metal-organic compounds
Tetra-μ-acetato-κ8O:O′-bis[(3-chloropyridine-κN)ruthenium(II,III)](Ru—Ru) hexafluoridophosphate 1,2-dichloroethane monosolvate
aDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS, Canada, B2G 2W5, bDepartment of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, NS, Canada, B3H 4R2, and cDepartment of Chemistry, Saint Mary's University, Halifax, NS, Canada, B3H 3C3
*Correspondence e-mail: maquino@stfx.ca
The title compound, [Ru2(μ-O2CCH3)4(C5H4ClN)2]PF6·C2H4Cl2, was obtained via a rapid of 3-chloropyridine for water in [Ru2(μ-O2CCH3)4(H2O)2]PF6 in 2-propanol and subsequent crystallization from a dichloroethane solution. The cationic diruthenium(II,III) tetraacetate core lies on a crystallographic inversion center with Ru—Ru and Ru—N bond lengths of 2.2738 (3) and 2.2920 (17) Å, respectively. The Ru—Ru—N bond angle is close to linear at 176.48 (4)°, and a significant π-stacking interaction of 3.5649 (16) Å is seen between overlapping pyridine rings of adjacent cations.
CCDC reference: 2156199
Structure description
Earlier research in our lab dealt with the chemistry of various mixed-valent diruthenium(II,III) tetraacetate complexes incorporating substituted pyridines and other, biologically relevant, heterocyclic N-donors in the axial coordination positions (Bland et al., 2005; Gilfoy et al., 2001; Minaker et al., 2011; Vamvounis et al., 2000). At that time we were unable to obtain structures of amino- or chloro-pyridine diadducts. Recently, we have been able to characterize both a 3-aminopyridine diadduct (Aquino et al., 2021) and the 3-chloropyridine diadduct is reported here. This is the first of a chloro-pyridine diadduct of a diruthenium(II,III) tetracarboxylate that we are aware of.
The solvated title salt consists of a complex cation with a diruthenium (II,III) tetraacetate core and 3-chloropyridines in the axial positions, a hexafluoridophophate anion, and a 1,2-dichloroethane molecule of solvation (Fig. 1). The cation displays the classic Chinese lantern or paddlewheel shape with each ruthenium atom at the center of a slightly distorted octahedron. The Ru1—Ru1(−x + 1, −y, −z) and Ru1—N1 bond lengths are 2.2738 (3) and 2.2920 (17) Å, and are similar to those in the 3-cyanopyridine diadduct [2.2702 (6) and 2.295 (3) Å; Minaker et al., 2011]. The Ru1(−x + 1, −y, −z)—Ru1—N1 bond angle of 176.48 (4)° is also comparable to the 174.27 (7)° of the 3-cyanopyridine adduct, showing essentially linear coordination. While no substantial hydrogen bonding was detected in the title compound, a significant π–π stacking interaction between pyridine rings of adjacent complexes was noted (Fig. 2) and creates a chain motif along [010]. The distance between the ring centroids (N1, C1–C5) is 3.5649 (16) Å with a slippage of 0.553 Å, the symmetry code to generate the second ring being (1 − x, 1 − y, −z).
Synthesis and crystallization
Synthesis of the title compound followed an earlier method developed in our lab (Vamvounis et al., 2000). [Ru2(μ-O2CCH3)4(H2O)2]PF6 (0.100 g, 0.161 mmol) was dissolved in 10 ml of 2-propanol. Then, 3-chloropyridine (0.0732 g, 0.645 mmol) was added and the solution allowed to stir for 5 min at room temperature. The volume of the solution was then reduced to 5 ml under vacuum and allowed to cool to 278 K overnight. The crystalline product was collected via suction filtration. Yield = 0.098 g (63%). Crystals suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into a 1,2-dichloroethane solution of the complex. IR (cm−1): 2947 (νC—H), 1447 (asym. νCOO), 1396 (sym. νCOO), 841, (νPF6), 766 (νC—Cl), 692 (δC—CH3). UV–vis (λ nm, (log ɛ)): 427 (2.95), 263 (4.05), 210 (4.33).
Refinement
Crystal data, data collection and structure . Two reflections were removed from the because of poor agreements between F2(obs) and F2(calc), 5 and 6. In the cation, the methyl groups of the acetate ligands were modeled in the as idealized disordered methyl groups with the two sets of positions rotated from each other by 60°. The was found to contain solvent molecules. The recrystallization solvents were dichloroethane and diethyl ether. The SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) was used to get an estimate of the void volumes and of the unaccounted electron density in them. The was found to contain one void of 228 Å3 with 50 electrons per void. This suggested that there was one molecule of dichloroethane in each void and it was modeled as such. The disorder in the solvent was modeled by two equally occupied parts, which were then also split again across an inversion center, giving all atoms an occupancy of 0.25. The geometries of all the parts were restrained to be similar. In addition the C—C and the C—Cl bond lengths were restrained to reasonable values. The heavy atoms of the same type in the solvent were restrained to have similar displacement parameters and the carbon atoms were restrained to have more isotropic ellipsoids. Finally, rigid-bond restraints were placed over each solvent part.
details are summarized in Table 1Structural data
CCDC reference: 2156199
https://doi.org/10.1107/S2414314622002498/wm4161sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622002498/wm4161Isup2.hkl
Data collection: CrystalStructure (Rigaku, 2007); cell
CrystalStructure (Rigaku, 2007); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Merdury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Ru2(C2H3O2)4(C5H4ClN)2]PF6 | Z = 1 |
Mr = 909.32 | F(000) = 447 |
Triclinic, P1 | Dx = 1.793 Mg m−3 |
a = 8.2737 (1) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 10.5784 (3) Å | Cell parameters from 8636 reflections |
c = 11.5534 (1) Å | θ = 2.7–58.1° |
α = 100.764 (7)° | µ = 1.34 mm−1 |
β = 108.980 (8)° | T = 293 K |
γ = 110.525 (7)° | Needle plate, light brown |
V = 842.27 (6) Å3 | 0.43 × 0.20 × 0.07 mm |
Rigaku R-AXIS RAPID diffractometer | 4084 reflections with I > 2σ(I) |
Detector resolution: 10.00 pixels mm-1 | Rint = 0.084 |
ω scans | θmax = 29.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995). | h = −11→11 |
Tmin = 0.702, Tmax = 0.921 | k = −14→14 |
23200 measured reflections | l = −15→15 |
4084 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: iterative |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.069 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0183P)2] where P = (Fo2 + 2Fc2)/3 |
4084 reflections | (Δ/σ)max = 0.002 |
250 parameters | Δρmax = 0.49 e Å−3 |
99 restraints | Δρmin = −0.51 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ru1 | 0.53229 (2) | 0.11769 (2) | 0.03458 (2) | 0.03317 (6) | |
Cl1 | 0.94986 (12) | 0.69082 (8) | 0.05336 (11) | 0.0947 (3) | |
P1 | 1.000000 | 0.000000 | 0.500000 | 0.0569 (2) | |
F1 | 0.9249 (3) | 0.0893 (2) | 0.57695 (18) | 0.0917 (6) | |
F2 | 0.8293 (3) | −0.1428 (2) | 0.4802 (2) | 0.0949 (6) | |
F3 | 0.8683 (2) | 0.0034 (2) | 0.36556 (16) | 0.0862 (5) | |
O1 | 0.5024 (2) | 0.09675 (16) | 0.19771 (13) | 0.0425 (3) | |
O2 | 0.5603 (2) | 0.13381 (16) | −0.13033 (14) | 0.0416 (3) | |
O3 | 0.81269 (19) | 0.16819 (15) | 0.12454 (14) | 0.0415 (3) | |
O4 | 0.25099 (19) | 0.06299 (16) | −0.05668 (14) | 0.0410 (3) | |
N1 | 0.6166 (2) | 0.35849 (18) | 0.10681 (18) | 0.0427 (4) | |
C1 | 0.7380 (3) | 0.4444 (2) | 0.0712 (3) | 0.0544 (5) | |
H1 | 0.787140 | 0.404761 | 0.020620 | 0.065* | |
C2 | 0.7934 (3) | 0.5901 (2) | 0.1069 (2) | 0.0541 (5) | |
C3 | 0.7242 (4) | 0.6514 (2) | 0.1813 (3) | 0.0615 (6) | |
H3 | 0.759615 | 0.749444 | 0.205596 | 0.074* | |
C4 | 0.6005 (4) | 0.5631 (3) | 0.2192 (3) | 0.0692 (7) | |
H4 | 0.550116 | 0.600878 | 0.269981 | 0.083* | |
C5 | 0.5508 (4) | 0.4172 (3) | 0.1814 (2) | 0.0564 (5) | |
H5 | 0.468896 | 0.358717 | 0.209052 | 0.068* | |
C6 | 0.4646 (3) | −0.0242 (2) | 0.21398 (18) | 0.0417 (4) | |
C7 | 0.4480 (4) | −0.0360 (3) | 0.3375 (2) | 0.0600 (6) | |
H7A | 0.470433 | 0.055322 | 0.390462 | 0.090* | 0.5 |
H7B | 0.322347 | −0.106306 | 0.316927 | 0.090* | 0.5 |
H7C | 0.540552 | −0.064512 | 0.384004 | 0.090* | 0.5 |
H7D | 0.418455 | −0.132319 | 0.337133 | 0.090* | 0.5 |
H7E | 0.566541 | 0.029309 | 0.410669 | 0.090* | 0.5 |
H7F | 0.348336 | −0.012486 | 0.343592 | 0.090* | 0.5 |
C8 | 0.1350 (3) | −0.0685 (2) | −0.11919 (18) | 0.0402 (4) | |
C9 | −0.0728 (3) | −0.1078 (3) | −0.1872 (2) | 0.0562 (5) | |
H9A | −0.143002 | −0.209827 | −0.230077 | 0.084* | 0.5 |
H9B | −0.116969 | −0.078012 | −0.124702 | 0.084* | 0.5 |
H9C | −0.091531 | −0.060687 | −0.250386 | 0.084* | 0.5 |
H9D | −0.091332 | −0.022523 | −0.173366 | 0.084* | 0.5 |
H9E | −0.117366 | −0.154338 | −0.278742 | 0.084* | 0.5 |
H9F | −0.142804 | −0.171664 | −0.153057 | 0.084* | 0.5 |
Cl2A | 0.218 (3) | 0.548 (2) | 0.3742 (19) | 0.233 (6) | 0.25 |
C11A | 0.138 (5) | 0.586 (4) | 0.499 (3) | 0.162 (8) | 0.25 |
H11A | 0.241338 | 0.623432 | 0.584600 | 0.194* | 0.25 |
H11B | 0.086968 | 0.655324 | 0.488739 | 0.194* | 0.25 |
C12A | −0.014 (7) | 0.444 (3) | 0.477 (5) | 0.154 (7) | 0.25 |
H12A | 0.038817 | 0.383465 | 0.511063 | 0.184* | 0.25 |
H12B | −0.101345 | 0.394270 | 0.385840 | 0.184* | 0.25 |
Cl3A | −0.126 (4) | 0.506 (3) | 0.571 (2) | 0.290 (10) | 0.25 |
Cl2B | 0.202 (3) | 0.5888 (19) | 0.454 (3) | 0.212 (6) | 0.25 |
C11B | 0.035 (6) | 0.589 (4) | 0.525 (5) | 0.155 (7) | 0.25 |
H11C | 0.102125 | 0.668383 | 0.607326 | 0.186* | 0.25 |
H11D | −0.064456 | 0.605649 | 0.467743 | 0.186* | 0.25 |
C12B | −0.053 (4) | 0.455 (4) | 0.549 (4) | 0.160 (7) | 0.25 |
H12C | 0.025345 | 0.456765 | 0.633197 | 0.192* | 0.25 |
H12D | −0.075663 | 0.372165 | 0.481778 | 0.192* | 0.25 |
Cl3B | −0.275 (3) | 0.452 (3) | 0.544 (2) | 0.254 (9) | 0.25 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.03692 (9) | 0.03044 (9) | 0.03524 (9) | 0.01429 (7) | 0.01879 (7) | 0.01260 (7) |
Cl1 | 0.0931 (5) | 0.0526 (4) | 0.1638 (9) | 0.0269 (4) | 0.0820 (6) | 0.0510 (5) |
P1 | 0.0473 (4) | 0.0698 (5) | 0.0440 (4) | 0.0201 (4) | 0.0198 (3) | 0.0101 (4) |
F1 | 0.0812 (12) | 0.1152 (16) | 0.0748 (11) | 0.0509 (11) | 0.0357 (9) | 0.0047 (10) |
F2 | 0.0731 (11) | 0.0886 (13) | 0.0909 (14) | 0.0053 (10) | 0.0353 (10) | 0.0225 (11) |
F3 | 0.0722 (10) | 0.1275 (16) | 0.0568 (9) | 0.0446 (11) | 0.0237 (8) | 0.0329 (10) |
O1 | 0.0500 (8) | 0.0477 (8) | 0.0356 (7) | 0.0228 (6) | 0.0237 (6) | 0.0144 (6) |
O2 | 0.0478 (7) | 0.0434 (7) | 0.0423 (7) | 0.0192 (6) | 0.0257 (6) | 0.0234 (6) |
O3 | 0.0348 (6) | 0.0399 (7) | 0.0453 (7) | 0.0123 (5) | 0.0165 (6) | 0.0142 (6) |
O4 | 0.0402 (7) | 0.0439 (7) | 0.0471 (8) | 0.0224 (6) | 0.0220 (6) | 0.0190 (6) |
N1 | 0.0444 (9) | 0.0320 (8) | 0.0489 (9) | 0.0155 (7) | 0.0197 (7) | 0.0111 (7) |
C1 | 0.0560 (12) | 0.0392 (10) | 0.0764 (15) | 0.0215 (9) | 0.0368 (11) | 0.0211 (10) |
C2 | 0.0475 (11) | 0.0378 (10) | 0.0696 (14) | 0.0139 (8) | 0.0207 (10) | 0.0197 (10) |
C3 | 0.0679 (15) | 0.0365 (10) | 0.0662 (15) | 0.0200 (10) | 0.0193 (12) | 0.0108 (10) |
C4 | 0.0924 (19) | 0.0481 (13) | 0.0720 (17) | 0.0325 (13) | 0.0450 (15) | 0.0100 (12) |
C5 | 0.0654 (14) | 0.0451 (11) | 0.0606 (13) | 0.0210 (10) | 0.0344 (11) | 0.0150 (10) |
C6 | 0.0390 (9) | 0.0567 (11) | 0.0375 (9) | 0.0219 (8) | 0.0214 (7) | 0.0220 (8) |
C7 | 0.0685 (14) | 0.0859 (18) | 0.0451 (11) | 0.0377 (13) | 0.0361 (11) | 0.0348 (12) |
C8 | 0.0371 (8) | 0.0506 (10) | 0.0391 (9) | 0.0195 (8) | 0.0206 (7) | 0.0201 (8) |
C9 | 0.0382 (10) | 0.0688 (15) | 0.0622 (13) | 0.0222 (10) | 0.0211 (9) | 0.0270 (11) |
Cl2A | 0.219 (10) | 0.219 (11) | 0.261 (16) | 0.095 (8) | 0.117 (11) | 0.061 (12) |
C11A | 0.159 (9) | 0.158 (9) | 0.161 (9) | 0.072 (7) | 0.059 (6) | 0.051 (7) |
C12A | 0.154 (8) | 0.153 (9) | 0.156 (8) | 0.073 (7) | 0.061 (6) | 0.056 (7) |
Cl3A | 0.38 (2) | 0.29 (2) | 0.204 (12) | 0.23 (2) | 0.084 (16) | 0.008 (13) |
Cl2B | 0.245 (12) | 0.171 (9) | 0.239 (16) | 0.097 (8) | 0.135 (10) | 0.043 (10) |
C11B | 0.156 (8) | 0.153 (8) | 0.158 (9) | 0.075 (7) | 0.060 (6) | 0.053 (6) |
C12B | 0.156 (9) | 0.157 (9) | 0.161 (9) | 0.076 (7) | 0.053 (6) | 0.056 (7) |
Cl3B | 0.34 (2) | 0.339 (19) | 0.128 (8) | 0.22 (2) | 0.080 (12) | 0.071 (10) |
Ru1—O1 | 2.0204 (14) | C7—H7A | 0.9600 |
Ru1—O2 | 2.0232 (14) | C7—H7B | 0.9600 |
Ru1—O4 | 2.0235 (13) | C7—H7C | 0.9600 |
Ru1—O3 | 2.0256 (13) | C7—H7D | 0.9600 |
Ru1—Ru1i | 2.2738 (3) | C7—H7E | 0.9600 |
Ru1—N1 | 2.2920 (17) | C7—H7F | 0.9600 |
Cl1—C2 | 1.730 (3) | C8—C9 | 1.498 (3) |
P1—F2ii | 1.5795 (19) | C9—H9A | 0.9600 |
P1—F2 | 1.5795 (19) | C9—H9B | 0.9600 |
P1—F1ii | 1.5896 (18) | C9—H9C | 0.9600 |
P1—F1 | 1.5896 (18) | C9—H9D | 0.9600 |
P1—F3ii | 1.5965 (16) | C9—H9E | 0.9600 |
P1—F3 | 1.5965 (16) | C9—H9F | 0.9600 |
O1—C6 | 1.272 (2) | Cl2A—C11A | 1.803 (16) |
O2—C6i | 1.267 (3) | C11A—C12A | 1.493 (13) |
O3—C8i | 1.272 (2) | C11A—H11A | 0.9700 |
O4—C8 | 1.271 (2) | C11A—H11B | 0.9700 |
N1—C5 | 1.329 (3) | C12A—Cl3A | 1.811 (16) |
N1—C1 | 1.331 (3) | C12A—H12A | 0.9700 |
C1—C2 | 1.379 (3) | C12A—H12B | 0.9700 |
C1—H1 | 0.9300 | Cl2B—C11B | 1.826 (16) |
C2—C3 | 1.364 (4) | C11B—C12B | 1.476 (13) |
C3—C4 | 1.373 (4) | C11B—H11C | 0.9700 |
C3—H3 | 0.9300 | C11B—H11D | 0.9700 |
C4—C5 | 1.389 (3) | C12B—Cl3B | 1.805 (16) |
C4—H4 | 0.9300 | C12B—H12C | 0.9700 |
C5—H5 | 0.9300 | C12B—H12D | 0.9700 |
C6—C7 | 1.501 (3) | ||
O1—Ru1—O2 | 178.70 (5) | N1—C5—H5 | 119.0 |
O1—Ru1—O4 | 90.18 (6) | C4—C5—H5 | 119.0 |
O2—Ru1—O4 | 89.69 (6) | O2i—C6—O1 | 122.70 (17) |
O1—Ru1—O3 | 89.85 (6) | O2i—C6—C7 | 119.34 (19) |
O2—Ru1—O3 | 90.25 (6) | O1—C6—C7 | 117.96 (19) |
O4—Ru1—O3 | 178.83 (5) | C6—C7—H7A | 109.5 |
O1—Ru1—Ru1i | 89.66 (4) | C6—C7—H7B | 109.5 |
O2—Ru1—Ru1i | 89.04 (4) | H7A—C7—H7B | 109.5 |
O4—Ru1—Ru1i | 89.73 (4) | C6—C7—H7C | 109.5 |
O3—Ru1—Ru1i | 89.11 (4) | H7A—C7—H7C | 109.5 |
O1—Ru1—N1 | 91.38 (6) | H7B—C7—H7C | 109.5 |
O2—Ru1—N1 | 89.92 (6) | H7D—C7—H7E | 109.5 |
O4—Ru1—N1 | 93.63 (6) | H7D—C7—H7F | 109.5 |
O3—Ru1—N1 | 87.53 (6) | H7E—C7—H7F | 109.5 |
Ru1i—Ru1—N1 | 176.48 (4) | O4—C8—O3i | 122.84 (17) |
F2ii—P1—F2 | 180.0 | O4—C8—C9 | 118.51 (18) |
F2ii—P1—F1ii | 89.08 (12) | O3i—C8—C9 | 118.64 (18) |
F2—P1—F1ii | 90.92 (12) | C8—C9—H9A | 109.5 |
F2ii—P1—F1 | 90.92 (12) | C8—C9—H9B | 109.5 |
F2—P1—F1 | 89.08 (12) | H9A—C9—H9B | 109.5 |
F1ii—P1—F1 | 180.00 (15) | C8—C9—H9C | 109.5 |
F2ii—P1—F3ii | 88.89 (11) | H9A—C9—H9C | 109.5 |
F2—P1—F3ii | 91.11 (11) | H9B—C9—H9C | 109.5 |
F1ii—P1—F3ii | 90.71 (11) | H9D—C9—H9E | 109.5 |
F1—P1—F3ii | 89.29 (11) | H9D—C9—H9F | 109.5 |
F2ii—P1—F3 | 91.11 (11) | H9E—C9—H9F | 109.5 |
F2—P1—F3 | 88.89 (11) | C12A—C11A—Cl2A | 104.0 (18) |
F1ii—P1—F3 | 89.29 (11) | C12A—C11A—H11A | 111.0 |
F1—P1—F3 | 90.71 (11) | Cl2A—C11A—H11A | 110.9 |
F3ii—P1—F3 | 180.0 | C12A—C11A—H11B | 111.0 |
C6—O1—Ru1 | 118.99 (13) | Cl2A—C11A—H11B | 111.0 |
C6i—O2—Ru1 | 119.58 (12) | H11A—C11A—H11B | 109.0 |
C8i—O3—Ru1 | 119.40 (12) | C11A—C12A—Cl3A | 99.1 (17) |
C8—O4—Ru1 | 118.90 (12) | C11A—C12A—H12A | 112.0 |
C5—N1—C1 | 118.17 (19) | Cl3A—C12A—H12A | 112.0 |
C5—N1—Ru1 | 123.95 (15) | C11A—C12A—H12B | 112.0 |
C1—N1—Ru1 | 117.87 (15) | Cl3A—C12A—H12B | 112.0 |
N1—C1—C2 | 122.2 (2) | H12A—C12A—H12B | 109.6 |
N1—C1—H1 | 118.9 | C12B—C11B—Cl2B | 114 (2) |
C2—C1—H1 | 118.9 | C12B—C11B—H11C | 108.8 |
C3—C2—C1 | 120.3 (2) | Cl2B—C11B—H11C | 108.8 |
C3—C2—Cl1 | 121.60 (19) | C12B—C11B—H11D | 108.8 |
C1—C2—Cl1 | 118.1 (2) | Cl2B—C11B—H11D | 108.8 |
C2—C3—C4 | 117.6 (2) | H11C—C11B—H11D | 107.7 |
C2—C3—H3 | 121.2 | C11B—C12B—Cl3B | 102.6 (18) |
C4—C3—H3 | 121.2 | C11B—C12B—H12C | 111.3 |
C3—C4—C5 | 119.7 (2) | Cl3B—C12B—H12C | 111.3 |
C3—C4—H4 | 120.2 | C11B—C12B—H12D | 111.3 |
C5—C4—H4 | 120.2 | Cl3B—C12B—H12D | 111.3 |
N1—C5—C4 | 122.1 (2) | H12C—C12B—H12D | 109.2 |
C5—N1—C1—C2 | −1.4 (4) | Ru1—N1—C5—C4 | −177.7 (2) |
Ru1—N1—C1—C2 | 178.28 (17) | C3—C4—C5—N1 | −1.3 (4) |
N1—C1—C2—C3 | 0.2 (4) | Ru1—O1—C6—O2i | −1.9 (3) |
N1—C1—C2—Cl1 | −179.25 (19) | Ru1—O1—C6—C7 | 178.49 (14) |
C1—C2—C3—C4 | 0.5 (4) | Ru1—O4—C8—O3i | 1.7 (3) |
Cl1—C2—C3—C4 | 179.9 (2) | Ru1—O4—C8—C9 | −179.58 (14) |
C2—C3—C4—C5 | 0.1 (4) | Cl2A—C11A—C12A—Cl3A | −164 (3) |
C1—N1—C5—C4 | 1.9 (4) | Cl2B—C11B—C12B—Cl3B | −154 (3) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y, −z+1. |
Funding information
Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada (grant to Manuel A.S. Aquino).
References
Aquino, A. J., Cameron, T. S., Robertson, K. N. & Aquino, M. A. S. (2021). CCDC Communication (CCDC code2083050). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc27xl5y Google Scholar
Bland, B. R. A., Gilfoy, H. J., Vamvounis, G., Robertson, K. N., Cameron, T. S. & Aquino, M. A. S. (2005). Inorg. Chim. Acta, 358, 3927–3936. Web of Science CSD CrossRef CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gilfoy, H. J., Robertson, K. N., Cameron, T. S. & Aquino, M. A. S. (2001). Acta Cryst. E57, m496–m497. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Minaker, S. A., Wang, R. & Aquino, M. A. S. (2011). Acta Cryst. E67, m1554. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (2007). CrystalStructure. Rigaku and Rigaku Americas, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Vamvounis, G., Caplan, J. F., Cameron, T. S., Robertson, K. N. & Aquino, M. A. S. (2000). Inorg. Chim. Acta, 304, 87–98. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.