metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra-μ-acetato-κ8O:O′-bis­­[(3-chloro­pyridine-κN)ruthenium(II,III)](RuRu) hexa­fluorido­phosphate 1,2-di­chloro­ethane monosolvate

crossmark logo

aDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS, Canada, B2G 2W5, bDepartment of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, NS, Canada, B3H 4R2, and cDepartment of Chemistry, Saint Mary's University, Halifax, NS, Canada, B3H 3C3
*Correspondence e-mail: maquino@stfx.ca

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 February 2022; accepted 3 March 2022; online 10 March 2022)

The title compound, [Ru2(μ-O2CCH3)4(C5H4ClN)2]PF6·C2H4Cl2, was obtained via a rapid substitution reaction of 3-chloro­pyridine for water in [Ru2(μ-O2CCH3)4(H2O)2]PF6 in 2-propanol and subsequent crystallization from a di­chloro­ethane solution. The cationic diruthenium(II,III) tetra­acetate core lies on a crystallographic inversion center with Ru—Ru and Ru—N bond lengths of 2.2738 (3) and 2.2920 (17) Å, respectively. The Ru—Ru—N bond angle is close to linear at 176.48 (4)°, and a significant π-stacking inter­action of 3.5649 (16) Å is seen between overlapping pyridine rings of adjacent cations.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Earlier research in our lab dealt with the chemistry of various mixed-valent diruth­enium(II,III) tetra­acetate complexes incorporating substituted pyridines and other, biologically relevant, heterocyclic N-donors in the axial coordination positions (Bland et al., 2005[Bland, B. R. A., Gilfoy, H. J., Vamvounis, G., Robertson, K. N., Cameron, T. S. & Aquino, M. A. S. (2005). Inorg. Chim. Acta, 358, 3927-3936.]; Gilfoy et al., 2001[Gilfoy, H. J., Robertson, K. N., Cameron, T. S. & Aquino, M. A. S. (2001). Acta Cryst. E57, m496-m497.]; Minaker et al., 2011[Minaker, S. A., Wang, R. & Aquino, M. A. S. (2011). Acta Cryst. E67, m1554.]; Vamvounis et al., 2000[Vamvounis, G., Caplan, J. F., Cameron, T. S., Robertson, K. N. & Aquino, M. A. S. (2000). Inorg. Chim. Acta, 304, 87-98.]). At that time we were unable to obtain structures of amino- or chloro-pyridine diadducts. Recently, we have been able to characterize both a 3-amino­pyridine diadduct (Aquino et al., 2021[Aquino, A. J., Cameron, T. S., Robertson, K. N. & Aquino, M. A. S. (2021). CCDC Communication (CCDC code2083050). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc27xl5y]) and the 3-chloro­pyridine diadduct is reported here. This is the first crystal structure of a chloro-pyridine diadduct of a diruthenium(II,III) tetra­carboxyl­ate that we are aware of.

The solvated title salt consists of a complex cation with a diruthenium (II,III) tetra­acetate core and 3-chloro­pyridines in the axial positions, a hexa­fluorido­phophate anion, and a 1,2-di­chloro­ethane mol­ecule of solvation (Fig. 1[link]). The cation displays the classic Chinese lantern or paddlewheel shape with each ruthenium atom at the center of a slightly distorted octa­hedron. The Ru1—Ru1(−x + 1, −y, −z) and Ru1—N1 bond lengths are 2.2738 (3) and 2.2920 (17) Å, and are similar to those in the 3-cyano­pyridine diadduct [2.2702 (6) and 2.295 (3) Å; Minaker et al., 2011[Minaker, S. A., Wang, R. & Aquino, M. A. S. (2011). Acta Cryst. E67, m1554.]]. The Ru1(−x + 1, −y, −z)—Ru1—N1 bond angle of 176.48 (4)° is also comparable to the 174.27 (7)° of the 3-cyano­pyridine adduct, showing essentially linear coordination. While no substantial hydrogen bonding was detected in the title compound, a significant ππ stacking inter­action between pyridine rings of adjacent complexes was noted (Fig. 2[link]) and creates a chain motif along [010]. The distance between the ring centroids (N1, C1–C5) is 3.5649 (16) Å with a slippage of 0.553 Å, the symmetry code to generate the second ring being (1 − x, 1 − y, −z).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids at the 50% probability level. Unlabeled atoms are generated by the symmetry operations (i) (−x + 1, −y, −z) and (ii) (−x + 2, −y, −z + 1). Only one orientation of the disordered methyl groups and the disordered C2H4Cl2 solvent mol­ecule is shown
[Figure 2]
Figure 2
Packing diagram viewed approximately along [001] showing the ππ stacking inter­actions (dashed lines).

Synthesis and crystallization

Synthesis of the title compound followed an earlier method developed in our lab (Vamvounis et al., 2000[Vamvounis, G., Caplan, J. F., Cameron, T. S., Robertson, K. N. & Aquino, M. A. S. (2000). Inorg. Chim. Acta, 304, 87-98.]). [Ru2(μ-O2CCH3)4(H2O)2]PF6 (0.100 g, 0.161 mmol) was dissolved in 10 ml of 2-propanol. Then, 3-chloro­pyridine (0.0732 g, 0.645 mmol) was added and the solution allowed to stir for 5 min at room temperature. The volume of the solution was then reduced to 5 ml under vacuum and allowed to cool to 278 K overnight. The crystalline product was collected via suction filtration. Yield = 0.098 g (63%). Crystals suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into a 1,2-di­chloro­ethane solution of the complex. IR (cm−1): 2947 (νC—H), 1447 (asym. νCOO), 1396 (sym. νCOO), 841, (νPF6), 766 (νC—Cl), 692 (δC—CH3). UV–vis (λ nm, (log ɛ)): 427 (2.95), 263 (4.05), 210 (4.33).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Two reflections were removed from the refinement because of poor agreements between F2(obs) and F2(calc), [\overline{7}][\overline{7}]5 and [\overline{8}][\overline{2}]6. In the cation, the methyl groups of the acetate ligands were modeled in the refinement as idealized disordered methyl groups with the two sets of positions rotated from each other by 60°. The crystal structure was found to contain solvent mol­ecules. The recrystallization solvents were di­chloro­ethane and diethyl ether. The SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to get an estimate of the void volumes and of the unaccounted electron density in them. The unit cell was found to contain one void of 228 Å3 with 50 electrons per void. This suggested that there was one mol­ecule of di­chloro­ethane in each void and it was modeled as such. The disorder in the solvent was modeled by two equally occupied parts, which were then also split again across an inversion center, giving all atoms an occupancy of 0.25. The geometries of all the parts were restrained to be similar. In addition the C—C and the C—Cl bond lengths were restrained to reasonable values. The heavy atoms of the same type in the solvent were restrained to have similar displacement parameters and the carbon atoms were restrained to have more isotropic ellipsoids. Finally, rigid-bond restraints were placed over each solvent part.

Table 1
Experimental details

Crystal data
Chemical formula [Ru2(C2H3O2)4(C5H4ClN)2]PF6
Mr 909.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.2737 (1), 10.5784 (3), 11.5534 (1)
α, β, γ (°) 100.764 (7), 108.980 (8), 110.525 (7)
V3) 842.27 (6)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.34
Crystal size (mm) 0.43 × 0.20 × 0.07
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]).
Tmin, Tmax 0.702, 0.921
No. of measured, independent and observed [I > 2σ(I)] reflections 23200, 4084, 4084
Rint 0.084
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.069, 1.10
No. of reflections 4084
No. of parameters 250
No. of restraints 99
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.52
Computer programs: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku and Rigaku Americas, The Woodlands, Texas, USA.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Merdury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrystalStructure (Rigaku, 2007); cell refinement: CrystalStructure (Rigaku, 2007); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Merdury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetra-µ-acetato-κ8O:O'-bis[(3-chloropyridine-κN)ruthenium(II,III)](RuRu) hexafluoridophosphate 1,2-dichloroethane monosolvate top
Crystal data top
[Ru2(C2H3O2)4(C5H4ClN)2]PF6Z = 1
Mr = 909.32F(000) = 447
Triclinic, P1Dx = 1.793 Mg m3
a = 8.2737 (1) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.5784 (3) ÅCell parameters from 8636 reflections
c = 11.5534 (1) Åθ = 2.7–58.1°
α = 100.764 (7)°µ = 1.34 mm1
β = 108.980 (8)°T = 293 K
γ = 110.525 (7)°Needle plate, light brown
V = 842.27 (6) Å30.43 × 0.20 × 0.07 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4084 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.084
ω scansθmax = 29.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995).
h = 1111
Tmin = 0.702, Tmax = 0.921k = 1414
23200 measured reflectionsl = 1515
4084 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: iterative
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0183P)2]
where P = (Fo2 + 2Fc2)/3
4084 reflections(Δ/σ)max = 0.002
250 parametersΔρmax = 0.49 e Å3
99 restraintsΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.53229 (2)0.11769 (2)0.03458 (2)0.03317 (6)
Cl10.94986 (12)0.69082 (8)0.05336 (11)0.0947 (3)
P11.0000000.0000000.5000000.0569 (2)
F10.9249 (3)0.0893 (2)0.57695 (18)0.0917 (6)
F20.8293 (3)0.1428 (2)0.4802 (2)0.0949 (6)
F30.8683 (2)0.0034 (2)0.36556 (16)0.0862 (5)
O10.5024 (2)0.09675 (16)0.19771 (13)0.0425 (3)
O20.5603 (2)0.13381 (16)0.13033 (14)0.0416 (3)
O30.81269 (19)0.16819 (15)0.12454 (14)0.0415 (3)
O40.25099 (19)0.06299 (16)0.05668 (14)0.0410 (3)
N10.6166 (2)0.35849 (18)0.10681 (18)0.0427 (4)
C10.7380 (3)0.4444 (2)0.0712 (3)0.0544 (5)
H10.7871400.4047610.0206200.065*
C20.7934 (3)0.5901 (2)0.1069 (2)0.0541 (5)
C30.7242 (4)0.6514 (2)0.1813 (3)0.0615 (6)
H30.7596150.7494440.2055960.074*
C40.6005 (4)0.5631 (3)0.2192 (3)0.0692 (7)
H40.5501160.6008780.2699810.083*
C50.5508 (4)0.4172 (3)0.1814 (2)0.0564 (5)
H50.4688960.3587170.2090520.068*
C60.4646 (3)0.0242 (2)0.21398 (18)0.0417 (4)
C70.4480 (4)0.0360 (3)0.3375 (2)0.0600 (6)
H7A0.4704330.0553220.3904620.090*0.5
H7B0.3223470.1063060.3169270.090*0.5
H7C0.5405520.0645120.3840040.090*0.5
H7D0.4184550.1323190.3371330.090*0.5
H7E0.5665410.0293090.4106690.090*0.5
H7F0.3483360.0124860.3435920.090*0.5
C80.1350 (3)0.0685 (2)0.11919 (18)0.0402 (4)
C90.0728 (3)0.1078 (3)0.1872 (2)0.0562 (5)
H9A0.1430020.2098270.2300770.084*0.5
H9B0.1169690.0780120.1247020.084*0.5
H9C0.0915310.0606870.2503860.084*0.5
H9D0.0913320.0225230.1733660.084*0.5
H9E0.1173660.1543380.2787420.084*0.5
H9F0.1428040.1716640.1530570.084*0.5
Cl2A0.218 (3)0.548 (2)0.3742 (19)0.233 (6)0.25
C11A0.138 (5)0.586 (4)0.499 (3)0.162 (8)0.25
H11A0.2413380.6234320.5846000.194*0.25
H11B0.0869680.6553240.4887390.194*0.25
C12A0.014 (7)0.444 (3)0.477 (5)0.154 (7)0.25
H12A0.0388170.3834650.5110630.184*0.25
H12B0.1013450.3942700.3858400.184*0.25
Cl3A0.126 (4)0.506 (3)0.571 (2)0.290 (10)0.25
Cl2B0.202 (3)0.5888 (19)0.454 (3)0.212 (6)0.25
C11B0.035 (6)0.589 (4)0.525 (5)0.155 (7)0.25
H11C0.1021250.6683830.6073260.186*0.25
H11D0.0644560.6056490.4677430.186*0.25
C12B0.053 (4)0.455 (4)0.549 (4)0.160 (7)0.25
H12C0.0253450.4567650.6331970.192*0.25
H12D0.0756630.3721650.4817780.192*0.25
Cl3B0.275 (3)0.452 (3)0.544 (2)0.254 (9)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03692 (9)0.03044 (9)0.03524 (9)0.01429 (7)0.01879 (7)0.01260 (7)
Cl10.0931 (5)0.0526 (4)0.1638 (9)0.0269 (4)0.0820 (6)0.0510 (5)
P10.0473 (4)0.0698 (5)0.0440 (4)0.0201 (4)0.0198 (3)0.0101 (4)
F10.0812 (12)0.1152 (16)0.0748 (11)0.0509 (11)0.0357 (9)0.0047 (10)
F20.0731 (11)0.0886 (13)0.0909 (14)0.0053 (10)0.0353 (10)0.0225 (11)
F30.0722 (10)0.1275 (16)0.0568 (9)0.0446 (11)0.0237 (8)0.0329 (10)
O10.0500 (8)0.0477 (8)0.0356 (7)0.0228 (6)0.0237 (6)0.0144 (6)
O20.0478 (7)0.0434 (7)0.0423 (7)0.0192 (6)0.0257 (6)0.0234 (6)
O30.0348 (6)0.0399 (7)0.0453 (7)0.0123 (5)0.0165 (6)0.0142 (6)
O40.0402 (7)0.0439 (7)0.0471 (8)0.0224 (6)0.0220 (6)0.0190 (6)
N10.0444 (9)0.0320 (8)0.0489 (9)0.0155 (7)0.0197 (7)0.0111 (7)
C10.0560 (12)0.0392 (10)0.0764 (15)0.0215 (9)0.0368 (11)0.0211 (10)
C20.0475 (11)0.0378 (10)0.0696 (14)0.0139 (8)0.0207 (10)0.0197 (10)
C30.0679 (15)0.0365 (10)0.0662 (15)0.0200 (10)0.0193 (12)0.0108 (10)
C40.0924 (19)0.0481 (13)0.0720 (17)0.0325 (13)0.0450 (15)0.0100 (12)
C50.0654 (14)0.0451 (11)0.0606 (13)0.0210 (10)0.0344 (11)0.0150 (10)
C60.0390 (9)0.0567 (11)0.0375 (9)0.0219 (8)0.0214 (7)0.0220 (8)
C70.0685 (14)0.0859 (18)0.0451 (11)0.0377 (13)0.0361 (11)0.0348 (12)
C80.0371 (8)0.0506 (10)0.0391 (9)0.0195 (8)0.0206 (7)0.0201 (8)
C90.0382 (10)0.0688 (15)0.0622 (13)0.0222 (10)0.0211 (9)0.0270 (11)
Cl2A0.219 (10)0.219 (11)0.261 (16)0.095 (8)0.117 (11)0.061 (12)
C11A0.159 (9)0.158 (9)0.161 (9)0.072 (7)0.059 (6)0.051 (7)
C12A0.154 (8)0.153 (9)0.156 (8)0.073 (7)0.061 (6)0.056 (7)
Cl3A0.38 (2)0.29 (2)0.204 (12)0.23 (2)0.084 (16)0.008 (13)
Cl2B0.245 (12)0.171 (9)0.239 (16)0.097 (8)0.135 (10)0.043 (10)
C11B0.156 (8)0.153 (8)0.158 (9)0.075 (7)0.060 (6)0.053 (6)
C12B0.156 (9)0.157 (9)0.161 (9)0.076 (7)0.053 (6)0.056 (7)
Cl3B0.34 (2)0.339 (19)0.128 (8)0.22 (2)0.080 (12)0.071 (10)
Geometric parameters (Å, º) top
Ru1—O12.0204 (14)C7—H7A0.9600
Ru1—O22.0232 (14)C7—H7B0.9600
Ru1—O42.0235 (13)C7—H7C0.9600
Ru1—O32.0256 (13)C7—H7D0.9600
Ru1—Ru1i2.2738 (3)C7—H7E0.9600
Ru1—N12.2920 (17)C7—H7F0.9600
Cl1—C21.730 (3)C8—C91.498 (3)
P1—F2ii1.5795 (19)C9—H9A0.9600
P1—F21.5795 (19)C9—H9B0.9600
P1—F1ii1.5896 (18)C9—H9C0.9600
P1—F11.5896 (18)C9—H9D0.9600
P1—F3ii1.5965 (16)C9—H9E0.9600
P1—F31.5965 (16)C9—H9F0.9600
O1—C61.272 (2)Cl2A—C11A1.803 (16)
O2—C6i1.267 (3)C11A—C12A1.493 (13)
O3—C8i1.272 (2)C11A—H11A0.9700
O4—C81.271 (2)C11A—H11B0.9700
N1—C51.329 (3)C12A—Cl3A1.811 (16)
N1—C11.331 (3)C12A—H12A0.9700
C1—C21.379 (3)C12A—H12B0.9700
C1—H10.9300Cl2B—C11B1.826 (16)
C2—C31.364 (4)C11B—C12B1.476 (13)
C3—C41.373 (4)C11B—H11C0.9700
C3—H30.9300C11B—H11D0.9700
C4—C51.389 (3)C12B—Cl3B1.805 (16)
C4—H40.9300C12B—H12C0.9700
C5—H50.9300C12B—H12D0.9700
C6—C71.501 (3)
O1—Ru1—O2178.70 (5)N1—C5—H5119.0
O1—Ru1—O490.18 (6)C4—C5—H5119.0
O2—Ru1—O489.69 (6)O2i—C6—O1122.70 (17)
O1—Ru1—O389.85 (6)O2i—C6—C7119.34 (19)
O2—Ru1—O390.25 (6)O1—C6—C7117.96 (19)
O4—Ru1—O3178.83 (5)C6—C7—H7A109.5
O1—Ru1—Ru1i89.66 (4)C6—C7—H7B109.5
O2—Ru1—Ru1i89.04 (4)H7A—C7—H7B109.5
O4—Ru1—Ru1i89.73 (4)C6—C7—H7C109.5
O3—Ru1—Ru1i89.11 (4)H7A—C7—H7C109.5
O1—Ru1—N191.38 (6)H7B—C7—H7C109.5
O2—Ru1—N189.92 (6)H7D—C7—H7E109.5
O4—Ru1—N193.63 (6)H7D—C7—H7F109.5
O3—Ru1—N187.53 (6)H7E—C7—H7F109.5
Ru1i—Ru1—N1176.48 (4)O4—C8—O3i122.84 (17)
F2ii—P1—F2180.0O4—C8—C9118.51 (18)
F2ii—P1—F1ii89.08 (12)O3i—C8—C9118.64 (18)
F2—P1—F1ii90.92 (12)C8—C9—H9A109.5
F2ii—P1—F190.92 (12)C8—C9—H9B109.5
F2—P1—F189.08 (12)H9A—C9—H9B109.5
F1ii—P1—F1180.00 (15)C8—C9—H9C109.5
F2ii—P1—F3ii88.89 (11)H9A—C9—H9C109.5
F2—P1—F3ii91.11 (11)H9B—C9—H9C109.5
F1ii—P1—F3ii90.71 (11)H9D—C9—H9E109.5
F1—P1—F3ii89.29 (11)H9D—C9—H9F109.5
F2ii—P1—F391.11 (11)H9E—C9—H9F109.5
F2—P1—F388.89 (11)C12A—C11A—Cl2A104.0 (18)
F1ii—P1—F389.29 (11)C12A—C11A—H11A111.0
F1—P1—F390.71 (11)Cl2A—C11A—H11A110.9
F3ii—P1—F3180.0C12A—C11A—H11B111.0
C6—O1—Ru1118.99 (13)Cl2A—C11A—H11B111.0
C6i—O2—Ru1119.58 (12)H11A—C11A—H11B109.0
C8i—O3—Ru1119.40 (12)C11A—C12A—Cl3A99.1 (17)
C8—O4—Ru1118.90 (12)C11A—C12A—H12A112.0
C5—N1—C1118.17 (19)Cl3A—C12A—H12A112.0
C5—N1—Ru1123.95 (15)C11A—C12A—H12B112.0
C1—N1—Ru1117.87 (15)Cl3A—C12A—H12B112.0
N1—C1—C2122.2 (2)H12A—C12A—H12B109.6
N1—C1—H1118.9C12B—C11B—Cl2B114 (2)
C2—C1—H1118.9C12B—C11B—H11C108.8
C3—C2—C1120.3 (2)Cl2B—C11B—H11C108.8
C3—C2—Cl1121.60 (19)C12B—C11B—H11D108.8
C1—C2—Cl1118.1 (2)Cl2B—C11B—H11D108.8
C2—C3—C4117.6 (2)H11C—C11B—H11D107.7
C2—C3—H3121.2C11B—C12B—Cl3B102.6 (18)
C4—C3—H3121.2C11B—C12B—H12C111.3
C3—C4—C5119.7 (2)Cl3B—C12B—H12C111.3
C3—C4—H4120.2C11B—C12B—H12D111.3
C5—C4—H4120.2Cl3B—C12B—H12D111.3
N1—C5—C4122.1 (2)H12C—C12B—H12D109.2
C5—N1—C1—C21.4 (4)Ru1—N1—C5—C4177.7 (2)
Ru1—N1—C1—C2178.28 (17)C3—C4—C5—N11.3 (4)
N1—C1—C2—C30.2 (4)Ru1—O1—C6—O2i1.9 (3)
N1—C1—C2—Cl1179.25 (19)Ru1—O1—C6—C7178.49 (14)
C1—C2—C3—C40.5 (4)Ru1—O4—C8—O3i1.7 (3)
Cl1—C2—C3—C4179.9 (2)Ru1—O4—C8—C9179.58 (14)
C2—C3—C4—C50.1 (4)Cl2A—C11A—C12A—Cl3A164 (3)
C1—N1—C5—C41.9 (4)Cl2B—C11B—C12B—Cl3B154 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1.
 

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada (grant to Manuel A.S. Aquino).

References

First citationAquino, A. J., Cameron, T. S., Robertson, K. N. & Aquino, M. A. S. (2021). CCDC Communication (CCDC code2083050). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc27xl5y  Google Scholar
First citationBland, B. R. A., Gilfoy, H. J., Vamvounis, G., Robertson, K. N., Cameron, T. S. & Aquino, M. A. S. (2005). Inorg. Chim. Acta, 358, 3927–3936.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilfoy, H. J., Robertson, K. N., Cameron, T. S. & Aquino, M. A. S. (2001). Acta Cryst. E57, m496–m497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMinaker, S. A., Wang, R. & Aquino, M. A. S. (2011). Acta Cryst. E67, m1554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku and Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVamvounis, G., Caplan, J. F., Cameron, T. S., Robertson, K. N. & Aquino, M. A. S. (2000). Inorg. Chim. Acta, 304, 87–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds