metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[μ3-2-(pyridin-3-yl)acetato-κ3O:O:O′]bis­­[μ2-2-(pyridin-3-yl)acetato-κ2O:O′]bis­­[chlorido­(1,10-phenanthroline-κ2N,N′)dysprosium(III)]

crossmark logo

aCollege of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, People's Republic of China
*Correspondence e-mail: 2127372481@qq.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 28 December 2021; accepted 28 February 2022; online 31 March 2022)

The title DyIII complex, [Dy2(C7H6NO2)4Cl2(C12H8N2)2] or [Dy2(μ3-PAA)4(Cl)2(phen)2] (PAA = 3-pyridyl­acetate, phen = 1,10-phenanthroline), obtained by reaction of Dy(ClO4)3, 3-pyridyl­acetic acid ligands and 1,10-phenanthroline, exhibits a dinuclear structure. Adjacent binuclear dimers are further connected via face-to-face ππ stacking inter­actions resulting in supra­molecular chains along the c-axis direction.

Keywords: crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coordination complexes composed of metal cations and organic ligands have received much attention because of their diverse structures and intriguing properties such as photoluminescence, magnetism, proton conduction and so on. Lanthanide ions are considered to be excellent metal ions for the construction of such systems because of their unique 4f electrons and can show remarkable photoluminescent, magnetic and catalytic properties. Among numerous ligands, pyridine­carboxyl­ate ligands bearing O and N coordination atoms have attracted considerable inter­est and have proved to be a class of excellent bridging linkers in fabricating metal coordination complexes with appealing structures. The 3-pyridyl­acetate ligand (3-PAA), one of the most simple pyridine­carboxyl­ate ligands, has attracted particular inter­est owing to its strong coordination and varied coordination modes, resulting in diverse structures with excellent properties. So far, coordination complexes constructed by the 3-PAA ligand have focused on transition-metal cations, but lanthanide complexes based on the 3-PAA ligand are still rare. Thus, in this work, we prepared the title compound [Dy2(μ2-PAA)4(Cl)2(phen)2] (1) (3-PAA = 3-pyridyl­acetate, phen = 1,10-phenanthroline), which displays a dinuclear structure.

The asymmetric unit of 1 (Fig. 1[link]) consists of one crystallographically independent DyIII ion, one Cl anion, two PAA ligands and one phen mol­ecule. The DyIII cation is eight-coordinated by five carboxyl­ate oxygen atoms from four different PAA ligands, one Cl ion, and two nitro­gen atoms from one chelating phen mol­ecule. The Dy—O bond lengths range from 2.3069 (17) to 2.5170 (15) Å, and the Dy—N bond distances are 2.5386 (18) and 2.5516 (17)Å, which are similar to those in the complex [Zn(μ-L)(μ-dicl)Dy(NO3)2]·H2O {L = N,N′-dimethyl-N,N′-bis­(2-hy­droxy-3-formyl-5-bromo­benzyl, dicl = deprotonated diclofenac = 2-[(2,6-di­chloro­phen­yl)amino] benzene acetate; Echenique-Errandonea et al., 2019[Echenique-Errandonea, E., Zabala-Lekuona, A., Cepeda, J., Rodríguez-Diéguez, A., Seco, J. M., Oyarzabal, I. & Colacio, E. (2019). Dalton Trans. 48, 190-201.]}. The two PAA ligands exhibit two different coordination modes. One acts as a tridentate ligand with a μ2-η1:η2 mode, while the other serves as a bidentate ligand with a μ2-κO3:κO4 mode. It is worth emphasizing that the N atom of the PAA ligand is noncoordinating in 1. As shown in Fig. 2[link], two neighboring DyIII ions are linked by four bridging carboxyl groups of four PAA ligands, forming the binuclear structure of 1, in which the nearest Dy⋯Dy separation is 3.8976 (19) Å. These adjacent binuclear dimers are further connected via face-to-face ππ stacking inter­actions involving the phenyl and pyridine rings of the phen ligands, the centroid-to-centroid distance being 3.6116 (10) Å, leading to the formation of supra­molecular chains along the c-axis direction (Fig. 3[link]). For background information on the lanthanide ions and the 3-pyridyl­acetic acid ligand, see: Chakraborty et al. (2021[Chakraborty, G., Park, I.-H., Medishetty, R. & Vittal, J. J. (2021). Chem. Rev. 121, 3751-3891.]); Xin et al. (2019[Xin, Y., Wang, J. H., Zychowicz, M., Zakrzewski, J. J., Nakabayashi, K., Sieklucka, B., Chorazy, S. & Ohkoshi, S. (2019). J. Am. Chem. Soc. 141, 18211-18220.]); Ma et al. (2020[Ma, Y. J., Hu, J. X., Han, S. D., Pan, J., Li, J. H. & Wang, G. M. (2020). J. Am. Chem. Soc. 142, 2682-2689.]); Wang et al. (2011[Wang, L., Yin, X. H., Hao, H. J., Lin, W., Tan, X. H. & Lin, C. W. (2011). Z. Kristallogr. New. Cryst. Struct. pp. 219-220.]); Teo et al. (2009[Teo, P., Koh, L. L. & Hor, T. S. A. (2009). Dalton Trans. pp. 5637-5646.]); Adams et al. (2006[Adams, C. J., Crawford, P. C., Guy Orpen, A. & Podesta, T. J. (2006). Dalton Trans. pp. 4078-4092.]).

[Figure 1]
Figure 1
The asymmetric unit of 1 with 40% probability displacement ellipsoids. H atoms are omitted for clarity. Symmetry code: (A) 1 − x, 1 − y, 2 − z.
[Figure 2]
Figure 2
The dinuclear structure of 1. H atoms are omitted for clarity. Symmetry code: (A) 1 − x, 1 − y, 2 − z.
[Figure 3]
Figure 3
The supra­molecular chain along the c-axis direction formed by face-to-face ππ stacking inter­actions.

Synthesis and crystallization

Dy(ClO4)3 (0.2 mmol), 3-pyridyl­acetic acid (3-PAA, 0.25 mmol), 1,10-phenanthroline (0.25 mmol), HCl (0.25mmol) and Et3N were dissolved in 5 mL of aceto­nitrile and then sealed into a 25 mL Teflon-lined stainless steel vessel. The vessel was kept at 433 K for 3 d under autogenous pressure and then cooled to room temperature at a rate of 5.63 K h−1. Colorless block-shaped crystals were obtained by filtration of the resulting solution. Yield based on Dy: 38%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The instruction "delu 0.002 0.001 C11 C12" was used during the refinement to limit the displace­ment parameters of the specified atoms.

Table 1
Experimental details

Crystal data
Chemical formula [Dy2(C7H6NO2)4Cl2(C12H8N2)2]
Mr 1300.82
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.8922 (1), 21.5425 (3), 12.9887 (1)
β (°) 101.755 (1)
V3) 2435.94 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.22
Crystal size (mm) 0.22 × 0.20 × 0.19
 
Data collection
Diffractometer Bruker SAINT CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.626, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16420, 4487, 3954
Rint 0.024
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.01
No. of reflections 4487
No. of parameters 325
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.34
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

\ Bis[µ3-2-(pyridin-3-yl)acetato-κ3O:O:O']\ bis[µ-2-(pyridin-3-yl)acetato-κ2O:O']bis[chlorido(1,10-\ phenanthroline-κ2N,N')dysprosium(III)], top
Crystal data top
[Dy2(C7H6NO2)4Cl2(C12H8N2)2]F(000) = 1276
Mr = 1300.82Dx = 1.773 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.8922 (1) ÅCell parameters from 7687 reflections
b = 21.5425 (3) Åθ = 2.5–27.3°
c = 12.9887 (1) ŵ = 3.22 mm1
β = 101.755 (1)°T = 296 K
V = 2435.94 (5) Å3Block, yellow
Z = 20.22 × 0.20 × 0.19 mm
Data collection top
Bruker SAINT CCD area detector
diffractometer
4487 independent reflections
Radiation source: fine-focus sealed tube3954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.626, Tmax = 0.746k = 2623
16420 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.035P)2]
where P = (Fo2 + 2Fc2)/3
4487 reflections(Δ/σ)max = 0.002
325 parametersΔρmax = 0.59 e Å3
1 restraintΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms were placed in calculated positions with C—H = 0.93 Å in phenyl and pyridine rings while C–H = 0.97 Å in CH2 groups and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.387207 (12)0.510416 (5)0.855827 (7)0.03127 (3)
Cl10.13833 (7)0.58009 (3)0.81071 (5)0.05938 (19)
O30.57734 (18)0.58550 (8)0.90135 (12)0.0487 (5)
N30.4153 (2)0.55350 (10)0.67882 (13)0.0420 (5)
O10.57990 (18)0.44419 (8)0.80320 (11)0.0472 (4)
N40.2364 (2)0.45183 (9)0.69718 (13)0.0383 (5)
C70.6642 (3)0.43988 (11)0.89307 (17)0.0365 (6)
C140.6799 (3)0.60069 (12)0.97945 (18)0.0455 (6)
C180.3415 (3)0.54877 (14)0.48832 (18)0.0544 (7)
C260.3341 (3)0.52662 (12)0.58975 (17)0.0416 (6)
C250.2402 (3)0.47369 (12)0.59934 (17)0.0420 (6)
C210.1571 (3)0.44537 (15)0.50734 (18)0.0545 (8)
C60.8200 (3)0.41057 (12)0.90869 (18)0.0441 (6)
H6A0.87550.42800.85850.053*
H6B0.87700.42020.97880.053*
C240.1525 (3)0.40185 (12)0.7037 (2)0.0498 (7)
H24A0.14800.38710.77020.060*
C50.8108 (3)0.34153 (13)0.8952 (2)0.0476 (7)
C190.2538 (4)0.51931 (16)0.3983 (2)0.0687 (10)
H19A0.25830.53440.33190.082*
C220.0729 (3)0.39253 (16)0.5185 (2)0.0696 (9)
H22A0.01810.37240.45920.084*
C120.7310 (3)0.69858 (12)0.8813 (2)0.0494 (7)
C80.7993 (3)0.70351 (14)0.7954 (2)0.0662 (9)
H8A0.88290.67810.79290.079*
C110.6079 (3)0.73727 (15)0.8813 (2)0.0690 (9)
H11A0.55740.73590.93740.083*
C230.0701 (3)0.36993 (15)0.6167 (2)0.0657 (9)
H23A0.01490.33430.62520.079*
N20.7518 (3)0.74312 (14)0.7148 (2)0.0894 (9)
C170.4394 (4)0.59840 (15)0.4816 (2)0.0658 (8)
H17A0.44930.61330.41610.079*
C130.7883 (3)0.65317 (14)0.9671 (2)0.0682 (9)
H13A0.81290.67571.03310.082*
H13B0.88310.63520.95470.082*
O20.61601 (17)0.46036 (8)0.97223 (11)0.0421 (4)
O40.70410 (19)0.57482 (8)1.06850 (12)0.0509 (5)
C150.5041 (3)0.60095 (13)0.6677 (2)0.0565 (8)
H15A0.55970.61970.72810.068*
C200.1653 (4)0.47066 (18)0.4064 (2)0.0720 (10)
H20A0.10780.45270.34580.086*
C160.5196 (4)0.62483 (14)0.5697 (2)0.0690 (9)
H16A0.58420.65830.56590.083*
C10.7804 (4)0.30426 (16)0.9734 (3)0.0882 (12)
H1A0.76790.32351.03520.106*
C100.5589 (4)0.77733 (16)0.8009 (3)0.0875 (12)
H10A0.47590.80350.80110.105*
C40.8326 (4)0.31262 (18)0.8051 (3)0.0958 (12)
H4A0.85260.33560.74870.115*
N10.7671 (5)0.24248 (16)0.9688 (3)0.1415 (16)
C30.8239 (5)0.2480 (2)0.8001 (4)0.1398 (18)
H3A0.84160.22670.74130.168*
C90.6330 (5)0.77806 (17)0.7218 (3)0.0939 (13)
H9A0.59800.80550.66680.113*
C20.7889 (5)0.2167 (2)0.8833 (5)0.140 (2)
H2A0.78000.17380.87810.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.03380 (6)0.03284 (7)0.02427 (6)0.00167 (4)0.00091 (4)0.00130 (4)
Cl10.0556 (4)0.0664 (4)0.0473 (3)0.0255 (3)0.0104 (3)0.0088 (3)
O30.0544 (10)0.0502 (11)0.0343 (8)0.0156 (8)0.0077 (7)0.0103 (8)
N30.0500 (11)0.0439 (12)0.0303 (9)0.0042 (10)0.0043 (8)0.0054 (8)
O10.0509 (9)0.0605 (11)0.0286 (8)0.0160 (9)0.0047 (7)0.0012 (7)
N40.0372 (10)0.0439 (12)0.0312 (9)0.0055 (9)0.0009 (8)0.0030 (8)
C70.0383 (12)0.0338 (13)0.0362 (12)0.0016 (10)0.0051 (10)0.0017 (10)
C140.0493 (14)0.0429 (15)0.0403 (13)0.0087 (12)0.0003 (11)0.0052 (11)
C180.0604 (16)0.0681 (19)0.0349 (13)0.0217 (14)0.0098 (11)0.0097 (12)
C260.0482 (14)0.0459 (15)0.0290 (11)0.0127 (12)0.0041 (10)0.0035 (10)
C250.0397 (13)0.0538 (15)0.0303 (12)0.0140 (12)0.0020 (10)0.0057 (11)
C210.0440 (14)0.080 (2)0.0353 (13)0.0073 (14)0.0017 (11)0.0138 (13)
C60.0365 (12)0.0509 (16)0.0445 (13)0.0049 (11)0.0071 (10)0.0035 (11)
C240.0494 (14)0.0535 (17)0.0448 (14)0.0060 (13)0.0053 (11)0.0079 (12)
C50.0319 (12)0.0499 (16)0.0566 (15)0.0096 (11)0.0013 (11)0.0084 (12)
C190.078 (2)0.095 (3)0.0318 (14)0.0236 (18)0.0077 (14)0.0053 (14)
C220.0583 (17)0.097 (2)0.0471 (15)0.0097 (18)0.0034 (13)0.0313 (16)
C120.0444 (13)0.0429 (15)0.0568 (15)0.0134 (10)0.0005 (12)0.0090 (12)
C80.0567 (17)0.0577 (19)0.086 (2)0.0059 (15)0.0176 (16)0.0155 (16)
C110.0628 (16)0.067 (2)0.078 (2)0.0037 (13)0.0156 (16)0.0113 (17)
C230.0564 (16)0.072 (2)0.0648 (17)0.0175 (15)0.0045 (14)0.0239 (15)
N20.101 (2)0.090 (2)0.0763 (17)0.0263 (18)0.0171 (16)0.0270 (16)
C170.0842 (19)0.076 (2)0.0398 (14)0.0175 (18)0.0187 (13)0.0244 (14)
C130.0551 (16)0.072 (2)0.0658 (18)0.0288 (15)0.0150 (14)0.0267 (15)
O20.0440 (9)0.0520 (10)0.0284 (8)0.0135 (8)0.0028 (7)0.0033 (7)
O40.0602 (11)0.0502 (11)0.0347 (8)0.0181 (9)0.0083 (8)0.0070 (8)
C150.0703 (18)0.0530 (17)0.0455 (14)0.0066 (15)0.0101 (13)0.0103 (12)
C200.072 (2)0.111 (3)0.0272 (13)0.016 (2)0.0040 (13)0.0135 (16)
C160.094 (2)0.0609 (19)0.0574 (17)0.0034 (17)0.0266 (15)0.0194 (14)
C10.128 (3)0.057 (2)0.065 (2)0.012 (2)0.016 (2)0.0032 (17)
C100.069 (2)0.051 (2)0.129 (3)0.0161 (17)0.011 (2)0.004 (2)
C40.077 (2)0.103 (3)0.116 (3)0.003 (2)0.041 (2)0.048 (2)
N10.183 (3)0.057 (2)0.146 (3)0.026 (2)0.057 (3)0.026 (2)
C30.079 (2)0.124 (3)0.222 (4)0.001 (3)0.044 (3)0.118 (3)
C90.103 (3)0.060 (2)0.100 (3)0.015 (2)0.025 (2)0.026 (2)
C20.082 (3)0.062 (3)0.240 (6)0.028 (2)0.052 (3)0.042 (3)
Geometric parameters (Å, º) top
Dy1—O4i2.3069 (17)C19—C201.327 (5)
Dy1—O32.3275 (16)C19—H19A0.9300
Dy1—O2i2.3261 (14)C22—C231.371 (4)
Dy1—O12.4323 (16)C22—H22A0.9300
Dy1—O22.5170 (15)C12—C111.376 (4)
Dy1—N32.5386 (18)C12—C81.378 (4)
Dy1—N42.5516 (17)C12—C131.493 (4)
Dy1—Cl12.6392 (6)C8—N21.350 (4)
Dy1—C72.850 (2)C8—H8A0.9300
Dy1—Dy1i3.8976 (2)C11—C101.356 (4)
O3—C141.261 (3)C11—H11A0.9300
N3—C151.317 (3)C23—H23A0.9300
N3—C261.362 (3)N2—C91.315 (5)
O1—C71.256 (2)C17—C161.346 (4)
N4—C241.323 (3)C17—H17A0.9300
N4—C251.362 (3)C13—H13A0.9700
C7—O21.271 (3)C13—H13B0.9700
C7—C61.498 (3)O2—Dy1i2.3261 (14)
C14—O41.262 (3)O4—Dy1i2.3069 (17)
C14—C131.515 (4)C15—C161.405 (4)
C18—C191.417 (4)C15—H15A0.9300
C18—C261.415 (3)C20—H20A0.9300
C18—C171.393 (4)C16—H16A0.9300
C26—C251.434 (4)C1—N11.336 (5)
C25—C211.409 (3)C1—H1A0.9300
C21—C221.386 (4)C10—C91.329 (5)
C21—C201.435 (4)C10—H10A0.9300
C6—C51.498 (4)C4—C31.395 (6)
C6—H6A0.9700C4—H4A0.9300
C6—H6B0.9700N1—C21.291 (7)
C24—C231.396 (4)C3—C21.362 (7)
C24—H24A0.9300C3—H3A0.9300
C5—C11.364 (4)C9—H9A0.9300
C5—C41.374 (4)C2—H2A0.9300
O4i—Dy1—O3138.19 (5)C25—C21—C20119.7 (3)
O4i—Dy1—O2i74.46 (6)C5—C6—C7112.05 (19)
O3—Dy1—O2i73.64 (6)C5—C6—H6A109.2
O4i—Dy1—O188.97 (6)C7—C6—H6A109.2
O3—Dy1—O187.84 (6)C5—C6—H6B109.2
O2i—Dy1—O1125.15 (5)C7—C6—H6B109.2
O4i—Dy1—O273.42 (6)H6A—C6—H6B107.9
O3—Dy1—O271.86 (6)N4—C24—C23124.0 (3)
O2i—Dy1—O272.89 (6)N4—C24—H24A118.0
O1—Dy1—O252.27 (5)C23—C24—H24A118.0
O4i—Dy1—N3141.73 (6)C1—C5—C4116.8 (3)
O3—Dy1—N377.03 (6)C1—C5—C6120.8 (3)
O2i—Dy1—N3142.50 (7)C4—C5—C6122.4 (3)
O1—Dy1—N375.81 (6)C20—C19—C18121.6 (3)
O2—Dy1—N3118.94 (6)C20—C19—H19A119.2
O4i—Dy1—N477.16 (6)C18—C19—H19A119.2
O3—Dy1—N4141.62 (6)C21—C22—C23120.1 (3)
O2i—Dy1—N4143.32 (6)C21—C22—H22A120.0
O1—Dy1—N476.54 (5)C23—C22—H22A120.0
O2—Dy1—N4120.04 (6)C11—C12—C8115.8 (3)
N3—Dy1—N465.29 (6)C11—C12—C13123.2 (3)
O4i—Dy1—Cl1101.26 (5)C8—C12—C13121.0 (3)
O3—Dy1—Cl1101.19 (5)N2—C8—C12123.8 (3)
O2i—Dy1—Cl183.42 (4)N2—C8—H8A118.1
O1—Dy1—Cl1151.41 (4)C12—C8—H8A118.1
O2—Dy1—Cl1156.30 (4)C12—C11—C10121.0 (3)
N3—Dy1—Cl179.86 (5)C12—C11—H11A119.5
N4—Dy1—Cl179.81 (4)C10—C11—H11A119.5
O4i—Dy1—C782.55 (6)C24—C23—C22118.2 (3)
O3—Dy1—C776.68 (6)C24—C23—H23A120.9
O2i—Dy1—C799.24 (6)C22—C23—H23A120.9
O1—Dy1—C725.99 (5)C9—N2—C8115.9 (3)
O2—Dy1—C726.47 (5)C16—C17—C18120.1 (3)
N3—Dy1—C796.17 (6)C16—C17—H17A120.0
N4—Dy1—C799.62 (6)C18—C17—H17A120.0
Cl1—Dy1—C7175.87 (5)C12—C13—C14116.1 (2)
O4i—Dy1—Dy1i69.87 (4)C12—C13—H13A108.3
O3—Dy1—Dy1i68.34 (4)C14—C13—H13A108.3
O2i—Dy1—Dy1i38.11 (4)C12—C13—H13B108.3
O1—Dy1—Dy1i87.04 (3)C14—C13—H13B108.3
O2—Dy1—Dy1i34.78 (3)H13A—C13—H13B107.4
N3—Dy1—Dy1i141.81 (4)C7—O2—Dy1i160.55 (14)
N4—Dy1—Dy1i143.32 (4)C7—O2—Dy191.55 (12)
Cl1—Dy1—Dy1i121.533 (15)Dy1i—O2—Dy1107.11 (6)
C7—Dy1—Dy1i61.17 (4)C14—O4—Dy1i137.13 (15)
C14—O3—Dy1138.89 (15)N3—C15—C16123.7 (3)
C15—N3—C26117.5 (2)N3—C15—H15A118.1
C15—N3—Dy1123.72 (16)C16—C15—H15A118.1
C26—N3—Dy1118.73 (16)C19—C20—C21120.9 (3)
C7—O1—Dy195.93 (14)C19—C20—H20A119.6
C24—N4—C25117.5 (2)C21—C20—H20A119.6
C24—N4—Dy1124.18 (15)C17—C16—C15118.9 (3)
C25—N4—Dy1118.28 (15)C17—C16—H16A120.6
O1—C7—O2119.4 (2)C15—C16—H16A120.6
O1—C7—C6121.2 (2)N1—C1—C5125.6 (4)
O2—C7—C6119.44 (19)N1—C1—H1A117.2
O1—C7—Dy158.08 (12)C5—C1—H1A117.2
O2—C7—Dy161.98 (11)C9—C10—C11118.1 (3)
C6—C7—Dy1172.26 (17)C9—C10—H10A120.9
O4—C14—O3125.6 (2)C11—C10—H10A120.9
O4—C14—C13115.7 (2)C5—C4—C3118.4 (4)
O3—C14—C13118.7 (2)C5—C4—H4A120.8
C19—C18—C26119.7 (3)C3—C4—H4A120.8
C19—C18—C17122.6 (3)C2—N1—C1116.0 (4)
C26—C18—C17117.7 (2)C2—C3—C4118.4 (4)
N3—C26—C18122.0 (2)C2—C3—H3A120.8
N3—C26—C25118.8 (2)C4—C3—H3A120.8
C18—C26—C25119.2 (2)N2—C9—C10125.3 (3)
N4—C25—C21122.2 (2)N2—C9—H9A117.4
N4—C25—C26118.8 (2)C10—C9—H9A117.4
C21—C25—C26119.0 (2)N1—C2—C3124.7 (4)
C22—C21—C25117.9 (2)N1—C2—H2A117.6
C22—C21—C20122.4 (3)C3—C2—H2A117.6
Symmetry code: (i) x+1, y+1, z+2.
 

Funding information

We acknowledge financial support from the NSF of Jiangxi Provincial Education Department (No. GJJ190756).

References

First citationAdams, C. J., Crawford, P. C., Guy Orpen, A. & Podesta, T. J. (2006). Dalton Trans. pp. 4078–4092.  CrossRef Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, G., Park, I.-H., Medishetty, R. & Vittal, J. J. (2021). Chem. Rev. 121, 3751–3891.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEchenique-Errandonea, E., Zabala-Lekuona, A., Cepeda, J., Rodríguez-Diéguez, A., Seco, J. M., Oyarzabal, I. & Colacio, E. (2019). Dalton Trans. 48, 190–201.  CAS Google Scholar
First citationMa, Y. J., Hu, J. X., Han, S. D., Pan, J., Li, J. H. & Wang, G. M. (2020). J. Am. Chem. Soc. 142, 2682–2689.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeo, P., Koh, L. L. & Hor, T. S. A. (2009). Dalton Trans. pp. 5637–5646.  CrossRef Google Scholar
First citationWang, L., Yin, X. H., Hao, H. J., Lin, W., Tan, X. H. & Lin, C. W. (2011). Z. Kristallogr. New. Cryst. Struct. pp. 219–220.  Google Scholar
First citationXin, Y., Wang, J. H., Zychowicz, M., Zakrzewski, J. J., Nakabayashi, K., Sieklucka, B., Chorazy, S. & Ohkoshi, S. (2019). J. Am. Chem. Soc. 141, 18211–18220.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds