.9 (2)
C7A—S1—C2—C8178.49 (18)C2—C8—C9—O20.2 (3)
C8—C2—N3—C3A179.04 (18)C16—C8—C9—O10.2 (3)
S1—C2—N3—C3A0.5 (2)C2—C8—C9—O1179.90 (17)
C2—N3—C3A—C4179.1 (2)O1—C10—C11—C12178.97 (18)
C2—N3—C3A—C7A0.5 (3)C15—C10—C11—C120.4 (3)
N3—C3A—C4—C5179.1 (2)C10—C11—C12—C130.9 (3)
C7A—C3A—C4—C50.5 (3)C11—C12—C13—C140.7 (3)
C3A—C4—C5—C61.1 (3)C12—C13—C14—C150.1 (3)
C4—C5—C6—C70.6 (3)O1—C10—C15—C14179.76 (18)
C5—C6—C7—C7A0.4 (3)C11—C10—C15—C140.5 (3)
C6—C7—C7A—C3A1.0 (3)O1—C10—C15—C161.3 (3)
C6—C7—C7A—S1177.72 (17)C11—C10—C15—C16179.42 (19)
N3—C3A—C7A—C7179.79 (19)C13—C14—C15—C100.7 (3)
C4—C3A—C7A—C70.6 (3)C13—C14—C15—C16179.6 (2)
N3—C3A—C7A—S11.3 (2)C2—C8—C16—C15179.62 (19)
C4—C3A—C7A—S1178.36 (16)C9—C8—C16—C150.3 (3)
C2—S1—C7A—C7179.9 (2)C10—C15—C16—C80.2 (3)
C2—S1—C7A—C3A1.24 (16)C14—C15—C16—C8179.1 (2)
N3—C2—C8—C165.4 (3)O2—C9—O1—C10179.04 (18)
S1—C2—C8—C16174.10 (16)C8—C9—O1—C101.2 (3)
N3—C2—C8—C9174.66 (19)C11—C10—O1—C9178.83 (18)
S1—C2—C8—C95.8 (3)C15—C10—O1—C91.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.952.463.383 (3)163
C11—H11···N3ii0.952.633.523 (3)156
C13—H13···O2iii0.952.653.314 (3)127
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+3/2, z+1/2; (iii) x+1, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAzzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBansal, Y., Sethi, P. & Bansal, G. (2013). Med. Chem. Res. 22, 3049–3060.  Web of Science CrossRef CAS Google Scholar
First citationChristie, R. M. & Lui, C. H. (2000). Dyes Pigments, 47, 79–89.  CrossRef CAS Google Scholar
First citationCurini, M., Cravotto, G., Epifano, F. & Giannone, G. (2006). Curr. Med. Chem. 13, 199–222.  CrossRef PubMed CAS Google Scholar
First citationElgemeie, G. H. (1989). Chem. Ind. 19, 653–654.  Google Scholar
First citationElgemeie, G. H., Ahmed, K. A., Ahmed, E. A., Helal, M. H. & Masoud, D. M. (2015). Pigm. Resin Technol. 44, 87–93.  CrossRef CAS Google Scholar
First citationElgemeie, G. H. & Elghandour, A. H. (1990). Bull. Chem. Soc. Jpn, 63, 1230–1232.  CrossRef CAS Google Scholar
First citationElgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon Relat. Elem. 165, 265–272.  CrossRef CAS Google Scholar
First citationElgemeie, G. H., Shams, Z., Elkholy, Y. M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–368.  CrossRef CAS Google Scholar
First citationEzeh, V. C. & Harrop, T. C. (2012). Inorg. Chem. 51, 1213–1215.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P. & Paight, E. S. (1995). Acta Cryst. C51, 531–533.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKim, G.-J., Lee, K., Kwon, H. & Kim, H.-J. (2011). Org. Lett. 13, 2799–2801.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, D., Chen, S., Dong, B., Zhang, Y., Sheng, C., James, T. D. & Guo, Y. (2019). Chem. Sci. 10, 3715–3722.  CrossRef CAS PubMed Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationWang, H., Chen, G., Xu, X., Chen, H. & Ji, S. (2010). Dyes Pigments, 86, 238–248.  Web of Science CrossRef CAS Google Scholar
First citationŻamojć, K., Wiczk, W., Zaborowski, B., Jacewicz, D. & Chmurzyński, L. (2014). J. Fluoresc. 24, 713–718.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds