organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(Methyl-α-D-gluco­pyran­osid-6-yl)-3-vinyl­imidazolium iodide di­methyl­formamide monosolvate

crossmark logo

aDepartment Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany, and bInstitute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
*Correspondence e-mail: stefan.jopp@uni-rostock.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 28 February 2022; accepted 8 March 2022; online 10 March 2022)

The title solvated molecular salt, [MeGluVIm]I (MeGluVIm = 1-(methyl-α-D-gluco­pyran­osid-6-yl)-3-vinyl­imidazolium), or C12H19N2O5+·I·C3H7NO, was synthesized from methyl-α-D-6-iodo­gluco­pyran­oside and vinyl­imidazole in DMF. It crystallizes through precipitation from ethyl acetate solution directly after the reaction procedure. The crystal structure consists of an iodide anion and a [MeGluVIm] cation. Furthermore, the crystal structure contains one mol­ecule of DMF, which accepts two O—H⋯H hydrogen bonds from the OH groups of the gluco­pyran­oside.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

[MeGluVIm]I is part of a sub-category of ionic liquids, called carbohydrate-based ionic liquids (CHILs; Jopp, 2020[Jopp, S. (2020). Eur. J. Org. Chem. pp. 6418-6428.]). These mol­ecules are defined as ionic organic compounds in which either the cation or the anion consists of an intact carbohydrate moiety. Our group has recently discovered a straightforward synthetic strategy for CHILs, in which methyl-α-D-gluco­pyran­oside is transformed into methyl-α-D-6-iodo­gluco­pyran­oside in the first step (Skaanderup et al., 2002[Skaanderup, P. R., Poulsen, C. S., Hyldtoft, L., Jørgensen, M. R. & Madsen, R. (2002). Synthesis, pp. 1721-1727.]) and then in the second step quarternized with an N-substituted imidazole of choice to achieve a carbohydrate-based ionic liquid (Schnegas & Jopp, 2021[Schnegas, J. & Jopp, S. (2021). Compounds, 1, 154-163.]). The title compound [MeGluVIm]I contains a vinyl­imidazolium ring bound to atom C6 of the gluco­pyran­oside. Fig. 1[link] shows the asymmetric unit, including one mol­ecule of di­methyl­formamide, which was used as the reaction solvent. The title compound crystallizes in a monoclinic unit cell. The crystal structure contains three classical hydrogen bonds and additional C—H⋯O/I inter­actions (Table 1[link]). One hydrogen bond is formed between O3—H3A of the gluco­pyran­oside and O7 of DMF with an H⋯H length of 2.09 (4) Å. Two additional hydrogen bonds exists between the [MeGluVIm] cation and the iodide anion, which are O4—H4A⋯I1 with 2.71 (5) Å and O5—H5A⋯I1 with 2.75 (5) Å. Fig. 2[link] gives an alternative view of the cation, indicating the distinctive chair conformation of the gluco­pyran­oside as well as the overall stereochemistry of the compound. The configurations of the stereogenic centres in the chosen cation are S (C1), R (C2), S (C3), S (C4) and R (C5).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O7 0.72 (4) 2.09 (4) 2.797 (4) 167 (5)
O4—H4A⋯I1i 0.78 (5) 2.71 (5) 3.482 (3) 171 (4)
O5—H5A⋯I1 0.74 (5) 2.75 (5) 3.474 (3) 165 (4)
C6—H6A⋯O5ii 0.99 2.46 3.332 (4) 147
C8—H8⋯O4ii 0.95 2.44 3.252 (4) 143
C8—H8⋯O5ii 0.95 2.53 3.285 (4) 136
C9—H9⋯O3iii 0.95 2.51 3.404 (5) 156
C10—H10⋯O7iii 0.95 2.40 3.159 (5) 137
C11—H11⋯I1iv 0.95 3.02 3.925 (3) 161
C15—H15⋯O4 0.95 2.58 3.297 (5) 132
Symmetry codes: (i) [x, y-1, z]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) [x, y, z-1].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound. Displacement ellipsoids correspond to 50% probability.
[Figure 2]
Figure 2
Mol­ecular structure of the title compound. Displacement ellipsoids correspond to 50% probability. The DMF was removed for a clear view of the chair conformation.

Synthesis and crystallization

Methyl-6-iodo-α-D-gluco­pyran­oside (1.824 g; 6 mmol) and 1-vinyl­imidazole (0.821 g; 10 mmol) were dissolved in DMF (10 ml) and stirred at 95°C for 24 h. After cooling down, ethyl acetate (80 ml) was added and the flask was stored in a fridge overnight. The solvent was deca­nted and the precipitated solid was washed with ethyl acetate (3 × 40 ml) and dried under high vacuum to achieve the product as a beige solid (1.752 g; yield 73%). Single crystals of the compound were formed during the precipitation (m.p.: 448–453 K; Td: 509 K).

1H NMR (300 MHz, D2O): δ = 3.21–3.30 (m, 3H, OCH3); 3.58 (dd, 1H, 3J = 9.77, 3J = 3.77, H-2); 3.66–3.75 (m, 1H); 3.95 (dd, 1H, 3J = 6.3, 3J = 3.72); 4.50 (dd, 1H, 3J = 14.55, 3J = 7.38, H-6a); 4.70 (dd, 1H, 3J = 14.55, 3J = 2.55, H-6 b); 4.85 (d, 1H, 3J = 3.77, H-1); 5.49 (dd, 1H, 3J = 8.68, 3J = 2.84, vinyl-CH); 5.86 (dd, 1H, 3J = 15.58, 3J = 2.85, vinyl-CH2 − a); 7.2 (dd, 1H, 3J = 15.58, 3J = 8.70, vinyl-CH2 − b); 7.70 (d, 1H, 3J = 2.0, HAr); 7.86 (d, 1H, 3J = 2.0, HAr); 9.16 (s, 1H).

13C NMR (300 MHz, D2O): δm= 36.9 (NCH); 50.2 (C-6); 55.1 (OCH3); 69.2, 40.5, 71.0, 72.8 (C-2, C-3, C-4, C-5); 99.3 (C-1); 109.8 (CH2); 119.4, 123.8, 128.1 (CHAr).

HRMS (ESI, m/z): calculated for C12H19N2O5+, 271.1299; measured 271.1306. Calculated for I, 126.9040; measured 126.9045.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal studied was refined as a two-component inversion twin.

Table 2
Experimental details

Crystal data
Chemical formula C12H19N2O5+·I·C3H7NO
Mr 471.29
Crystal system, space group Monoclinic, P21
Temperature (K) 123
a, b, c (Å) 10.816 (2), 7.0106 (15), 13.169 (3)
β (°) 106.833 (4)
V3) 955.7 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.71
Crystal size (mm) 0.29 × 0.08 × 0.03
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.629, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17430, 6072, 5626
Rint 0.038
(sin θ/λ)max−1) 0.725
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.060, 1.03
No. of reflections 6072
No. of parameters 242
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.42, −0.44
Absolute structure Refined as an inversion twin, 2815 Friedel pairs.
Absolute structure parameter 0.006 (19)
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

3-Ethenyl-1-(methyl-α-D-glucopyranosid-6-yl)imidazolium iodide dimethylformamide monosolvate top
Crystal data top
C12H19N2O5+·I·C3H7NOF(000) = 476
Mr = 471.29Dx = 1.638 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.816 (2) ÅCell parameters from 7185 reflections
b = 7.0106 (15) Åθ = 3.2–31.1°
c = 13.169 (3) ŵ = 1.71 mm1
β = 106.833 (4)°T = 123 K
V = 955.7 (3) Å3Needle, colourless
Z = 20.29 × 0.08 × 0.03 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6072 independent reflections
Radiation source: sealed tube5626 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.038
phi and ω scansθmax = 31.0°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1515
Tmin = 0.629, Tmax = 0.746k = 1010
17430 measured reflectionsl = 1918
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0231P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max = 0.001
S = 1.03Δρmax = 1.42 e Å3
6072 reflectionsΔρmin = 0.44 e Å3
242 parametersAbsolute structure: Refined as an inversion twin, 2815 Friedel pairs.
1 restraintAbsolute structure parameter: 0.006 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 (methyl groups), 0.99Å (methylene groups), 1.00Å (methine groups) or 0.95 Å (aryl CH) and with Uiso(H) = 1.5 times Ueq(C) (methyl groups) or with Uiso(H) = 1.2 times Ueq(C) (methylene groups, aryl CH, methine groups). Torsion angles of all methyl groups were allowed to refine.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Refined as a two-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1863 (3)1.0859 (4)0.3364 (2)0.0151 (5)
N20.1065 (3)1.1296 (4)0.1676 (2)0.0179 (6)
O10.3511 (2)0.8245 (4)0.4934 (2)0.0146 (5)
O20.3182 (3)0.5032 (4)0.4445 (2)0.0184 (5)
O30.4060 (3)0.3939 (4)0.6541 (3)0.0222 (6)
O40.2120 (3)0.5948 (4)0.7282 (2)0.0197 (5)
O50.0572 (2)0.8579 (4)0.5786 (2)0.0169 (5)
C10.3882 (3)0.6322 (5)0.5202 (3)0.0150 (7)
H10.48210.61800.52630.018*
C20.3673 (3)0.5847 (5)0.6269 (3)0.0156 (6)
H20.42400.67030.68160.019*
C30.2266 (3)0.6217 (5)0.6246 (3)0.0137 (6)
H30.16790.53270.57330.016*
C40.1910 (3)0.8273 (5)0.5914 (3)0.0129 (6)
H40.24380.91630.64640.015*
C50.2174 (3)0.8639 (4)0.4853 (3)0.0123 (6)
H50.16070.77930.42990.015*
C60.1951 (3)1.0688 (4)0.4498 (3)0.0139 (6)
H6A0.11411.11560.46180.017*
H6B0.26711.14870.49210.017*
C70.3439 (4)0.5229 (5)0.3446 (3)0.0238 (8)
H7A0.30860.41280.29970.036*
H7B0.43740.52950.35580.036*
H7C0.30330.64000.30970.036*
C80.0831 (3)1.1454 (4)0.2617 (3)0.0153 (7)
H80.00551.19150.27290.018*
C90.2788 (3)1.0274 (5)0.2893 (3)0.0174 (7)
H90.36180.97750.32440.021*
C100.2286 (4)1.0547 (5)0.1843 (3)0.0200 (7)
H100.26981.02730.13130.024*
C110.0197 (3)1.1684 (9)0.0656 (3)0.0238 (7)
H110.05241.16360.00600.029*
C120.1014 (4)1.2099 (7)0.0494 (3)0.0322 (11)
H12A0.13681.21580.10750.039*
H12B0.15471.23440.02050.039*
H3A0.426 (4)0.391 (7)0.711 (3)0.014 (12)*
H4A0.186 (4)0.495 (7)0.740 (4)0.025 (12)*
H5A0.051 (4)0.940 (7)0.612 (4)0.018 (12)*
I10.06251 (2)1.18116 (3)0.77975 (2)0.02003 (6)
N30.4772 (3)0.4326 (5)1.0319 (3)0.0235 (7)
O70.5214 (3)0.4185 (5)0.8731 (2)0.0306 (7)
C130.6115 (5)0.4439 (8)1.0952 (4)0.0328 (10)
H13A0.66630.46371.04850.049*
H13B0.63630.32491.13490.049*
H13C0.62250.55081.14500.049*
C140.3817 (4)0.4304 (7)1.0890 (4)0.0341 (10)
H14A0.38280.55291.12500.051*
H14B0.40160.32751.14160.051*
H14C0.29600.40921.03910.051*
C150.4445 (5)0.4205 (6)0.9273 (4)0.0241 (8)
H150.35500.41260.89060.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0161 (13)0.0129 (12)0.0185 (14)0.0016 (10)0.0086 (11)0.0002 (11)
N20.0226 (14)0.0170 (14)0.0156 (13)0.0010 (10)0.0079 (11)0.0006 (10)
O10.0115 (12)0.0128 (12)0.0203 (13)0.0008 (9)0.0061 (10)0.0012 (10)
O20.0274 (14)0.0139 (12)0.0178 (13)0.0039 (10)0.0125 (11)0.0033 (11)
O30.0272 (15)0.0191 (12)0.0205 (14)0.0079 (10)0.0072 (12)0.0051 (11)
O40.0252 (13)0.0200 (12)0.0170 (12)0.0001 (10)0.0109 (10)0.0032 (10)
O50.0146 (12)0.0199 (12)0.0185 (12)0.0001 (9)0.0081 (10)0.0027 (10)
C10.0138 (14)0.0141 (17)0.0181 (15)0.0027 (10)0.0064 (12)0.0005 (11)
C20.0163 (15)0.0147 (15)0.0158 (15)0.0024 (11)0.0049 (12)0.0002 (12)
C30.0156 (15)0.0140 (13)0.0132 (14)0.0010 (11)0.0065 (12)0.0021 (11)
C40.0130 (14)0.0130 (14)0.0135 (15)0.0004 (11)0.0052 (12)0.0024 (13)
C50.0108 (14)0.0131 (13)0.0137 (15)0.0002 (10)0.0047 (12)0.0014 (12)
C60.0170 (15)0.0132 (13)0.0135 (15)0.0008 (11)0.0075 (12)0.0004 (12)
C70.038 (2)0.0196 (17)0.0184 (17)0.0027 (15)0.0156 (16)0.0031 (14)
C80.0205 (14)0.011 (2)0.0169 (14)0.0008 (10)0.0085 (11)0.0021 (11)
C90.0175 (16)0.0153 (15)0.0237 (18)0.0017 (12)0.0129 (14)0.0021 (13)
C100.0234 (17)0.0175 (15)0.0241 (18)0.0043 (13)0.0149 (15)0.0032 (14)
C110.0362 (17)0.0203 (18)0.0148 (13)0.001 (2)0.0072 (12)0.005 (2)
C120.042 (2)0.030 (3)0.0215 (16)0.0067 (18)0.0031 (15)0.0061 (18)
I10.02599 (10)0.01685 (9)0.01752 (9)0.00241 (13)0.00673 (7)0.00025 (13)
N30.0222 (16)0.0241 (16)0.0226 (17)0.0012 (13)0.0040 (13)0.0042 (14)
O70.0305 (16)0.0392 (17)0.0239 (15)0.0009 (13)0.0108 (13)0.0044 (13)
C130.028 (2)0.041 (2)0.024 (2)0.003 (2)0.0027 (18)0.0025 (19)
C140.033 (2)0.042 (2)0.031 (2)0.0034 (19)0.0139 (19)0.005 (2)
C150.022 (2)0.0260 (18)0.022 (2)0.0009 (17)0.0021 (18)0.0034 (17)
Geometric parameters (Å, º) top
N1—C81.324 (4)C5—H51.0000
N1—C91.383 (4)C6—H6A0.9900
N1—C61.472 (4)C6—H6B0.9900
N2—C81.339 (4)C7—H7A0.9800
N2—C101.379 (5)C7—H7B0.9800
N2—C111.424 (4)C7—H7C0.9800
O1—C11.421 (4)C8—H80.9500
O1—C51.446 (4)C9—C101.345 (5)
O2—C11.396 (4)C9—H90.9500
O2—C71.428 (5)C10—H100.9500
O3—C21.416 (4)C11—C121.298 (6)
O3—H3A0.72 (4)C11—H110.9500
O4—C31.430 (4)C12—H12A0.9500
O4—H4A0.78 (5)C12—H12B0.9500
O5—C41.424 (4)N3—C151.322 (6)
O5—H5A0.74 (5)N3—C141.442 (6)
C1—C21.523 (5)N3—C131.453 (5)
C1—H11.0000O7—C151.243 (5)
C2—C31.536 (5)C13—H13A0.9800
C2—H21.0000C13—H13B0.9800
C3—C41.523 (5)C13—H13C0.9800
C3—H31.0000C14—H14A0.9800
C4—C51.527 (5)C14—H14B0.9800
C4—H41.0000C14—H14C0.9800
C5—C61.509 (4)C15—H150.9500
C8—N1—C9108.9 (3)C5—C6—H6A109.6
C8—N1—C6124.9 (3)N1—C6—H6B109.6
C9—N1—C6126.0 (3)C5—C6—H6B109.6
C8—N2—C10108.2 (3)H6A—C6—H6B108.1
C8—N2—C11127.4 (3)O2—C7—H7A109.5
C10—N2—C11124.2 (3)O2—C7—H7B109.5
C1—O1—C5113.8 (3)H7A—C7—H7B109.5
C1—O2—C7112.6 (3)O2—C7—H7C109.5
C2—O3—H3A105 (4)H7A—C7—H7C109.5
C3—O4—H4A117 (4)H7B—C7—H7C109.5
C4—O5—H5A108 (3)N1—C8—N2108.5 (3)
O2—C1—O1112.4 (3)N1—C8—H8125.8
O2—C1—C2108.8 (3)N2—C8—H8125.8
O1—C1—C2109.3 (3)C10—C9—N1106.9 (3)
O2—C1—H1108.8C10—C9—H9126.6
O1—C1—H1108.8N1—C9—H9126.6
C2—C1—H1108.8C9—C10—N2107.5 (3)
O3—C2—C1109.2 (3)C9—C10—H10126.2
O3—C2—C3112.5 (3)N2—C10—H10126.2
C1—C2—C3110.9 (3)C12—C11—N2123.8 (3)
O3—C2—H2108.0C12—C11—H11118.1
C1—C2—H2108.0N2—C11—H11118.1
C3—C2—H2108.0C11—C12—H12A120.0
O4—C3—C4108.1 (3)C11—C12—H12B120.0
O4—C3—C2110.0 (3)H12A—C12—H12B120.0
C4—C3—C2109.4 (3)C15—N3—C14121.8 (4)
O4—C3—H3109.8C15—N3—C13121.5 (4)
C4—C3—H3109.8C14—N3—C13116.7 (4)
C2—C3—H3109.8N3—C13—H13A109.5
O5—C4—C3109.9 (3)N3—C13—H13B109.5
O5—C4—C5108.6 (3)H13A—C13—H13B109.5
C3—C4—C5108.9 (3)N3—C13—H13C109.5
O5—C4—H4109.8H13A—C13—H13C109.5
C3—C4—H4109.8H13B—C13—H13C109.5
C5—C4—H4109.8N3—C14—H14A109.5
O1—C5—C6105.7 (3)N3—C14—H14B109.5
O1—C5—C4110.4 (3)H14A—C14—H14B109.5
C6—C5—C4112.8 (3)N3—C14—H14C109.5
O1—C5—H5109.3H14A—C14—H14C109.5
C6—C5—H5109.3H14B—C14—H14C109.5
C4—C5—H5109.3O7—C15—N3125.3 (5)
N1—C6—C5110.4 (3)O7—C15—H15117.4
N1—C6—H6A109.6N3—C15—H15117.4
C7—O2—C1—O165.7 (4)O5—C4—C5—C664.9 (3)
C7—O2—C1—C2173.1 (3)C3—C4—C5—C6175.4 (3)
C5—O1—C1—O261.2 (4)C8—N1—C6—C5117.5 (3)
C5—O1—C1—C259.7 (3)C9—N1—C6—C556.3 (4)
O2—C1—C2—O357.7 (3)O1—C5—C6—N174.9 (3)
O1—C1—C2—O3179.2 (3)C4—C5—C6—N1164.3 (3)
O2—C1—C2—C366.8 (3)C9—N1—C8—N20.8 (4)
O1—C1—C2—C356.3 (3)C6—N1—C8—N2175.6 (3)
O3—C2—C3—O463.2 (4)C10—N2—C8—N10.9 (4)
C1—C2—C3—O4174.2 (3)C11—N2—C8—N1176.6 (4)
O3—C2—C3—C4178.2 (3)C8—N1—C9—C100.5 (4)
C1—C2—C3—C455.6 (3)C6—N1—C9—C10175.1 (3)
O4—C3—C4—O566.2 (3)N1—C9—C10—N20.1 (4)
C2—C3—C4—O5174.1 (3)C8—N2—C10—C90.6 (4)
O4—C3—C4—C5175.0 (3)C11—N2—C10—C9176.5 (4)
C2—C3—C4—C555.3 (3)C8—N2—C11—C126.4 (8)
C1—O1—C5—C6176.5 (3)C10—N2—C11—C12168.6 (5)
C1—O1—C5—C461.2 (3)C14—N3—C15—O7178.8 (4)
O5—C4—C5—O1177.0 (3)C13—N3—C15—O70.4 (7)
C3—C4—C5—O157.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O70.72 (4)2.09 (4)2.797 (4)167 (5)
O4—H4A···I1i0.78 (5)2.71 (5)3.482 (3)171 (4)
O5—H5A···I10.74 (5)2.75 (5)3.474 (3)165 (4)
C6—H6A···O5ii0.992.463.332 (4)147
C8—H8···O4ii0.952.443.252 (4)143
C8—H8···O5ii0.952.533.285 (4)136
C9—H9···O3iii0.952.513.404 (5)156
C10—H10···O7iii0.952.403.159 (5)137
C11—H11···I1iv0.953.023.925 (3)161
C15—H15···O40.952.583.297 (5)132
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x, y, z1.
 

Funding information

We acknowledge financial support by the Deutsche Forschungsgemeinschaft and the University of Rostock within the funding programme Open Access Publishing.

References

First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJopp, S. (2020). Eur. J. Org. Chem. pp. 6418–6428.  Web of Science CrossRef Google Scholar
First citationSchnegas, J. & Jopp, S. (2021). Compounds, 1, 154–163.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkaanderup, P. R., Poulsen, C. S., Hyldtoft, L., Jørgensen, M. R. & Madsen, R. (2002). Synthesis, pp. 1721–1727.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds