organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-5-(4-Methyl­benzyl­­idene)-1-phenyl-4,5,6,7-tetra­hydro-1H-indazol-4-one

crossmark logo

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Physics, University College of Engineering Nagercoil, Anna University, Nagercoil 629 004, Tamilnadu, India, cDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and dDepartment of Physics, Bhairahawa M. Campus, Tribhuvan University, Nepal
*Correspondence e-mail: shalikaa.bh@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 16 February 2022; accepted 14 March 2022; online 29 March 2022)

In the title compound, C21H18N2O, the non-aromatic six-membered ring adopts a distorted envelope conformation with one of the methyl­ene-C atoms being the flap atom. The dihedral angle between the phenyl and 4-tolyl rings is 75.3 (1)°. The 1,2-diazole ring forms dihedral angles of 41.9 (1) and 65.5 (1)° with the phenyl and 4-tolyl rings, respectively. In the crystal, stabilizing C—H⋯O, C—H⋯π and ππ inter­actions are evident. The calculated Hirshfeld surfaces highlight the prominent role of C—H⋯O inter­actions (8.6%), along with H⋯H (51.7%) and C⋯H/H⋯C (29.2%) surface contacts.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Heterocyclic compounds have been investigated for a long while in view of their pharmaceutical and biological importance. 1,2-Diazole derivatives are found to possess anti-bacterial, anti-viral, anti-inflammatory, anti-depressant and anti-cancer activities (Popat et al., 2003[Popat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). Indian J. Chem. Sect. B, 42, 1497-1501.]; Faisal et al., 2019[Faisal, M., Saeed, A., Hussain, S., Dar, P. & Larik, F. A. (2019). J. Chem. Sci. 131, article No. 70. https://doi.org/10.1007/s12039-019-1646-1]) because of their conformational freedom and exhibit inter­molecular inter­actions of biological relevance. Owing to its medicinal inter­est and in a continuation of previous work, the crystal and mol­ecular structures of another indazole derivative, namely, (E)-5-(4-methyl­benzyl­idene)-1-phenyl-4,5,6,7-tetra­hydro-1H-ind­azol-4-one, (I), is reported here.

The mol­ecule of (I) and the recently reported 4-chloro­benzyl­idene derivative (II) (Meenatchi et al., 2021[Meenatchi, C. S., Athimoolam, S., Suresh, J., Rubina, S. R., Kumar, R. R. & Bhandari, S. R. (2021). IUCrData, 6, x211195.]) are isomorphous. The shorter b-axis lengths differ slightly between the isomorphous crystal structures, i.e. 8.7177 (5) Å for (I) and 8.6604 (5) Å for (II). In (I), the non-aromatic six-membered ring adopts a distorted envelope conformation with the methyl­ene-C9 atom being the flap atom, Fig. 1[link]. The heterocyclic five-membered ring forms dihedral angles of 41.9 (1) and 65.5 (1)° with the pendent N-bound phenyl and 4-tolyl rings, respectively. A weak intra­molecular C6—H12⋯O1 inter­action (Table 1[link]) stabilizes the mol­ecular structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H12⋯O1 0.93 2.43 2.806 (2) 104
C12—H4⋯O1i 0.93 2.52 3.312 (2) 143
C17—H5⋯O1ii 0.93 2.60 3.5081 (19) 164
C18—H8⋯O1iii 0.93 2.46 3.325 (2) 155
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I), showing 50% probability displacement ellipsoids

The mol­ecular packing features C—H⋯O, C—H⋯π and ππ inter­actions (Fig. 2[link]). The C—H⋯O inter­molecular inter­actions, viz., C12—H4⋯O1i and C17—H5⋯O1ii, lead, respectively, to two centrosymmetric ring R22(16) and R22(10) motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) (Fig. 3[link]); see Table 1[link] for symmetry operations. These centrosymmetric dimers are connected through another C—H⋯O inter­action, namely, C18—H8⋯O1iii, leading to a chain C(8) motif along the c-axis direction of the unit cell (Fig. 4[link]).

[Figure 2]
Figure 2
The mol­ecular packing of (I), viewed down the b axis.
[Figure 3]
Figure 3
C—H⋯O inter­actions shown as dashed lines forming ring (a) R22(16) and (b) R22(10) motifs.
[Figure 4]
Figure 4
C—H⋯O inter­actions shown as dashed lines forming chain C(8) motif along b axis of the unit cell

As a qu­anti­tative approach to analyse the inter­molecular inter­actions, the Hirshfeld surfaces and two-dimensional (2-D) fingerprint plots were generated by employing the Crystal Explorer software (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]). The Hirshfeld surface is colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The different types of inter­molecular inter­actions can be identified by colour coding the distances from the surface to the nearest atom exterior (de) or inter­ior (di) plots to the surface. The 2-D fingerprint plots from the surface analysis and the dnorm surface were analysed for (I) to further explore the packing modes and inter­molecular inter­actions. The 3-D Hirshfeld surfaces and 2-D fingerprint plots with percentage contributions are shown in Fig. 5[link]. C⋯H/H⋯C contacts (with a pair of spikes in the fingerprint plot, 29.2%) and O⋯H/H⋯O inter­actions (sharp spikes, 8.6%) make a significant contribution to the overall contacts; the latter incorporate the notable C—H⋯O inter­actions. The H⋯H inter­actions contribute 51.7% with widely scattered points of high density showing a large proportion of hydrogen atoms in the mol­ecular structure, indicating the importance of van der Waals contacts in the mol­ecular packing. The N⋯H/H⋯N inter­molecular contacts are identified as making a notable contribution to the total Hirshfeld surface comprising about 6.9%. However, the C—H⋯N inter­molecular inter­actions are not prominent in the packing as the separations are greater than the van der Waals radii.

[Figure 5]
Figure 5
3-D Hirshfeld surfaces (showing dnorm, di and de) and 2-D fingerprint plots.

Synthesis and crystallization

A mixture of 1-phenyl-1,5,6,7-tetra­hydro-4H-indazol-4-one (1 mmol) and 4-methyl­benzaldehyde (1 mmol) was dissolved in ethanol followed by the addition of alcoholic NaOH. The mixture was stirred at room temperature for 1 h to afford (E)-5-(4-methyl­benzyl­idene)-1-phenyl-1,5,6,7-tetra­hydro-4H-ind­a­z­ol-4-ones as a precipitate, which was filtered, dried and recrystallized from ethanol: yield: 99%, m.p. 172–175°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H18N2O
Mr 314.37
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 30.3989 (15), 8.7177 (5), 14.0581 (7)
β (°) 115.367 (2)
V3) 3366.3 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 22457, 2948, 2557
Rint 0.048
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.07
No. of reflections 2948
No. of parameters 219
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020) and PLATON (Spek, 2020); software used to prepare material for publication: SHELXL (Sheldrick, 2015b).

(E)-5-(4-Methylbenzylidene)-1-phenyl-4,5,6,7-tetrahydro-1H-indazol-4-one top
Crystal data top
C21H18N2OF(000) = 1328
Mr = 314.37Dx = 1.241 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.3989 (15) ÅCell parameters from 3243 reflections
b = 8.7177 (5) Åθ = 28.7–1.8°
c = 14.0581 (7) ŵ = 0.08 mm1
β = 115.367 (2)°T = 293 K
V = 3366.3 (3) Å3Block, colourless
Z = 80.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2557 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
ω and φ scansh = 3636
22457 measured reflectionsk = 1010
2948 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0626P)2 + 1.8343P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2948 reflectionsΔρmax = 0.16 e Å3
219 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.075 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67927 (8)0.0162 (3)1.06046 (15)0.0789 (6)
H10.68160.09351.06670.118*
H90.66140.05431.09770.118*
H100.71140.05991.09000.118*
C20.65323 (6)0.0598 (2)0.94602 (13)0.0543 (4)
C30.66930 (6)0.1813 (2)0.90557 (14)0.0586 (5)
H110.69700.23520.94960.070*
C40.64503 (6)0.2237 (2)0.80118 (14)0.0550 (4)
H60.65720.30380.77580.066*
C50.60276 (5)0.14887 (18)0.73320 (12)0.0450 (4)
C60.57687 (6)0.20157 (19)0.62334 (12)0.0487 (4)
H120.59650.22600.58990.058*
C70.52919 (6)0.21900 (18)0.56538 (11)0.0445 (4)
C80.48996 (6)0.1884 (2)0.60232 (12)0.0516 (4)
H130.50520.17530.67810.062*
H140.47360.09310.57130.062*
C90.45177 (5)0.3169 (2)0.57388 (11)0.0462 (4)
H150.42460.28380.58760.055*
H160.46600.40740.61600.055*
C100.43483 (5)0.35272 (17)0.45978 (11)0.0416 (4)
C110.34983 (5)0.45572 (19)0.40541 (12)0.0487 (4)
C120.35632 (6)0.5344 (2)0.49555 (13)0.0541 (4)
H40.38750.55360.54710.065*
C130.31616 (7)0.5847 (2)0.50901 (16)0.0657 (5)
H30.32050.63690.57010.079*
C140.27001 (7)0.5582 (3)0.43271 (17)0.0761 (6)
H20.24310.59280.44170.091*
C150.51236 (6)0.27563 (18)0.45440 (11)0.0449 (4)
C160.46258 (6)0.32941 (18)0.40502 (11)0.0440 (4)
C170.43202 (6)0.3710 (2)0.30018 (12)0.0518 (4)
H50.44130.36740.24530.062*
C180.61226 (6)0.01863 (19)0.87812 (13)0.0545 (4)
H80.60130.10250.90290.065*
C190.58722 (6)0.02523 (18)0.77400 (13)0.0509 (4)
H70.55950.02870.73040.061*
C200.30333 (6)0.4275 (3)0.32794 (14)0.0679 (5)
H180.29890.37430.26710.081*
C210.26374 (7)0.4799 (3)0.34264 (17)0.0825 (7)
H170.23240.46200.29100.099*
N10.39101 (4)0.40554 (15)0.38972 (9)0.0463 (3)
N20.38894 (5)0.41551 (17)0.28944 (10)0.0550 (4)
O10.53899 (4)0.27719 (16)0.40893 (9)0.0624 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0871 (14)0.0832 (14)0.0504 (11)0.0112 (11)0.0142 (10)0.0108 (10)
C20.0548 (9)0.0552 (10)0.0472 (9)0.0125 (7)0.0163 (7)0.0056 (7)
C30.0443 (8)0.0577 (10)0.0587 (10)0.0017 (7)0.0079 (7)0.0034 (8)
C40.0442 (8)0.0548 (10)0.0624 (10)0.0039 (7)0.0192 (7)0.0142 (8)
C50.0442 (8)0.0470 (9)0.0442 (8)0.0097 (6)0.0194 (6)0.0042 (6)
C60.0527 (9)0.0532 (9)0.0453 (8)0.0075 (7)0.0259 (7)0.0052 (7)
C70.0510 (8)0.0484 (8)0.0371 (7)0.0075 (6)0.0218 (6)0.0038 (6)
C80.0522 (9)0.0645 (10)0.0409 (8)0.0091 (7)0.0226 (7)0.0154 (7)
C90.0449 (8)0.0614 (9)0.0339 (7)0.0044 (7)0.0183 (6)0.0071 (6)
C100.0443 (7)0.0444 (8)0.0329 (7)0.0007 (6)0.0134 (6)0.0012 (6)
C110.0432 (8)0.0558 (9)0.0430 (8)0.0023 (7)0.0146 (6)0.0117 (7)
C120.0455 (8)0.0617 (10)0.0509 (9)0.0024 (7)0.0168 (7)0.0010 (8)
C130.0602 (10)0.0758 (13)0.0659 (11)0.0090 (9)0.0317 (9)0.0046 (9)
C140.0502 (10)0.1054 (17)0.0754 (14)0.0144 (10)0.0296 (10)0.0224 (12)
C150.0550 (9)0.0479 (9)0.0366 (7)0.0026 (7)0.0244 (7)0.0001 (6)
C160.0547 (8)0.0465 (8)0.0313 (7)0.0011 (6)0.0191 (6)0.0003 (6)
C170.0654 (10)0.0582 (10)0.0324 (8)0.0072 (8)0.0214 (7)0.0027 (7)
C180.0589 (9)0.0478 (9)0.0540 (9)0.0043 (7)0.0217 (8)0.0100 (7)
C190.0505 (9)0.0457 (9)0.0493 (9)0.0013 (7)0.0145 (7)0.0004 (7)
C200.0513 (10)0.0972 (15)0.0440 (9)0.0042 (9)0.0097 (7)0.0053 (9)
C210.0429 (10)0.128 (2)0.0619 (12)0.0002 (11)0.0088 (8)0.0193 (13)
N10.0480 (7)0.0545 (8)0.0324 (6)0.0029 (6)0.0134 (5)0.0035 (5)
N20.0639 (9)0.0638 (9)0.0313 (7)0.0062 (7)0.0146 (6)0.0044 (6)
O10.0667 (8)0.0851 (9)0.0476 (7)0.0143 (6)0.0361 (6)0.0098 (6)
Geometric parameters (Å, º) top
C1—C21.506 (2)C10—C161.379 (2)
C1—H10.9600C11—C121.379 (2)
C1—H90.9600C11—C201.388 (2)
C1—H100.9600C11—N11.430 (2)
C2—C181.382 (2)C12—C131.384 (2)
C2—C31.386 (3)C12—H40.9300
C3—C41.381 (2)C13—C141.372 (3)
C3—H110.9300C13—H30.9300
C4—C51.392 (2)C14—C211.378 (3)
C4—H60.9300C14—H20.9300
C5—C191.395 (2)C15—O11.2279 (18)
C5—C61.474 (2)C15—C161.446 (2)
C6—C71.333 (2)C16—C171.412 (2)
C6—H120.9300C17—N21.311 (2)
C7—C151.502 (2)C17—H50.9300
C7—C81.514 (2)C18—C191.383 (2)
C8—C91.538 (2)C18—H80.9300
C8—H130.9700C19—H70.9300
C8—H140.9700C20—C211.383 (3)
C9—C101.4925 (19)C20—H180.9300
C9—H150.9700C21—H170.9300
C9—H160.9700N1—N21.3867 (17)
C10—N11.3535 (18)
C2—C1—H1109.5C16—C10—C9123.85 (13)
C2—C1—H9109.5C12—C11—C20120.41 (16)
H1—C1—H9109.5C12—C11—N1120.27 (13)
C2—C1—H10109.5C20—C11—N1119.30 (15)
H1—C1—H10109.5C11—C12—C13119.73 (16)
H9—C1—H10109.5C11—C12—H4120.1
C18—C2—C3117.79 (15)C13—C12—H4120.1
C18—C2—C1121.21 (17)C14—C13—C12120.38 (19)
C3—C2—C1120.99 (17)C14—C13—H3119.8
C4—C3—C2121.26 (16)C12—C13—H3119.8
C4—C3—H11119.4C13—C14—C21119.64 (18)
C2—C3—H11119.4C13—C14—H2120.2
C3—C4—C5121.32 (16)C21—C14—H2120.2
C3—C4—H6119.3O1—C15—C16122.29 (13)
C5—C4—H6119.3O1—C15—C7122.50 (14)
C4—C5—C19117.09 (14)C16—C15—C7115.20 (12)
C4—C5—C6119.64 (14)C10—C16—C17104.99 (13)
C19—C5—C6123.27 (14)C10—C16—C15122.98 (13)
C7—C6—C5128.94 (14)C17—C16—C15132.02 (14)
C7—C6—H12115.5N2—C17—C16111.97 (14)
C5—C6—H12115.5N2—C17—H5124.0
C6—C7—C15118.02 (14)C16—C17—H5124.0
C6—C7—C8125.46 (13)C2—C18—C19121.22 (16)
C15—C7—C8116.51 (13)C2—C18—H8119.4
C7—C8—C9113.58 (13)C19—C18—H8119.4
C7—C8—H13108.8C18—C19—C5121.25 (15)
C9—C8—H13108.8C18—C19—H7119.4
C7—C8—H14108.8C5—C19—H7119.4
C9—C8—H14108.8C21—C20—C11118.89 (19)
H13—C8—H14107.7C21—C20—H18120.6
C10—C9—C8107.83 (12)C11—C20—H18120.6
C10—C9—H15110.1C14—C21—C20120.94 (18)
C8—C9—H15110.1C14—C21—H17119.5
C10—C9—H16110.1C20—C21—H17119.5
C8—C9—H16110.1C10—N1—N2111.28 (12)
H15—C9—H16108.5C10—N1—C11130.21 (12)
N1—C10—C16106.89 (12)N2—N1—C11118.44 (12)
N1—C10—C9129.20 (13)C17—N2—N1104.86 (12)
C18—C2—C3—C40.6 (3)O1—C15—C16—C10168.78 (15)
C1—C2—C3—C4178.75 (18)C7—C15—C16—C1010.8 (2)
C2—C3—C4—C51.8 (3)O1—C15—C16—C1710.0 (3)
C3—C4—C5—C192.7 (2)C7—C15—C16—C17170.40 (16)
C3—C4—C5—C6177.62 (15)C10—C16—C17—N20.38 (19)
C4—C5—C6—C7137.43 (18)C15—C16—C17—N2179.36 (16)
C19—C5—C6—C742.9 (3)C3—C2—C18—C191.9 (3)
C5—C6—C7—C15179.80 (15)C1—C2—C18—C19177.42 (17)
C5—C6—C7—C80.7 (3)C2—C18—C19—C50.9 (3)
C6—C7—C8—C9133.31 (17)C4—C5—C19—C181.3 (2)
C15—C7—C8—C945.8 (2)C6—C5—C19—C18178.96 (15)
C7—C8—C9—C1049.38 (18)C12—C11—C20—C210.1 (3)
C8—C9—C10—N1150.39 (16)N1—C11—C20—C21178.39 (18)
C8—C9—C10—C1626.6 (2)C13—C14—C21—C200.0 (4)
C20—C11—C12—C130.4 (3)C11—C20—C21—C140.3 (3)
N1—C11—C12—C13178.88 (16)C16—C10—N1—N20.89 (17)
C11—C12—C13—C140.7 (3)C9—C10—N1—N2176.49 (15)
C12—C13—C14—C210.5 (3)C16—C10—N1—C11176.18 (15)
C6—C7—C15—O114.8 (2)C9—C10—N1—C116.4 (3)
C8—C7—C15—O1166.01 (16)C12—C11—N1—C1036.0 (2)
C6—C7—C15—C16164.78 (15)C20—C11—N1—C10145.48 (17)
C8—C7—C15—C1614.4 (2)C12—C11—N1—N2140.90 (16)
N1—C10—C16—C170.32 (17)C20—C11—N1—N237.6 (2)
C9—C10—C16—C17177.24 (15)C16—C17—N2—N10.89 (19)
N1—C10—C16—C15178.78 (14)C10—N1—N2—C171.10 (18)
C9—C10—C16—C153.7 (2)C11—N1—N2—C17176.35 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H12···O10.932.432.806 (2)104
C12—H4···O1i0.932.523.312 (2)143
C17—H5···O1ii0.932.603.5081 (19)164
C18—H8···O1iii0.932.463.325 (2)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2; (iii) x, y, z+1/2.
 

Acknowledgements

JS and RV thank the management of The Madura College for their constant support and encouragement. The authors' contributions are as follows: Conceptualization, CSM; methodology, CSM, SA; investigation, CSM, RVP; synthesis, X-ray, analysis and validation, SA; writing (original draft), CSM; writing (review and editing of the manuscript), SRB; visualization, JS; resources, RVP, SRR; supervision, JS; project administration, SRB.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaisal, M., Saeed, A., Hussain, S., Dar, P. & Larik, F. A. (2019). J. Chem. Sci. 131, article No. 70. https://doi.org/10.1007/s12039-019-1646-1  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeenatchi, C. S., Athimoolam, S., Suresh, J., Rubina, S. R., Kumar, R. R. & Bhandari, S. R. (2021). IUCrData, 6, x211195.  Google Scholar
First citationPopat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). Indian J. Chem. Sect. B, 42, 1497–1501.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds