metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

{N′-[(E)-1-(5-Chloro-2-oxidophen­yl)ethyl­­idene]-4-meth­­oxy­benzohydrazidato-κ3O,N′,O′}(1H-imidazole-κN3)nickel(II)

crossmark logo

aDepartment of Chemistry and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: tsucjg@163.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 13 March 2022; accepted 16 March 2022; online 22 March 2022)

In the title complex, [Ni(C16H13ClN2O3)(C3H4N2)], the NiII ion is coordinated by two O atoms and one N atom derived from the dianionic N′-[(1E)-1-(5-chloro-2-hy­droxy­phen­yl)ethyl­idene]-4-meth­oxy­benzohydrazide ligand and one N atom from the imidazole mol­ecule. The N2O2 donor set defines an approximate square-planar geometry. The dihedral angles between the imidazole ring and the fused six-membered and meth­oxy­benzene rings are 17.78 (14) and 13.23 (16)°, respectively; the dihedral angle between the C6 rings is 6.63 (12)°. The most prominent feature of the mol­ecular packing is the formation of 41-helical chains (along the c axis) mediated by imidazole-N—H⋯O(phenoxide) hydrogen bonding; these are linked by methyl-C—H⋯Cl inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Acyl­hydrazones, as a special kind of Schiff base, have been widely investigated because of their strong coordination ability (Singh et al., 1982[Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77-84.]; Salem, 1998[Salem, A. A. (1998). Microchem. J. 60, 51-66.]; Yu et al., 2010[Yu, G.-M., Zhao, L., Guo, Y.-N., Xu, G.-F., Zou, L.-F., Tang, J.-K. & Li, Y.-H. (2010). J. Mol. Struct. 982, 139-144.]) and flexible coordination modes involving the N and O donor atoms (Liu et al., 2005[Liu, M.-L., Dou, J.-M., Wang, D.-Q. & Li, D.-C. (2005). Acta Cryst. E61, m1366-m1367.]; Chang, 2011[Chang, J.-G. (2011). Acta Cryst. E67, m1886.]; Zheng et al., 2011[Zheng, C.-Z., Wang, L. & Liu, J. (2011). Acta Cryst. E67, m978.]). As has been widely reported in the literature, acyl­hydrazone complexes display various biological activities such as anti-microbial (Yang et al., 2020[Yang, J., Liu, X.-R., Yu, M.-K., Yang, W.-B., Yang, Z. & Zhao, S.-S. (2020). Polyhedron, 187, 114619.]), anti-tubercular (Peng, 2011[Peng, S.-J. (2011). J. Chem. Crystallogr. 41, 280-285.]), anti-cancer (Morgan et al., 2003[Morgan, L. R., Thangaraj, K. & Leblanc, B. (2003). J. Med. Chem. 46, 4552-4563.]) and anti-oxidant (Chang et al., 2015[Chang, H.-Q., Jia, L., Xu, J., Wu, W.-N., Zhu, T.-F., Chen, R.-H., Ma, T.-L., Wang, Y. & Xu, Z.-Q. (2015). Transition Met. Chem. 40, 485-491.]). As an extension of work into the structural characterization of aroylhydrazone complexes, the title complex, [Ni(C16H13ClN2O3)(C3H4N2)], has been synthesized and its crystal structure determined.

The NiII ion in the title compound is coordinated by two O atoms and one N atom from the dianionic N′-[(1E)-1-(5-chloro-2-hy­droxy­phen­yl)ethyl­idene]-4-meth­oxy­benzo­hy­dra­zide ligand and one N atom from the imidazole mol­ecule. In this complex, the Ni atom is located in a slightly distorted square-planar environment (Fig. 1[link] and Table 1[link]). The Ni—O bond lengths are systematically shorter than the Ni—N bonds, and the maximum deviation from the ideal square-planar geometry in terms of angles is found for O1—Ni1—N2 = 82.18 (7)°. The two benzene rings, C1–C6 (A) and C10–C15 (B), and the imidazole ring (C) make dihedral angles of 6.63 (12)° (A/B), 17.78 (14)° (A/C) and 13.23 (16)° (B/C).

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.8995 (15) Ni1—N2 1.9344 (17)
Ni1—O2 1.8820 (15) Ni1—N3 1.9664 (18)
       
O1—Ni1—N2 82.18 (7) O2—Ni1—N2 94.33 (7)
O1—Ni1—N3 90.33 (7) O2—Ni1—N3 93.16 (7)
O2—Ni1—O1 173.63 (7) N2—Ni1—N3 172.50 (8)
[Figure 1]
Figure 1
The mol­ecular structure, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The mol­ecular packing is consolidated by imidazole-N—H⋯O(phenoxide) hydrogen bonding (Table 2[link]) along the c axis, which leads to a 41 helical chain. The chains are connected by C—H⋯Cl inter­actions (Table 2[link]) into a three-dimensional architecture; a view of the unit-cell contents is given in Fig. 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O2i 0.92 (4) 1.93 (4) 2.818 (3) 161 (3)
C8—H8A⋯Cl1ii 0.96 2.86 3.700 (3) 147
Symmetry codes: (i) [-y+{\script{5\over 4}}, x+{\script{1\over 4}}, -z+{\script{5\over 4}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view in projection down the c axis of the unit-cell contents.

Synthesis and crystallization

The Schiff base ligand, N′-[(1E)-1-(5-chloro-2-hy­droxyphen­yl)ethyl­idene]-4-meth­oxy­benzohydrazide (0.100 mmol, 0.0319 g), 1H-imidazole (0.100 mmol, 0.0068 g), Ni(NO3)2·6H2O (0.100 mmol, 0.0292 g), methanol (10 ml) and distilled water (5 ml) were mixed in a 50 ml flask. The mixture was stirred at room temperature for 1 h, the pH was adjusted with saturated sodium carbonate solution to about 8 followed by filtration. Red rectangular block-shaped crystals were obtained after about one month by evaporating the filtrate in air (yield 31%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C16H13ClN2O3)(C3H4N2)]
Mr 443.52
Crystal system, space group Tetragonal, I41/a
Temperature (K) 295
a, c (Å) 30.879 (4), 8.0750 (16)
V3) 7700 (3)
Z 16
Radiation type Mo Kα
μ (mm−1) 1.18
Crystal size (mm) 0.35 × 0.25 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.735, 0.860
No. of measured, independent and observed [I > 2σ(I)] reflections 23938, 4924, 3431
Rint 0.038
(sin θ/λ)max−1) 0.678
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.00
No. of reflections 4924
No. of parameters 259
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.79, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

{N'-[(E)-1-(5-Chloro-2-oxidophenyl)ethylidene]-4-methoxybenzohydrazidato-κ3O,N',O'}(1H-imidazole-κN3)nickel(II) top
Crystal data top
[Ni(C16H13ClN2O3)(C3H4N2)]Dx = 1.530 Mg m3
Mr = 443.52Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 5154 reflections
a = 30.879 (4) Åθ = 2.6–25.1°
c = 8.0750 (16) ŵ = 1.18 mm1
V = 7700 (3) Å3T = 295 K
Z = 16Block, brown
F(000) = 36480.35 × 0.25 × 0.16 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
3431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
phi and ω scansθmax = 28.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2840
Tmin = 0.735, Tmax = 0.860k = 4139
23938 measured reflectionsl = 1010
4924 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0616P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4924 reflectionsΔρmax = 0.79 e Å3
259 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.67356 (2)0.70309 (2)0.69948 (3)0.03734 (10)
Cl10.68036 (2)0.49257 (2)1.08616 (9)0.06233 (19)
O10.71130 (5)0.74129 (5)0.5847 (2)0.0506 (4)
O20.63727 (4)0.66083 (5)0.7940 (2)0.0468 (4)
O30.86943 (7)0.82096 (6)0.1939 (3)0.0818 (6)
N10.75900 (5)0.68423 (6)0.6093 (2)0.0444 (4)
N20.72374 (5)0.66565 (5)0.6917 (2)0.0407 (4)
N30.62734 (6)0.74687 (6)0.6931 (2)0.0469 (4)
N40.59505 (7)0.80650 (7)0.6168 (3)0.0573 (5)
H40.5865 (10)0.8318 (11)0.566 (4)0.100 (11)*
C10.69302 (6)0.60618 (6)0.8443 (3)0.0395 (5)
C20.70039 (8)0.56518 (7)0.9178 (3)0.0468 (5)
H20.7280180.5532550.9126140.056*
C30.66852 (8)0.54265 (7)0.9955 (3)0.0471 (5)
C40.62689 (8)0.55887 (7)1.0092 (3)0.0494 (5)
H4A0.6053350.5434961.0640970.059*
C50.61852 (7)0.59863 (7)0.9385 (3)0.0478 (5)
H50.5906700.6098750.9467800.057*
C60.64995 (7)0.62290 (7)0.8548 (3)0.0406 (5)
C70.72926 (7)0.62824 (7)0.7636 (3)0.0418 (5)
C80.77365 (8)0.60794 (9)0.7632 (4)0.0637 (7)
H8A0.7728580.5813620.7015720.095*
H8B0.7824300.6020620.8750210.095*
H8C0.7939450.6274510.7127720.095*
C90.74864 (7)0.72329 (7)0.5599 (3)0.0430 (5)
C100.78074 (7)0.74904 (7)0.4658 (3)0.0436 (5)
C110.82214 (7)0.73375 (8)0.4304 (3)0.0512 (6)
H110.8306610.7066680.4688300.061*
C120.85065 (8)0.75850 (8)0.3386 (3)0.0585 (6)
H120.8780250.7477190.3139700.070*
C130.83883 (8)0.79913 (8)0.2832 (3)0.0544 (6)
C140.79796 (8)0.81495 (8)0.3173 (3)0.0531 (6)
H140.7896330.8421070.2790770.064*
C150.76968 (7)0.79008 (7)0.4085 (3)0.0487 (5)
H150.7423500.8010470.4326550.058*
C160.85944 (10)0.86421 (8)0.1450 (4)0.0709 (8)
H16A0.8362040.8638110.0660260.106*
H16B0.8845380.8772670.0956710.106*
H16C0.8508600.8806690.2403610.106*
C170.58978 (7)0.75137 (7)0.7827 (3)0.0517 (6)
H170.5797040.7321340.8624860.062*
C180.56989 (8)0.78836 (8)0.7357 (4)0.0587 (6)
H180.5439650.7992720.7769020.070*
C190.62897 (8)0.78101 (7)0.5950 (3)0.0527 (6)
H190.6511710.7864500.5199680.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03354 (15)0.03200 (15)0.04649 (18)0.00236 (10)0.00014 (11)0.00031 (11)
Cl10.0762 (4)0.0409 (3)0.0699 (4)0.0076 (3)0.0036 (3)0.0093 (3)
O10.0434 (8)0.0419 (8)0.0666 (11)0.0041 (7)0.0079 (7)0.0037 (7)
O20.0370 (8)0.0403 (8)0.0633 (10)0.0022 (6)0.0021 (7)0.0089 (7)
O30.0736 (13)0.0594 (11)0.1126 (18)0.0087 (10)0.0426 (12)0.0024 (11)
N10.0367 (9)0.0453 (10)0.0512 (11)0.0002 (8)0.0009 (8)0.0029 (8)
N20.0367 (9)0.0404 (9)0.0451 (10)0.0002 (7)0.0013 (7)0.0040 (8)
N30.0440 (10)0.0410 (10)0.0557 (12)0.0050 (8)0.0017 (8)0.0010 (8)
N40.0515 (12)0.0400 (11)0.0804 (16)0.0071 (9)0.0033 (11)0.0071 (10)
C10.0424 (11)0.0376 (11)0.0387 (11)0.0045 (9)0.0046 (9)0.0029 (9)
C20.0489 (12)0.0433 (12)0.0484 (13)0.0082 (10)0.0056 (10)0.0024 (10)
C30.0566 (13)0.0373 (11)0.0473 (12)0.0045 (10)0.0057 (10)0.0007 (9)
C40.0540 (13)0.0441 (12)0.0502 (13)0.0020 (10)0.0010 (11)0.0026 (10)
C50.0412 (12)0.0456 (12)0.0565 (15)0.0023 (9)0.0021 (10)0.0009 (10)
C60.0405 (11)0.0393 (11)0.0420 (12)0.0018 (9)0.0058 (9)0.0013 (9)
C70.0400 (11)0.0418 (11)0.0435 (12)0.0069 (9)0.0056 (9)0.0027 (9)
C80.0442 (13)0.0688 (16)0.0781 (19)0.0146 (12)0.0061 (12)0.0174 (14)
C90.0408 (11)0.0439 (12)0.0445 (13)0.0017 (9)0.0017 (9)0.0078 (9)
C100.0429 (12)0.0463 (12)0.0417 (12)0.0041 (9)0.0024 (9)0.0076 (9)
C110.0454 (12)0.0461 (13)0.0620 (15)0.0011 (10)0.0004 (11)0.0066 (11)
C120.0408 (12)0.0607 (15)0.0741 (18)0.0006 (11)0.0106 (12)0.0041 (13)
C130.0504 (13)0.0525 (14)0.0602 (16)0.0101 (10)0.0098 (11)0.0101 (11)
C140.0566 (14)0.0463 (13)0.0566 (15)0.0028 (11)0.0043 (11)0.0021 (11)
C150.0422 (12)0.0495 (13)0.0545 (14)0.0021 (10)0.0060 (10)0.0012 (10)
C160.0801 (19)0.0578 (16)0.0749 (19)0.0166 (14)0.0204 (15)0.0005 (14)
C170.0507 (13)0.0438 (12)0.0604 (15)0.0005 (10)0.0077 (11)0.0029 (11)
C180.0496 (14)0.0459 (13)0.0805 (18)0.0100 (11)0.0115 (13)0.0003 (12)
C190.0485 (13)0.0432 (12)0.0665 (16)0.0074 (10)0.0089 (11)0.0090 (11)
Geometric parameters (Å, º) top
Ni1—O11.8995 (15)C5—H50.9300
Ni1—O21.8820 (15)C5—C61.400 (3)
Ni1—N21.9344 (17)C7—C81.507 (3)
Ni1—N31.9664 (18)C8—H8A0.9600
Cl1—C31.750 (2)C8—H8B0.9600
O1—C91.296 (2)C8—H8C0.9600
O2—C61.329 (2)C9—C101.481 (3)
O3—C131.367 (3)C10—C111.392 (3)
O3—C161.426 (3)C10—C151.392 (3)
N1—N21.399 (2)C11—H110.9300
N1—C91.310 (3)C11—C121.381 (3)
N2—C71.304 (3)C12—H120.9300
N3—C171.374 (3)C12—C131.381 (3)
N3—C191.320 (3)C13—C141.381 (3)
N4—H40.92 (4)C14—H140.9300
N4—C181.356 (3)C14—C151.376 (3)
N4—C191.322 (3)C15—H150.9300
C1—C21.417 (3)C16—H16A0.9600
C1—C61.429 (3)C16—H16B0.9600
C1—C71.463 (3)C16—H16C0.9600
C2—H20.9300C17—H170.9300
C2—C31.359 (3)C17—C181.351 (3)
C3—C41.384 (3)C18—H180.9300
C4—H4A0.9300C19—H190.9300
C4—C51.378 (3)
O1—Ni1—N282.18 (7)C7—C8—H8B109.5
O1—Ni1—N390.33 (7)C7—C8—H8C109.5
O2—Ni1—O1173.63 (7)H8A—C8—H8B109.5
O2—Ni1—N294.33 (7)H8A—C8—H8C109.5
O2—Ni1—N393.16 (7)H8B—C8—H8C109.5
N2—Ni1—N3172.50 (8)O1—C9—N1124.4 (2)
C9—O1—Ni1110.80 (13)O1—C9—C10116.41 (19)
C6—O2—Ni1125.85 (13)N1—C9—C10119.18 (19)
C13—O3—C16117.3 (2)C11—C10—C9122.5 (2)
C9—N1—N2109.43 (17)C15—C10—C9119.69 (19)
N1—N2—Ni1113.18 (12)C15—C10—C11117.8 (2)
C7—N2—Ni1128.30 (15)C10—C11—H11119.7
C7—N2—N1118.25 (17)C12—C11—C10120.5 (2)
C17—N3—Ni1131.96 (16)C12—C11—H11119.7
C19—N3—Ni1122.48 (16)C11—C12—H12119.7
C19—N3—C17105.51 (18)C13—C12—C11120.5 (2)
C18—N4—H4120 (2)C13—C12—H12119.7
C19—N4—H4132 (2)O3—C13—C12115.9 (2)
C19—N4—C18107.6 (2)O3—C13—C14124.3 (2)
C2—C1—C6116.57 (19)C14—C13—C12119.9 (2)
C2—C1—C7118.67 (18)C13—C14—H14120.4
C6—C1—C7124.76 (18)C15—C14—C13119.3 (2)
C1—C2—H2118.8C15—C14—H14120.4
C3—C2—C1122.3 (2)C10—C15—H15119.0
C3—C2—H2118.8C14—C15—C10122.0 (2)
C2—C3—Cl1119.64 (17)C14—C15—H15119.0
C2—C3—C4121.6 (2)O3—C16—H16A109.5
C4—C3—Cl1118.72 (18)O3—C16—H16B109.5
C3—C4—H4A121.2O3—C16—H16C109.5
C5—C4—C3117.6 (2)H16A—C16—H16B109.5
C5—C4—H4A121.2H16A—C16—H16C109.5
C4—C5—H5118.4H16B—C16—H16C109.5
C4—C5—C6123.1 (2)N3—C17—H17125.6
C6—C5—H5118.4C18—C17—N3108.8 (2)
O2—C6—C1124.79 (19)C18—C17—H17125.6
O2—C6—C5116.47 (18)N4—C18—H18126.6
C5—C6—C1118.72 (19)C17—C18—N4106.7 (2)
N2—C7—C1120.71 (18)C17—C18—H18126.6
N2—C7—C8119.1 (2)N3—C19—N4111.4 (2)
C1—C7—C8120.19 (19)N3—C19—H19124.3
C7—C8—H8A109.5N4—C19—H19124.3
Ni1—O1—C9—N10.8 (3)C2—C1—C7—C81.5 (3)
Ni1—O1—C9—C10177.82 (14)C2—C3—C4—C51.0 (3)
Ni1—O2—C6—C16.1 (3)C3—C4—C5—C60.0 (3)
Ni1—O2—C6—C5172.09 (15)C4—C5—C6—O2179.5 (2)
Ni1—N2—C7—C19.6 (3)C4—C5—C6—C11.2 (3)
Ni1—N2—C7—C8170.21 (18)C6—C1—C2—C30.4 (3)
Ni1—N3—C17—C18177.28 (18)C6—C1—C7—N21.1 (3)
Ni1—N3—C19—N4177.80 (17)C6—C1—C7—C8178.7 (2)
Cl1—C3—C4—C5179.21 (18)C7—C1—C2—C3179.8 (2)
O1—C9—C10—C11179.9 (2)C7—C1—C6—O20.7 (3)
O1—C9—C10—C150.5 (3)C7—C1—C6—C5178.9 (2)
O3—C13—C14—C15179.9 (2)C9—N1—N2—Ni10.9 (2)
N1—N2—C7—C1176.82 (18)C9—N1—N2—C7173.69 (19)
N1—N2—C7—C83.4 (3)C9—C10—C11—C12178.4 (2)
N1—C9—C10—C111.4 (3)C9—C10—C15—C14178.5 (2)
N1—C9—C10—C15178.2 (2)C10—C11—C12—C131.2 (4)
N2—Ni1—O1—C90.95 (14)C11—C10—C15—C141.1 (3)
N2—Ni1—O2—C610.33 (18)C11—C12—C13—O3179.8 (2)
N2—N1—C9—O10.0 (3)C11—C12—C13—C141.0 (4)
N2—N1—C9—C10178.63 (17)C12—C13—C14—C150.9 (4)
N3—Ni1—O1—C9179.41 (15)C13—C14—C15—C101.0 (4)
N3—Ni1—O2—C6170.01 (17)C15—C10—C11—C121.2 (3)
N3—C17—C18—N40.3 (3)C16—O3—C13—C12175.6 (3)
C1—C2—C3—Cl1178.99 (17)C16—O3—C13—C145.3 (4)
C1—C2—C3—C40.8 (4)C17—N3—C19—N40.1 (3)
C2—C1—C6—O2179.5 (2)C18—N4—C19—N30.3 (3)
C2—C1—C6—C51.3 (3)C19—N3—C17—C180.2 (3)
C2—C1—C7—N2178.7 (2)C19—N4—C18—C170.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O2i0.92 (4)1.93 (4)2.818 (3)161 (3)
C8—H8A···Cl1ii0.962.863.700 (3)147
Symmetry codes: (i) y+5/4, x+1/4, z+5/4; (ii) x+3/2, y+1, z1/2.
 

Funding information

The author would like to thank Taishan University for support of this work.

References

First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, H.-Q., Jia, L., Xu, J., Wu, W.-N., Zhu, T.-F., Chen, R.-H., Ma, T.-L., Wang, Y. & Xu, Z.-Q. (2015). Transition Met. Chem. 40, 485–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationChang, J.-G. (2011). Acta Cryst. E67, m1886.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, M.-L., Dou, J.-M., Wang, D.-Q. & Li, D.-C. (2005). Acta Cryst. E61, m1366–m1367.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorgan, L. R., Thangaraj, K. & Leblanc, B. (2003). J. Med. Chem. 46, 4552–4563.  CrossRef PubMed CAS Google Scholar
First citationPeng, S.-J. (2011). J. Chem. Crystallogr. 41, 280–285.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalem, A. A. (1998). Microchem. J. 60, 51–66.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84.  CrossRef PubMed CAS Web of Science Google Scholar
First citationYang, J., Liu, X.-R., Yu, M.-K., Yang, W.-B., Yang, Z. & Zhao, S.-S. (2020). Polyhedron, 187, 114619.  CSD CrossRef Google Scholar
First citationYu, G.-M., Zhao, L., Guo, Y.-N., Xu, G.-F., Zou, L.-F., Tang, J.-K. & Li, Y.-H. (2010). J. Mol. Struct. 982, 139–144.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, C.-Z., Wang, L. & Liu, J. (2011). Acta Cryst. E67, m978.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds