organic compounds
1-(Methyl-α-D-glucopyranosid-6-yl)-3-vinylimidazolium iodide dimethylformamide monosolvate
aDepartment Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany, and bInstitute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
*Correspondence e-mail: stefan.jopp@uni-rostock.de
The title solvated molecular salt, [MeGluVIm]I (MeGluVIm = 1-(methyl-α-D-glucopyranosid-6-yl)-3-vinylimidazolium), or C12H19N2O5+·I−·C3H7NO, was synthesized from methyl-α-D-6-iodoglucopyranoside and vinylimidazole in DMF. It crystallizes through precipitation from ethyl acetate solution directly after the reaction procedure. The consists of an iodide anion and a [MeGluVIm] cation. Furthermore, the contains one molecule of DMF, which accepts two O—H⋯H hydrogen bonds from the OH groups of the glucopyranoside.
Keywords: crystal structure; carbohydrate; imidazolium.
CCDC reference: 2157239
Structure description
[MeGluVIm]I is part of a sub-category of ionic liquids, called carbohydrate-based ionic liquids (CHILs; Jopp, 2020). These molecules are defined as ionic organic compounds in which either the cation or the anion consists of an intact carbohydrate moiety. Our group has recently discovered a straightforward synthetic strategy for CHILs, in which methyl-α-D-glucopyranoside is transformed into methyl-α-D-6-iodoglucopyranoside in the first step (Skaanderup et al., 2002) and then in the second step quarternized with an N-substituted imidazole of choice to achieve a carbohydrate-based ionic liquid (Schnegas & Jopp, 2021). The title compound [MeGluVIm]I contains a vinylimidazolium ring bound to atom C6 of the glucopyranoside. Fig. 1 shows the including one molecule of dimethylformamide, which was used as the reaction solvent. The title compound crystallizes in a monoclinic The contains three classical hydrogen bonds and additional C—H⋯O/I interactions (Table 1). One hydrogen bond is formed between O3—H3A of the glucopyranoside and O7 of DMF with an H⋯H length of 2.09 (4) Å. Two additional hydrogen bonds exists between the [MeGluVIm] cation and the iodide anion, which are O4—H4A⋯I1 with 2.71 (5) Å and O5—H5A⋯I1 with 2.75 (5) Å. Fig. 2 gives an alternative view of the cation, indicating the distinctive chair conformation of the glucopyranoside as well as the overall stereochemistry of the compound. The configurations of the stereogenic centres in the chosen cation are S (C1), R (C2), S (C3), S (C4) and R (C5).
Synthesis and crystallization
Methyl-6-iodo-α-D-glucopyranoside (1.824 g; 6 mmol) and 1-vinylimidazole (0.821 g; 10 mmol) were dissolved in DMF (10 ml) and stirred at 95°C for 24 h. After cooling down, ethyl acetate (80 ml) was added and the flask was stored in a fridge overnight. The solvent was decanted and the precipitated solid was washed with ethyl acetate (3 × 40 ml) and dried under high vacuum to achieve the product as a beige solid (1.752 g; yield 73%). Single crystals of the compound were formed during the precipitation (m.p.: 448–453 K; Td: 509 K).
1H NMR (300 MHz, D2O): δ = 3.21–3.30 (m, 3H, OCH3); 3.58 (dd, 1H, 3J = 9.77, 3J = 3.77, H-2); 3.66–3.75 (m, 1H); 3.95 (dd, 1H, 3J = 6.3, 3J = 3.72); 4.50 (dd, 1H, 3J = 14.55, 3J = 7.38, H-6a); 4.70 (dd, 1H, 3J = 14.55, 3J = 2.55, H-6 b); 4.85 (d, 1H, 3J = 3.77, H-1); 5.49 (dd, 1H, 3J = 8.68, 3J = 2.84, vinyl-CH); 5.86 (dd, 1H, 3J = 15.58, 3J = 2.85, vinyl-CH2 − a); 7.2 (dd, 1H, 3J = 15.58, 3J = 8.70, vinyl-CH2 − b); 7.70 (d, 1H, 3J = 2.0, HAr); 7.86 (d, 1H, 3J = 2.0, HAr); 9.16 (s, 1H).
13C NMR (300 MHz, D2O): δm= 36.9 (NCH); 50.2 (C-6); 55.1 (OCH3); 69.2, 40.5, 71.0, 72.8 (C-2, C-3, C-4, C-5); 99.3 (C-1); 109.8 (CH2); 119.4, 123.8, 128.1 (CHAr).
HRMS (ESI, m/z): calculated for C12H19N2O5+, 271.1299; measured 271.1306. Calculated for I−, 126.9040; measured 126.9045.
Refinement
Crystal data, data collection and structure . The crystal studied was refined as a two-component inversion twin.
details are summarized in Table 2
|
Structural data
CCDC reference: 2157239
https://doi.org/10.1107/S2414314622002656/vm4051sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622002656/vm4051Isup2.hkl
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).C12H19N2O5+·I−·C3H7NO | F(000) = 476 |
Mr = 471.29 | Dx = 1.638 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.816 (2) Å | Cell parameters from 7185 reflections |
b = 7.0106 (15) Å | θ = 3.2–31.1° |
c = 13.169 (3) Å | µ = 1.71 mm−1 |
β = 106.833 (4)° | T = 123 K |
V = 955.7 (3) Å3 | Needle, colourless |
Z = 2 | 0.29 × 0.08 × 0.03 mm |
Bruker Kappa APEXII CCD diffractometer | 6072 independent reflections |
Radiation source: sealed tube | 5626 reflections with I > 2σ(I) |
Detector resolution: 10.4167 pixels mm-1 | Rint = 0.038 |
phi and ω scans | θmax = 31.0°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −15→15 |
Tmin = 0.629, Tmax = 0.746 | k = −10→10 |
17430 measured reflections | l = −19→18 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0231P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.060 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 1.42 e Å−3 |
6072 reflections | Δρmin = −0.44 e Å−3 |
242 parameters | Absolute structure: Refined as an inversion twin, 2815 Friedel pairs. |
1 restraint | Absolute structure parameter: 0.006 (19) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 (methyl groups), 0.99Å (methylene groups), 1.00Å (methine groups) or 0.95 Å (aryl CH) and with Uiso(H) = 1.5 times Ueq(C) (methyl groups) or with Uiso(H) = 1.2 times Ueq(C) (methylene groups, aryl CH, methine groups). Torsion angles of all methyl groups were allowed to refine. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a two-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.1863 (3) | 1.0859 (4) | 0.3364 (2) | 0.0151 (5) | |
N2 | 0.1065 (3) | 1.1296 (4) | 0.1676 (2) | 0.0179 (6) | |
O1 | 0.3511 (2) | 0.8245 (4) | 0.4934 (2) | 0.0146 (5) | |
O2 | 0.3182 (3) | 0.5032 (4) | 0.4445 (2) | 0.0184 (5) | |
O3 | 0.4060 (3) | 0.3939 (4) | 0.6541 (3) | 0.0222 (6) | |
O4 | 0.2120 (3) | 0.5948 (4) | 0.7282 (2) | 0.0197 (5) | |
O5 | 0.0572 (2) | 0.8579 (4) | 0.5786 (2) | 0.0169 (5) | |
C1 | 0.3882 (3) | 0.6322 (5) | 0.5202 (3) | 0.0150 (7) | |
H1 | 0.4821 | 0.6180 | 0.5263 | 0.018* | |
C2 | 0.3673 (3) | 0.5847 (5) | 0.6269 (3) | 0.0156 (6) | |
H2 | 0.4240 | 0.6703 | 0.6816 | 0.019* | |
C3 | 0.2266 (3) | 0.6217 (5) | 0.6246 (3) | 0.0137 (6) | |
H3 | 0.1679 | 0.5327 | 0.5733 | 0.016* | |
C4 | 0.1910 (3) | 0.8273 (5) | 0.5914 (3) | 0.0129 (6) | |
H4 | 0.2438 | 0.9163 | 0.6464 | 0.015* | |
C5 | 0.2174 (3) | 0.8639 (4) | 0.4853 (3) | 0.0123 (6) | |
H5 | 0.1607 | 0.7793 | 0.4299 | 0.015* | |
C6 | 0.1951 (3) | 1.0688 (4) | 0.4498 (3) | 0.0139 (6) | |
H6A | 0.1141 | 1.1156 | 0.4618 | 0.017* | |
H6B | 0.2671 | 1.1487 | 0.4921 | 0.017* | |
C7 | 0.3439 (4) | 0.5229 (5) | 0.3446 (3) | 0.0238 (8) | |
H7A | 0.3086 | 0.4128 | 0.2997 | 0.036* | |
H7B | 0.4374 | 0.5295 | 0.3558 | 0.036* | |
H7C | 0.3033 | 0.6400 | 0.3097 | 0.036* | |
C8 | 0.0831 (3) | 1.1454 (4) | 0.2617 (3) | 0.0153 (7) | |
H8 | 0.0055 | 1.1915 | 0.2729 | 0.018* | |
C9 | 0.2788 (3) | 1.0274 (5) | 0.2893 (3) | 0.0174 (7) | |
H9 | 0.3618 | 0.9775 | 0.3244 | 0.021* | |
C10 | 0.2286 (4) | 1.0547 (5) | 0.1843 (3) | 0.0200 (7) | |
H10 | 0.2698 | 1.0273 | 0.1313 | 0.024* | |
C11 | 0.0197 (3) | 1.1684 (9) | 0.0656 (3) | 0.0238 (7) | |
H11 | 0.0524 | 1.1636 | 0.0060 | 0.029* | |
C12 | −0.1014 (4) | 1.2099 (7) | 0.0494 (3) | 0.0322 (11) | |
H12A | −0.1368 | 1.2158 | 0.1075 | 0.039* | |
H12B | −0.1547 | 1.2344 | −0.0205 | 0.039* | |
H3A | 0.426 (4) | 0.391 (7) | 0.711 (3) | 0.014 (12)* | |
H4A | 0.186 (4) | 0.495 (7) | 0.740 (4) | 0.025 (12)* | |
H5A | 0.051 (4) | 0.940 (7) | 0.612 (4) | 0.018 (12)* | |
I1 | 0.06251 (2) | 1.18116 (3) | 0.77975 (2) | 0.02003 (6) | |
N3 | 0.4772 (3) | 0.4326 (5) | 1.0319 (3) | 0.0235 (7) | |
O7 | 0.5214 (3) | 0.4185 (5) | 0.8731 (2) | 0.0306 (7) | |
C13 | 0.6115 (5) | 0.4439 (8) | 1.0952 (4) | 0.0328 (10) | |
H13A | 0.6663 | 0.4637 | 1.0485 | 0.049* | |
H13B | 0.6363 | 0.3249 | 1.1349 | 0.049* | |
H13C | 0.6225 | 0.5508 | 1.1450 | 0.049* | |
C14 | 0.3817 (4) | 0.4304 (7) | 1.0890 (4) | 0.0341 (10) | |
H14A | 0.3828 | 0.5529 | 1.1250 | 0.051* | |
H14B | 0.4016 | 0.3275 | 1.1416 | 0.051* | |
H14C | 0.2960 | 0.4092 | 1.0391 | 0.051* | |
C15 | 0.4445 (5) | 0.4205 (6) | 0.9273 (4) | 0.0241 (8) | |
H15 | 0.3550 | 0.4126 | 0.8906 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0161 (13) | 0.0129 (12) | 0.0185 (14) | −0.0016 (10) | 0.0086 (11) | −0.0002 (11) |
N2 | 0.0226 (14) | 0.0170 (14) | 0.0156 (13) | −0.0010 (10) | 0.0079 (11) | 0.0006 (10) |
O1 | 0.0115 (12) | 0.0128 (12) | 0.0203 (13) | −0.0008 (9) | 0.0061 (10) | 0.0012 (10) |
O2 | 0.0274 (14) | 0.0139 (12) | 0.0178 (13) | −0.0039 (10) | 0.0125 (11) | −0.0033 (11) |
O3 | 0.0272 (15) | 0.0191 (12) | 0.0205 (14) | 0.0079 (10) | 0.0072 (12) | 0.0051 (11) |
O4 | 0.0252 (13) | 0.0200 (12) | 0.0170 (12) | 0.0001 (10) | 0.0109 (10) | 0.0032 (10) |
O5 | 0.0146 (12) | 0.0199 (12) | 0.0185 (12) | 0.0001 (9) | 0.0081 (10) | −0.0027 (10) |
C1 | 0.0138 (14) | 0.0141 (17) | 0.0181 (15) | 0.0027 (10) | 0.0064 (12) | 0.0005 (11) |
C2 | 0.0163 (15) | 0.0147 (15) | 0.0158 (15) | 0.0024 (11) | 0.0049 (12) | 0.0002 (12) |
C3 | 0.0156 (15) | 0.0140 (13) | 0.0132 (14) | −0.0010 (11) | 0.0065 (12) | −0.0021 (11) |
C4 | 0.0130 (14) | 0.0130 (14) | 0.0135 (15) | 0.0004 (11) | 0.0052 (12) | −0.0024 (13) |
C5 | 0.0108 (14) | 0.0131 (13) | 0.0137 (15) | −0.0002 (10) | 0.0047 (12) | −0.0014 (12) |
C6 | 0.0170 (15) | 0.0132 (13) | 0.0135 (15) | 0.0008 (11) | 0.0075 (12) | −0.0004 (12) |
C7 | 0.038 (2) | 0.0196 (17) | 0.0184 (17) | −0.0027 (15) | 0.0156 (16) | −0.0031 (14) |
C8 | 0.0205 (14) | 0.011 (2) | 0.0169 (14) | −0.0008 (10) | 0.0085 (11) | 0.0021 (11) |
C9 | 0.0175 (16) | 0.0153 (15) | 0.0237 (18) | −0.0017 (12) | 0.0129 (14) | −0.0021 (13) |
C10 | 0.0234 (17) | 0.0175 (15) | 0.0241 (18) | −0.0043 (13) | 0.0149 (15) | −0.0032 (14) |
C11 | 0.0362 (17) | 0.0203 (18) | 0.0148 (13) | 0.001 (2) | 0.0072 (12) | 0.005 (2) |
C12 | 0.042 (2) | 0.030 (3) | 0.0215 (16) | 0.0067 (18) | 0.0031 (15) | 0.0061 (18) |
I1 | 0.02599 (10) | 0.01685 (9) | 0.01752 (9) | 0.00241 (13) | 0.00673 (7) | 0.00025 (13) |
N3 | 0.0222 (16) | 0.0241 (16) | 0.0226 (17) | −0.0012 (13) | 0.0040 (13) | 0.0042 (14) |
O7 | 0.0305 (16) | 0.0392 (17) | 0.0239 (15) | 0.0009 (13) | 0.0108 (13) | 0.0044 (13) |
C13 | 0.028 (2) | 0.041 (2) | 0.024 (2) | 0.003 (2) | −0.0027 (18) | 0.0025 (19) |
C14 | 0.033 (2) | 0.042 (2) | 0.031 (2) | −0.0034 (19) | 0.0139 (19) | 0.005 (2) |
C15 | 0.022 (2) | 0.0260 (18) | 0.022 (2) | −0.0009 (17) | 0.0021 (18) | 0.0034 (17) |
N1—C8 | 1.324 (4) | C5—H5 | 1.0000 |
N1—C9 | 1.383 (4) | C6—H6A | 0.9900 |
N1—C6 | 1.472 (4) | C6—H6B | 0.9900 |
N2—C8 | 1.339 (4) | C7—H7A | 0.9800 |
N2—C10 | 1.379 (5) | C7—H7B | 0.9800 |
N2—C11 | 1.424 (4) | C7—H7C | 0.9800 |
O1—C1 | 1.421 (4) | C8—H8 | 0.9500 |
O1—C5 | 1.446 (4) | C9—C10 | 1.345 (5) |
O2—C1 | 1.396 (4) | C9—H9 | 0.9500 |
O2—C7 | 1.428 (5) | C10—H10 | 0.9500 |
O3—C2 | 1.416 (4) | C11—C12 | 1.298 (6) |
O3—H3A | 0.72 (4) | C11—H11 | 0.9500 |
O4—C3 | 1.430 (4) | C12—H12A | 0.9500 |
O4—H4A | 0.78 (5) | C12—H12B | 0.9500 |
O5—C4 | 1.424 (4) | N3—C15 | 1.322 (6) |
O5—H5A | 0.74 (5) | N3—C14 | 1.442 (6) |
C1—C2 | 1.523 (5) | N3—C13 | 1.453 (5) |
C1—H1 | 1.0000 | O7—C15 | 1.243 (5) |
C2—C3 | 1.536 (5) | C13—H13A | 0.9800 |
C2—H2 | 1.0000 | C13—H13B | 0.9800 |
C3—C4 | 1.523 (5) | C13—H13C | 0.9800 |
C3—H3 | 1.0000 | C14—H14A | 0.9800 |
C4—C5 | 1.527 (5) | C14—H14B | 0.9800 |
C4—H4 | 1.0000 | C14—H14C | 0.9800 |
C5—C6 | 1.509 (4) | C15—H15 | 0.9500 |
C8—N1—C9 | 108.9 (3) | C5—C6—H6A | 109.6 |
C8—N1—C6 | 124.9 (3) | N1—C6—H6B | 109.6 |
C9—N1—C6 | 126.0 (3) | C5—C6—H6B | 109.6 |
C8—N2—C10 | 108.2 (3) | H6A—C6—H6B | 108.1 |
C8—N2—C11 | 127.4 (3) | O2—C7—H7A | 109.5 |
C10—N2—C11 | 124.2 (3) | O2—C7—H7B | 109.5 |
C1—O1—C5 | 113.8 (3) | H7A—C7—H7B | 109.5 |
C1—O2—C7 | 112.6 (3) | O2—C7—H7C | 109.5 |
C2—O3—H3A | 105 (4) | H7A—C7—H7C | 109.5 |
C3—O4—H4A | 117 (4) | H7B—C7—H7C | 109.5 |
C4—O5—H5A | 108 (3) | N1—C8—N2 | 108.5 (3) |
O2—C1—O1 | 112.4 (3) | N1—C8—H8 | 125.8 |
O2—C1—C2 | 108.8 (3) | N2—C8—H8 | 125.8 |
O1—C1—C2 | 109.3 (3) | C10—C9—N1 | 106.9 (3) |
O2—C1—H1 | 108.8 | C10—C9—H9 | 126.6 |
O1—C1—H1 | 108.8 | N1—C9—H9 | 126.6 |
C2—C1—H1 | 108.8 | C9—C10—N2 | 107.5 (3) |
O3—C2—C1 | 109.2 (3) | C9—C10—H10 | 126.2 |
O3—C2—C3 | 112.5 (3) | N2—C10—H10 | 126.2 |
C1—C2—C3 | 110.9 (3) | C12—C11—N2 | 123.8 (3) |
O3—C2—H2 | 108.0 | C12—C11—H11 | 118.1 |
C1—C2—H2 | 108.0 | N2—C11—H11 | 118.1 |
C3—C2—H2 | 108.0 | C11—C12—H12A | 120.0 |
O4—C3—C4 | 108.1 (3) | C11—C12—H12B | 120.0 |
O4—C3—C2 | 110.0 (3) | H12A—C12—H12B | 120.0 |
C4—C3—C2 | 109.4 (3) | C15—N3—C14 | 121.8 (4) |
O4—C3—H3 | 109.8 | C15—N3—C13 | 121.5 (4) |
C4—C3—H3 | 109.8 | C14—N3—C13 | 116.7 (4) |
C2—C3—H3 | 109.8 | N3—C13—H13A | 109.5 |
O5—C4—C3 | 109.9 (3) | N3—C13—H13B | 109.5 |
O5—C4—C5 | 108.6 (3) | H13A—C13—H13B | 109.5 |
C3—C4—C5 | 108.9 (3) | N3—C13—H13C | 109.5 |
O5—C4—H4 | 109.8 | H13A—C13—H13C | 109.5 |
C3—C4—H4 | 109.8 | H13B—C13—H13C | 109.5 |
C5—C4—H4 | 109.8 | N3—C14—H14A | 109.5 |
O1—C5—C6 | 105.7 (3) | N3—C14—H14B | 109.5 |
O1—C5—C4 | 110.4 (3) | H14A—C14—H14B | 109.5 |
C6—C5—C4 | 112.8 (3) | N3—C14—H14C | 109.5 |
O1—C5—H5 | 109.3 | H14A—C14—H14C | 109.5 |
C6—C5—H5 | 109.3 | H14B—C14—H14C | 109.5 |
C4—C5—H5 | 109.3 | O7—C15—N3 | 125.3 (5) |
N1—C6—C5 | 110.4 (3) | O7—C15—H15 | 117.4 |
N1—C6—H6A | 109.6 | N3—C15—H15 | 117.4 |
C7—O2—C1—O1 | 65.7 (4) | O5—C4—C5—C6 | 64.9 (3) |
C7—O2—C1—C2 | −173.1 (3) | C3—C4—C5—C6 | −175.4 (3) |
C5—O1—C1—O2 | 61.2 (4) | C8—N1—C6—C5 | 117.5 (3) |
C5—O1—C1—C2 | −59.7 (3) | C9—N1—C6—C5 | −56.3 (4) |
O2—C1—C2—O3 | 57.7 (3) | O1—C5—C6—N1 | 74.9 (3) |
O1—C1—C2—O3 | −179.2 (3) | C4—C5—C6—N1 | −164.3 (3) |
O2—C1—C2—C3 | −66.8 (3) | C9—N1—C8—N2 | −0.8 (4) |
O1—C1—C2—C3 | 56.3 (3) | C6—N1—C8—N2 | −175.6 (3) |
O3—C2—C3—O4 | 63.2 (4) | C10—N2—C8—N1 | 0.9 (4) |
C1—C2—C3—O4 | −174.2 (3) | C11—N2—C8—N1 | 176.6 (4) |
O3—C2—C3—C4 | −178.2 (3) | C8—N1—C9—C10 | 0.5 (4) |
C1—C2—C3—C4 | −55.6 (3) | C6—N1—C9—C10 | 175.1 (3) |
O4—C3—C4—O5 | −66.2 (3) | N1—C9—C10—N2 | 0.1 (4) |
C2—C3—C4—O5 | 174.1 (3) | C8—N2—C10—C9 | −0.6 (4) |
O4—C3—C4—C5 | 175.0 (3) | C11—N2—C10—C9 | −176.5 (4) |
C2—C3—C4—C5 | 55.3 (3) | C8—N2—C11—C12 | −6.4 (8) |
C1—O1—C5—C6 | −176.5 (3) | C10—N2—C11—C12 | 168.6 (5) |
C1—O1—C5—C4 | 61.2 (3) | C14—N3—C15—O7 | −178.8 (4) |
O5—C4—C5—O1 | −177.0 (3) | C13—N3—C15—O7 | −0.4 (7) |
C3—C4—C5—O1 | −57.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O7 | 0.72 (4) | 2.09 (4) | 2.797 (4) | 167 (5) |
O4—H4A···I1i | 0.78 (5) | 2.71 (5) | 3.482 (3) | 171 (4) |
O5—H5A···I1 | 0.74 (5) | 2.75 (5) | 3.474 (3) | 165 (4) |
C6—H6A···O5ii | 0.99 | 2.46 | 3.332 (4) | 147 |
C8—H8···O4ii | 0.95 | 2.44 | 3.252 (4) | 143 |
C8—H8···O5ii | 0.95 | 2.53 | 3.285 (4) | 136 |
C9—H9···O3iii | 0.95 | 2.51 | 3.404 (5) | 156 |
C10—H10···O7iii | 0.95 | 2.40 | 3.159 (5) | 137 |
C11—H11···I1iv | 0.95 | 3.02 | 3.925 (3) | 161 |
C15—H15···O4 | 0.95 | 2.58 | 3.297 (5) | 132 |
Symmetry codes: (i) x, y−1, z; (ii) −x, y+1/2, −z+1; (iii) −x+1, y+1/2, −z+1; (iv) x, y, z−1. |
Funding information
We acknowledge financial support by the Deutsche Forschungsgemeinschaft and the University of Rostock within the funding programme Open Access Publishing.
References
Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jopp, S. (2020). Eur. J. Org. Chem. pp. 6418–6428. Web of Science CrossRef Google Scholar
Schnegas, J. & Jopp, S. (2021). Compounds, 1, 154–163. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skaanderup, P. R., Poulsen, C. S., Hyldtoft, L., Jørgensen, M. R. & Madsen, R. (2002). Synthesis, pp. 1721–1727. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.