organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Chloro-5-(di­methyl­amino)-2-[(5-phenyl-1,3,4-oxa­diazol-2-yl)meth­yl]pyridazin-3(2H)-one

crossmark logo

aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, People's Republic of China
*Correspondence e-mail: lihongsen19@163.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 9 March 2022; accepted 26 March 2022; online 31 March 2022)

In the structure of the title compound, C15H14ClN5O2, the terminal phenyl ring and the adjacent furan ring subtend a dihedral angle of 6.77 (17)°. The 4-chloro-5-(di­methyl­amino)-pyridazin-3(2H)-one group is linked to the oxa­diazole ring by a methyl­ene bridge, and the dihedral angle between the pyridazine and oxa­diazole rings is 88.66 (14)°. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds extend the structure into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridazinones have attracted increasing attention as a scaffold because of their wide spectrum of biological activity (Zou et al., 2002[Zou, X. J., Lai, L. H., Jin, G. Y. & Zhang, Z. X. (2002). J. Agric. Food Chem. 50, 3757-3760.]). Along with the development of design and synthetic methodology, pyridazinone derivatives have been widely applied in medicinal and agricultural chemistry (Arora et al., 2022[Arora, S., Joshi, G., Chaturvedi, A., Heuser, M., Patil, S. & Kumar, R. (2022). J. Med. Chem. 65, 1171-1205.]; Vaidergorn et al., 2021[Vaidergorn, M. M., da Silva Emery, F. & Ganesan, A. (2021). J. Med. Chem. 64, 13980-14010.]; Zhang et al., 2020[Zhang, X. J., Sheng, X. J., Shen, J., Zhang, S. B., Sun, W. J., Shen, C. L., Li, Y., Wang, J., Lv, H., Cui, M., Zhu, Y., Huang, L., Hao, D., Qi, Z., Sun, G., Mao, W., Pan, Y., Shen, L., Li, X., Hu, G., Gong, Z., Han, S., Li, J., Chen, S., Tu, R., Wang, X. & Wu, C. (2020). ACS Med. Chem. Lett. 11, 1863-1868.]; Lu et al., 2017[Lu, D., Liu, F. F., Xing, W. Q., Tong, X. K., Wang, L., Wang, Y. J., Zeng, L. M., Feng, C. L., Yang, L., Zuo, J. P. & Hu, Y. H. (2017). Infect. Dis. 3, 199-205.]; Cao et al., 2005[Cao, S., Wei, N., Zhao, C. M., Li, L. N., Huang, Q. C. & Qian, X. H. (2005). J. Agric. Food Chem. 53, 3120-3125.]; Xu et al., 2008[Xu, H., Hu, X. H., Zou, X. M., Liu, B., Zhu, Y. Q., Wang, Y., Hu, F. Z. & Yang, H. Z. (2008). J. Agric. Food Chem. 56, 6567-6572.]; Sun et al., 2015[Sun, R., Liu, C. J., Zhang, H. & Wang, Q. M. (2015). J. Agric. Food Chem. 63, 6847-6865.]). As part of our work in this area, a series of pyridazinone derivatives containing an oxa­diazole moiety have been designed and synthesized, and we report here the crystal structure of the tittle compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The phenyl (C1–C6) and oxa­diazole (O1/N1/N2/C7/C8) rings are almost coplanar, subtending a dihedral angle of 6.77 (17)°. The pyridazine ring is almost perpendicular to oxa­diazole ring, making a dihedral angle of 88.66 (14)°. The dihedral angle between the phenyl and pyridazine rings is 82.01 (17)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

The crystal packing is characterized by C—H⋯N and C—H⋯O contacts (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.36 3.125 (5) 140
C1—H1⋯N5ii 0.93 2.61 3.477 (5) 156
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z]; (ii) [x-1, y, z-1].
[Figure 2]
Figure 2
The crystal packing of the title compound. The C—H⋯N and C—H⋯O hydrogen bonds are shown as dashed lines (see also Table 1[link]).

Synthesis and crystallization

To a 100 ml round-bottom flask, 4,5-di­chloro-2-[(5-phenyl-1,3,4-oxa­diazol-2-yl) meth­yl]pyridazin-3(2H)-one (1.0 g, 3.1 mmol), di­methyl­amine (0.6 ml, 6.2 mmol), and potassium carbonate (0.86 g, 6.2 mmol) were added in 30 ml of DMF and stirred for 8 h at 353 K. Afterwards, the reaction mixture was cooled and poured into 60 ml of ice–water. The precipitate formed was collected by filtration and then dried to obtain the pure title compound (yield 0.56 g, 54.6%). It was recrystallized from mixed solvents of ethyl acetate and petroleum (3:5) to give crystals suitable for X-ray diffraction (m.p. 427–429 K).

1H NMR (400 MHz, CDCl3): 3.18 (s, 6H), 5.62 (s, 2H), 7.54 (m, 3H), 7.67 (s, 1H), 8.06 (dd, 2H, J = 7.6 Hz, J = 1.6 Hz). IR (KBr, cm−1): 2973, 2937, 1632, 1600, 1520, 1482, 1449, 1216, 1146, 752, 710.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H14ClN5O2
Mr 331.76
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 7.1533 (16), 11.936 (3), 9.004 (2)
β (°) 98.128 (5)
V3) 761.1 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.22 × 0.17 × 0.12
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.580, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 4542, 2915, 2673
Rint 0.030
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.100, 1.04
No. of reflections 2915
No. of parameters 211
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.30
Absolute structure Flack x determined using 1139 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (4)
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-Chloro-5-(dimethylamino)-2-[(5-phenyl-1,3,4-oxadiazol-2-yl)methyl]pyridazin-3(2H)-one top
Crystal data top
C15H14ClN5O2F(000) = 344
Mr = 331.76Dx = 1.448 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.1533 (16) ÅCell parameters from 2107 reflections
b = 11.936 (3) Åθ = 5.7–49.7°
c = 9.004 (2) ŵ = 0.27 mm1
β = 98.128 (5)°T = 293 K
V = 761.1 (3) Å3Prismatic, colorless
Z = 20.22 × 0.17 × 0.12 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2673 reflections with I > 2σ(I)
phi and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 26.0°, θmin = 2.3°
Tmin = 0.580, Tmax = 0.746h = 88
4542 measured reflectionsk = 1414
2915 independent reflectionsl = 911
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0624P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max < 0.001
wR(F2) = 0.100Δρmax = 0.28 e Å3
S = 1.04Δρmin = 0.30 e Å3
2915 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
211 parametersExtinction coefficient: 0.029 (8)
1 restraintAbsolute structure: Flack x determined using 1139 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.00 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85200 (15)0.73449 (8)0.58094 (11)0.0698 (3)
N10.3672 (4)1.1087 (2)0.1248 (3)0.0522 (7)
N20.5386 (4)1.0502 (2)0.1672 (3)0.0525 (7)
N30.8278 (4)0.8804 (2)0.1888 (3)0.0450 (6)
N40.9890 (4)0.9391 (2)0.1928 (3)0.0503 (7)
N51.2442 (4)0.8512 (2)0.5493 (3)0.0501 (7)
O10.3908 (3)0.97490 (18)0.0393 (2)0.0446 (5)
O20.6230 (4)0.7702 (2)0.2898 (3)0.0695 (8)
C10.0415 (5)1.0303 (3)0.2139 (4)0.0530 (8)
H10.11960.97760.25010.064*
C20.1339 (5)1.0519 (4)0.2928 (4)0.0629 (10)
H20.17361.01390.38180.075*
C30.2509 (5)1.1296 (3)0.2406 (5)0.0619 (10)
H30.36931.14460.29390.074*
C40.1906 (6)1.1849 (3)0.1086 (5)0.0605 (9)
H40.26951.23720.07260.073*
C50.0155 (5)1.1641 (3)0.0288 (4)0.0526 (8)
H50.02371.20230.06010.063*
C60.1024 (4)1.0857 (3)0.0819 (3)0.0425 (7)
C70.2862 (4)1.0612 (2)0.0054 (3)0.0406 (7)
C80.5443 (4)0.9750 (3)0.0679 (3)0.0422 (7)
C90.6961 (5)0.8919 (3)0.0516 (4)0.0502 (8)
H9A0.63910.81960.02450.060*
H9B0.76420.91540.02890.060*
C100.7789 (4)0.8150 (3)0.3034 (4)0.0453 (7)
C110.9230 (5)0.8076 (3)0.4331 (3)0.0449 (7)
C121.0946 (4)0.8589 (3)0.4373 (3)0.0396 (6)
C131.1132 (5)0.9282 (3)0.3105 (4)0.0473 (8)
H131.22450.96900.31320.057*
C141.2910 (6)0.7498 (4)0.6345 (4)0.0692 (11)
H14A1.28110.76310.73820.104*
H14B1.41780.72770.62490.104*
H14C1.20520.69120.59680.104*
C151.4001 (5)0.9309 (4)0.5556 (4)0.0636 (10)
H15A1.48520.90730.48820.095*
H15B1.46640.93390.65590.095*
H15C1.35131.00380.52660.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0676 (6)0.0740 (6)0.0695 (6)0.0110 (5)0.0159 (4)0.0263 (5)
N10.0468 (16)0.0478 (15)0.0600 (17)0.0006 (13)0.0010 (13)0.0103 (13)
N20.0476 (16)0.0503 (15)0.0563 (15)0.0009 (13)0.0047 (12)0.0085 (14)
N30.0368 (14)0.0436 (14)0.0518 (14)0.0001 (11)0.0033 (11)0.0016 (12)
N40.0466 (15)0.0496 (15)0.0525 (15)0.0048 (12)0.0002 (13)0.0126 (12)
N50.0424 (15)0.0559 (15)0.0498 (15)0.0020 (12)0.0017 (12)0.0040 (12)
O10.0411 (12)0.0456 (11)0.0444 (11)0.0056 (10)0.0034 (9)0.0044 (9)
O20.0435 (14)0.0800 (19)0.0831 (17)0.0224 (13)0.0021 (12)0.0027 (14)
C10.0453 (19)0.057 (2)0.0552 (19)0.0100 (16)0.0037 (15)0.0011 (16)
C20.050 (2)0.070 (2)0.066 (2)0.0062 (18)0.0032 (17)0.0008 (19)
C30.0411 (19)0.063 (2)0.079 (3)0.0094 (17)0.0004 (17)0.0143 (19)
C40.051 (2)0.0516 (19)0.083 (3)0.0150 (17)0.0229 (18)0.0122 (18)
C50.054 (2)0.0462 (18)0.0600 (19)0.0089 (15)0.0150 (16)0.0052 (14)
C60.0381 (16)0.0404 (15)0.0499 (16)0.0022 (13)0.0093 (13)0.0089 (12)
C70.0404 (15)0.0377 (15)0.0444 (15)0.0012 (13)0.0085 (13)0.0039 (13)
C80.0393 (16)0.0423 (15)0.0428 (15)0.0037 (13)0.0015 (12)0.0004 (13)
C90.0467 (18)0.0508 (19)0.0503 (17)0.0055 (15)0.0028 (14)0.0043 (15)
C100.0389 (17)0.0411 (15)0.0557 (18)0.0027 (13)0.0060 (14)0.0000 (14)
C110.0470 (18)0.0407 (15)0.0478 (16)0.0018 (14)0.0099 (14)0.0076 (13)
C120.0362 (15)0.0386 (14)0.0433 (15)0.0041 (12)0.0034 (12)0.0002 (12)
C130.0387 (17)0.0497 (17)0.0526 (18)0.0100 (14)0.0033 (15)0.0062 (15)
C140.068 (3)0.071 (2)0.064 (2)0.015 (2)0.0101 (18)0.013 (2)
C150.0431 (19)0.085 (3)0.060 (2)0.0084 (19)0.0026 (16)0.0018 (19)
Geometric parameters (Å, º) top
Cl1—C111.727 (3)C3—H30.9300
N1—C71.279 (4)C4—C51.376 (6)
N1—N21.415 (4)C4—H40.9300
N2—C81.272 (4)C5—C61.389 (5)
N3—N41.345 (4)C5—H50.9300
N3—C101.378 (4)C6—C71.462 (4)
N3—C91.450 (4)C8—C91.494 (5)
N4—C131.290 (4)C9—H9A0.9700
N5—C121.366 (4)C9—H9B0.9700
N5—C141.447 (5)C10—C111.447 (4)
N5—C151.461 (5)C11—C121.367 (5)
O1—C81.355 (3)C12—C131.432 (4)
O1—C71.367 (4)C13—H130.9300
O2—C101.227 (4)C14—H14A0.9600
C1—C61.376 (5)C14—H14B0.9600
C1—C21.376 (5)C14—H14C0.9600
C1—H10.9300C15—H15A0.9600
C2—C31.376 (6)C15—H15B0.9600
C2—H20.9300C15—H15C0.9600
C3—C41.374 (6)
C7—N1—N2106.3 (3)N2—C8—C9129.4 (3)
C8—N2—N1105.7 (2)O1—C8—C9117.2 (3)
N4—N3—C10125.6 (3)N3—C9—C8111.9 (3)
N4—N3—C9115.2 (3)N3—C9—H9A109.2
C10—N3—C9119.2 (3)C8—C9—H9A109.2
C13—N4—N3117.3 (3)N3—C9—H9B109.2
C12—N5—C14123.1 (3)C8—C9—H9B109.2
C12—N5—C15119.9 (3)H9A—C9—H9B107.9
C14—N5—C15114.0 (3)O2—C10—N3119.7 (3)
C8—O1—C7102.2 (2)O2—C10—C11126.0 (3)
C6—C1—C2120.7 (3)N3—C10—C11114.3 (3)
C6—C1—H1119.7C12—C11—C10122.0 (3)
C2—C1—H1119.7C12—C11—Cl1124.4 (2)
C3—C2—C1120.3 (4)C10—C11—Cl1113.5 (2)
C3—C2—H2119.9N5—C12—C11126.6 (3)
C1—C2—H2119.9N5—C12—C13118.4 (3)
C4—C3—C2119.2 (4)C11—C12—C13114.9 (3)
C4—C3—H3120.4N4—C13—C12125.6 (3)
C2—C3—H3120.4N4—C13—H13117.2
C3—C4—C5121.1 (3)C12—C13—H13117.2
C3—C4—H4119.5N5—C14—H14A109.5
C5—C4—H4119.5N5—C14—H14B109.5
C4—C5—C6119.6 (4)H14A—C14—H14B109.5
C4—C5—H5120.2N5—C14—H14C109.5
C6—C5—H5120.2H14A—C14—H14C109.5
C1—C6—C5119.2 (3)H14B—C14—H14C109.5
C1—C6—C7121.3 (3)N5—C15—H15A109.5
C5—C6—C7119.5 (3)N5—C15—H15B109.5
N1—C7—O1112.3 (3)H15A—C15—H15B109.5
N1—C7—C6129.0 (3)N5—C15—H15C109.5
O1—C7—C6118.7 (3)H15A—C15—H15C109.5
N2—C8—O1113.4 (3)H15B—C15—H15C109.5
C7—N1—N2—C81.0 (4)N4—N3—C9—C898.6 (4)
C10—N3—N4—C134.2 (5)C10—N3—C9—C879.8 (4)
C9—N3—N4—C13177.5 (3)N2—C8—C9—N316.7 (5)
C6—C1—C2—C30.0 (6)O1—C8—C9—N3165.6 (3)
C1—C2—C3—C40.2 (6)N4—N3—C10—O2175.9 (3)
C2—C3—C4—C50.3 (6)C9—N3—C10—O22.2 (4)
C3—C4—C5—C60.2 (5)N4—N3—C10—C113.3 (4)
C2—C1—C6—C50.1 (5)C9—N3—C10—C11178.6 (3)
C2—C1—C6—C7178.2 (3)O2—C10—C11—C12178.8 (3)
C4—C5—C6—C10.0 (5)N3—C10—C11—C122.0 (4)
C4—C5—C6—C7178.1 (3)O2—C10—C11—Cl14.0 (4)
N2—N1—C7—O10.9 (4)N3—C10—C11—Cl1175.2 (2)
N2—N1—C7—C6177.5 (3)C14—N5—C12—C1135.7 (5)
C8—O1—C7—N10.5 (3)C15—N5—C12—C11165.2 (3)
C8—O1—C7—C6178.1 (3)C14—N5—C12—C13145.3 (3)
C1—C6—C7—N1176.0 (3)C15—N5—C12—C1313.8 (5)
C5—C6—C7—N15.9 (5)C10—C11—C12—N5175.4 (3)
C1—C6—C7—O15.7 (4)Cl1—C11—C12—N57.8 (5)
C5—C6—C7—O1172.5 (3)C10—C11—C12—C135.6 (4)
N1—N2—C8—O10.7 (4)Cl1—C11—C12—C13171.3 (2)
N1—N2—C8—C9177.1 (3)N3—N4—C13—C120.1 (5)
C7—O1—C8—N20.2 (4)N5—C12—C13—N4176.0 (3)
C7—O1—C8—C9177.9 (3)C11—C12—C13—N44.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···Cl10.962.563.114 (4)117
C1—H1···O10.932.522.836 (4)100
C3—H3···O2i0.932.363.125 (5)140
C1—H1···N5ii0.932.613.477 (5)156
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z1.
 

Funding information

Financial support by the Students Innovation Program of Shanghai University of Engineering Science (cs2104005) is gratefully acknowledged.

References

First citationArora, S., Joshi, G., Chaturvedi, A., Heuser, M., Patil, S. & Kumar, R. (2022). J. Med. Chem. 65, 1171–1205.  CrossRef CAS PubMed Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, S., Wei, N., Zhao, C. M., Li, L. N., Huang, Q. C. & Qian, X. H. (2005). J. Agric. Food Chem. 53, 3120–3125.  CrossRef PubMed CAS Google Scholar
First citationLu, D., Liu, F. F., Xing, W. Q., Tong, X. K., Wang, L., Wang, Y. J., Zeng, L. M., Feng, C. L., Yang, L., Zuo, J. P. & Hu, Y. H. (2017). Infect. Dis. 3, 199–205.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, R., Liu, C. J., Zhang, H. & Wang, Q. M. (2015). J. Agric. Food Chem. 63, 6847–6865.  CrossRef CAS PubMed Google Scholar
First citationVaidergorn, M. M., da Silva Emery, F. & Ganesan, A. (2021). J. Med. Chem. 64, 13980–14010.  CrossRef CAS PubMed Google Scholar
First citationXu, H., Hu, X. H., Zou, X. M., Liu, B., Zhu, Y. Q., Wang, Y., Hu, F. Z. & Yang, H. Z. (2008). J. Agric. Food Chem. 56, 6567–6572.  CrossRef PubMed CAS Google Scholar
First citationZhang, X. J., Sheng, X. J., Shen, J., Zhang, S. B., Sun, W. J., Shen, C. L., Li, Y., Wang, J., Lv, H., Cui, M., Zhu, Y., Huang, L., Hao, D., Qi, Z., Sun, G., Mao, W., Pan, Y., Shen, L., Li, X., Hu, G., Gong, Z., Han, S., Li, J., Chen, S., Tu, R., Wang, X. & Wu, C. (2020). ACS Med. Chem. Lett. 11, 1863–1868.  CrossRef CAS PubMed Google Scholar
First citationZou, X. J., Lai, L. H., Jin, G. Y. & Zhang, Z. X. (2002). J. Agric. Food Chem. 50, 3757–3760.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds