organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(4-Meth­­oxy-2-nitro­phen­yl)acetamide

crossmark logo

aDepartment of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA 70813, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: rao_uppu@subr.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 March 2022; accepted 10 March 2022; online 17 March 2022)

In the title compound, C9H10N2O4, the three substituents vary in the degree of lack of planarity with the central phenyl ring. The meth­oxy group is nearest to being coplanar, with a C—C—O—C torsion angle of 6.1 (5)°. The nitro group is less coplanar, with a 12.8 (5)° twist about the C—N bond and the acetamido group is considerably less coplanar with the central ring, having a 25.4 (5)° twist about the C—N bond to the ring. The NH group forms an intra­molecular N—H⋯O hydrogen bond to a nitro-group O atom.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The analgesic use of 4-alk­oxy­acetanilides, in particular 4-eth­oxy­acetanilide or 4-EA, predates the First World War. 4-Hy­droxy­acetanilide (popularly known as Tylenol or acetamino­phen) and 4-EA were introduced into the markets at around the same time; however, 4-EA was withdrawn from sale some decades ago due to its carcinogenic and kidney-damaging properties (Dubach et al., 1983[Dubach, U. C., Rosner, B. & Pfister, E. (1983). New Engl. J. Med. 308, 357-362.]; Nakanishi et al., 1982[Nakanishi, K., Kurata, Y., Oshima, M., Fukushima, S. & Ito, N. (1982). Int. J. Cancer, 29, 439-444.]). Although there has been extensive information on phase I and phase II biotransformation of 4-alk­oxy­acetanilides (Hinson, 1983[Hinson, J. A. (1983). Environ. Health Perspect. 49, 71-79.]; Kapetanović et al., 1979[Kapetanović, I. M., Strong, J. M. & Mieyal, J. J. (1979). J. Pharmacol. Exp. Ther. 209, 20-24.]; Mulder et al., 1984[Mulder, G. J., Kadlubar, F. F., Mays, J. B. & Hinson, J. A. (1984). Mol. Pharmacol. 26, 342-347.]; Veronese et al., 1985[Veronese, M. E., McLean, S., D'Souza, C. A. & Davies, N. W. (1985). Xenobiotica, 15, 929-940.]), little or no information is available on nitrated or other oxidation products that could be formed in reactions with cellular oxidants, such as hypochlorite (OCl)/hypo­chlorous acid (HOCl; pKa ≃ 7.53) and per­oxy­nitrite (ONOO)/per­oxy­nitrous acid (ONOOH; pKa ≃ 6.2; ONOOH and ONOO are collectively referred to as per­oxy­nitrite or PN). We have shown, for instance, that 4-hy­droxy­acetanilide forms nitrated and chlorinated products along with varying amounts of dimers when reacted with HOCl/OCl and PN/CO2 under physiologically relevant conditions (Uppu & Martin, 2005[Uppu, R. M. & Martin, R. J. (2005). Toxicologist (supplement to Toxicol. Sci), p. 319. https://www.toxicology.org/pubs/docs/Tox/2005Tox.pdf]; Deere et al., 2022[Deere, C. J., Hines, J. E. III & Uppu, R. M. (2022). Unpublished.]). We suspect that similar products (or their positional isomers) may be formed in the reactions of 4-alk­oxy­acetanilides with the cellular oxidants referenced above. Towards a better understanding of this and to shed light on mol­ecular targets (Bertolini et al., 2006[Bertolini, A., Ferrari, A., Ottani, A., Guerzoni, S., Tacchi, R. & Leone, S. (2006). CNS Drug Rev. 12, 250-275.]), we have synthesized the title compound, C9H10N2O4: single crystals grown from aqueous solution were analyzed by X-ray diffraction.

The title compound is shown in Fig. 1[link]. It is significantly non-planar, and its deviation from planarity may be described by torsion angles about bonds from the central C1–C6 phenyl ring to the three substituents. The meth­oxy group is nearest to being coplanar, with a C9—O2—C4–C3 torsion angle of 6.1 (5)°. The nitro group deviates more from coplanarity with the central ring, with the O3—N2—C2—C1 torsion angle being −12.8 (5)°. The acetamido group is considerably less coplanar with the central ring, with a C7—N1—C1—C6 torsion angle of 25.4 (5)°. These deviations are similar to those seen in the analogous 4-eth­oxy compound (Uppu et al., 2020[Uppu, S. N., Agu, O. A., Deere, C. J. & Fronczek, F. R. (2020). CSD Communication (CCDC 2021362). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc25vd7p.]), in which the corresponding torsion angles are 0.56 (12), −14.94 (13) and 18.23 (15)°, respectively. N-(4-Hy­droxy-2-nitro­phen­yl)acetamide (Hines et al., 2022[Hines, J. E. III, Deere, C. J., Fronczek, F. R. & Uppu, R. M. (2022). IUCr Data, 7, x220201.]) is considerably more planar, with torsion angles to the nitro group and to the acetamido group being −0.79 (19) and 3.1 (2)°, respectively, likely as a result of inter­molecular hydrogen bonding by the OH group. The structure of N-(4-hy­droxy-3-nitro­phen­yl)acetamide, in which the OH group likewise participates in inter­molecular hydrogen bonding, has also been reported (Salahifar et al., 2015[Salahifar, E., Nematollahi, D., Bayat, M., Mahyari, A. & Amiri Rudbari, H. (2015). Org. Lett. 17, 4666-4669.]; Deere et al., 2019[Deere, C. J., Hines, J. E. III, Agu, O. A., Fronczek, F. R. & Uppu, R. M. (2019). CSD Communication (CCDC 1910293). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc223tcd.]). It is also more planar than the title compound, with a torsion angle of −11.8 (2)° for the nitro group and 9.0 (2)° for the acetamido group. An intra­molecular N1—H1N⋯O3 hydrogen bond (Table 1[link]) is observed in the title compound.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.87 (5) 1.92 (5) 2.632 (4) 137 (4)
C5—H5⋯O2i 0.95 2.48 3.418 (4) 171
C6—H6⋯O1 0.95 2.30 2.864 (4) 117
C8—H8B⋯O3ii 0.98 2.64 3.578 (4) 160
C8—H8C⋯O4iii 0.98 2.63 3.546 (4) 156
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule with 50% displacement ellipsoids with the intra­molecular N—H⋯O hydrogen bond shown as a blue dashed line.

The unit cell of the title compound is shown in Figs. 2[link] and 3[link]. The closest inter­molecular contact is C5—H5⋯O2 (at 1 − x, −y, 1 − z), forming dimers about inversion centers with a C⋯O distance of 3.418 (4) Å and 171° angle about H. Mol­ecules form a herringbone pattern in the [101] direction with alternate phenyl rings forming a dihedral angle of 65.7 (2)°.

[Figure 2]
Figure 2
The unit cell, viewed down the [010] direction, showing intra­molecular hydrogen bonds.
[Figure 3]
Figure 3
The unit cell, viewed down the [101] direction. H atoms are not shown.

Synthesis and crystallization

N-(4-Meth­oxy-2-nitro­phen­yl)acetamide was synthesized by acetyl­ation of 4-meth­oxy-2-nitro­aniline using acetic anhydride in acetic acid solvent: 3.36 g (20 mmol) of 4-meth­oxy-2-nitro­aniline in 30 ml of glacial acetic was allowed to react with 2.46 g (24 mmol) of acetic anhydride for 18 h at room temperature. The reaction mixture was stirred continuously during the reaction. In the end, the mixture was dried under vacuum, and the N-(4-meth­oxy-2-nitro­phen­yl)acetamide in the residue was purified by recrystallization twice from aqueous solution. Single crystals in the form of yellow laths were grown in water by slow cooling of a hot and nearly saturated solution of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H10N2O4
Mr 210.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 14.8713 (7), 3.9563 (2), 17.2057 (9)
β (°) 114.051 (3)
V3) 924.42 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.03
Crystal size (mm) 0.42 × 0.06 × 0.01
 
Data collection
Diffractometer Bruker Kappa APEXII DUO CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.692, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 11516, 1638, 1211
Rint 0.122
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.203, 1.09
No. of reflections 1638
No. of parameters 141
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

N-(4-Methoxy-2-nitrophenyl)acetamide top
Crystal data top
C9H10N2O4F(000) = 440
Mr = 210.19Dx = 1.510 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 14.8713 (7) ÅCell parameters from 2102 reflections
b = 3.9563 (2) Åθ = 3.3–66.3°
c = 17.2057 (9) ŵ = 1.03 mm1
β = 114.051 (3)°T = 90 K
V = 924.42 (8) Å3Lath, yellow
Z = 40.42 × 0.06 × 0.01 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
1638 independent reflections
Radiation source: IµS microfocus1211 reflections with I > 2σ(I)
QUAZAR multilayer optics monochromatorRint = 0.122
φ and ω scansθmax = 66.7°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1717
Tmin = 0.692, Tmax = 0.990k = 44
11516 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.203 w = 1/[σ2(Fo2) + 0.298P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1638 reflectionsΔρmax = 0.24 e Å3
141 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were located in difference maps and those on C were thereafter treated as riding in geometrically idealized positions with C—H distances 0.95 Å for phenyl and 0.98 Å for methyl. Coordinates of the N—H hydrogen atom were refined. Uiso(H) values were assigned as 1.2Ueq for the attached atom (1.5 for methyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58485 (18)0.7604 (7)0.81731 (16)0.0512 (7)
O20.36866 (18)0.2368 (6)0.43490 (15)0.0455 (6)
O30.23210 (18)0.9412 (7)0.67288 (16)0.0529 (7)
O40.16683 (18)0.9595 (6)0.53559 (16)0.0480 (7)
N10.4165 (2)0.7462 (7)0.75182 (18)0.0447 (7)
H1N0.363 (4)0.830 (11)0.753 (3)0.054*
N20.2326 (2)0.8718 (7)0.60286 (18)0.0416 (7)
C10.4018 (3)0.6185 (9)0.6716 (2)0.0428 (8)
C20.3144 (2)0.6751 (8)0.5992 (2)0.0420 (8)
C30.3005 (2)0.5555 (8)0.5182 (2)0.0415 (8)
H3A0.2410730.6024720.4701970.050*
C40.3736 (3)0.3699 (8)0.5092 (2)0.0417 (8)
C50.4605 (3)0.3057 (8)0.5806 (2)0.0431 (8)
H50.5110840.1764010.5744820.052*
C60.4740 (3)0.4264 (9)0.6593 (2)0.0442 (8)
H60.5339150.3783810.7066540.053*
C70.5054 (3)0.8178 (8)0.8187 (2)0.0435 (8)
C80.4928 (3)0.9743 (9)0.8926 (2)0.0475 (8)
H8A0.4739640.7998940.9235400.071*
H8B0.4412991.1474140.8720210.071*
H8C0.5549931.0784960.9307060.071*
C90.2843 (3)0.3245 (9)0.3589 (2)0.0488 (9)
H9A0.2248370.2287080.3616370.073*
H9B0.2923270.2334620.3091720.073*
H9C0.2781010.5710210.3541650.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0331 (14)0.0634 (15)0.0497 (14)0.0015 (10)0.0093 (11)0.0066 (11)
O20.0413 (14)0.0494 (13)0.0439 (13)0.0005 (10)0.0154 (10)0.0013 (10)
O30.0419 (14)0.0706 (16)0.0434 (14)0.0026 (12)0.0145 (11)0.0053 (11)
O40.0361 (13)0.0553 (14)0.0444 (13)0.0047 (10)0.0079 (10)0.0026 (10)
N10.0398 (17)0.0513 (16)0.0424 (15)0.0000 (12)0.0162 (13)0.0006 (12)
N20.0308 (15)0.0463 (15)0.0425 (16)0.0030 (11)0.0097 (13)0.0028 (12)
C10.0376 (18)0.0453 (17)0.0429 (18)0.0019 (13)0.0140 (15)0.0030 (13)
C20.0354 (18)0.0430 (17)0.0458 (19)0.0024 (13)0.0148 (15)0.0032 (13)
C30.0342 (17)0.0411 (17)0.0432 (17)0.0037 (13)0.0095 (14)0.0033 (13)
C40.0381 (18)0.0425 (17)0.0446 (18)0.0025 (13)0.0170 (15)0.0011 (13)
C50.0331 (18)0.0454 (17)0.0469 (19)0.0008 (13)0.0125 (15)0.0009 (14)
C60.0366 (18)0.0437 (17)0.0495 (19)0.0007 (13)0.0146 (15)0.0033 (14)
C70.0342 (19)0.0449 (17)0.0452 (18)0.0005 (13)0.0099 (15)0.0039 (13)
C80.0412 (19)0.0501 (19)0.0462 (18)0.0005 (15)0.0126 (15)0.0017 (15)
C90.045 (2)0.0517 (19)0.0416 (18)0.0030 (15)0.0089 (16)0.0008 (14)
Geometric parameters (Å, º) top
O1—C71.214 (4)C3—H3A0.9500
O2—C41.357 (4)C4—C51.395 (5)
O2—C91.438 (4)C5—C61.371 (5)
O3—N21.239 (4)C5—H50.9500
O4—N21.222 (4)C6—H60.9500
N1—C71.383 (5)C7—C81.492 (5)
N1—C11.401 (5)C8—H8A0.9800
N1—H1N0.87 (5)C8—H8B0.9800
N2—C21.467 (4)C8—H8C0.9800
C1—C61.400 (5)C9—H9A0.9800
C1—C21.405 (5)C9—H9B0.9800
C2—C31.404 (5)C9—H9C0.9800
C3—C41.372 (5)
C4—O2—C9117.1 (3)C6—C5—H5119.5
C7—N1—C1127.4 (3)C4—C5—H5119.5
C7—N1—H1N118 (3)C5—C6—C1121.7 (3)
C1—N1—H1N113 (3)C5—C6—H6119.1
O4—N2—O3122.6 (3)C1—C6—H6119.1
O4—N2—C2117.9 (3)O1—C7—N1123.6 (3)
O3—N2—C2119.6 (3)O1—C7—C8123.8 (3)
C6—C1—N1121.6 (3)N1—C7—C8112.7 (3)
C6—C1—C2116.2 (3)C7—C8—H8A109.5
N1—C1—C2122.2 (3)C7—C8—H8B109.5
C3—C2—C1122.4 (3)H8A—C8—H8B109.5
C3—C2—N2115.6 (3)C7—C8—H8C109.5
C1—C2—N2122.0 (3)H8A—C8—H8C109.5
C4—C3—C2119.2 (3)H8B—C8—H8C109.5
C4—C3—H3A120.4O2—C9—H9A109.5
C2—C3—H3A120.4O2—C9—H9B109.5
O2—C4—C3124.9 (3)H9A—C9—H9B109.5
O2—C4—C5115.7 (3)O2—C9—H9C109.5
C3—C4—C5119.4 (3)H9A—C9—H9C109.5
C6—C5—C4121.0 (3)H9B—C9—H9C109.5
C7—N1—C1—C625.4 (5)C9—O2—C4—C36.1 (5)
C7—N1—C1—C2154.6 (3)C9—O2—C4—C5174.3 (3)
C6—C1—C2—C31.8 (5)C2—C3—C4—O2179.1 (3)
N1—C1—C2—C3178.2 (3)C2—C3—C4—C50.4 (5)
C6—C1—C2—N2180.0 (3)O2—C4—C5—C6179.9 (3)
N1—C1—C2—N20.1 (5)C3—C4—C5—C60.3 (5)
O4—N2—C2—C310.9 (4)C4—C5—C6—C10.1 (5)
O3—N2—C2—C3168.8 (3)N1—C1—C6—C5178.9 (3)
O4—N2—C2—C1167.5 (3)C2—C1—C6—C51.1 (5)
O3—N2—C2—C112.8 (5)C1—N1—C7—O13.9 (6)
C1—C2—C3—C41.5 (5)C1—N1—C7—C8175.8 (3)
N2—C2—C3—C4179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.87 (5)1.92 (5)2.632 (4)137 (4)
C5—H5···O2i0.952.483.418 (4)171
C6—H6···O10.952.302.864 (4)117
C8—H8B···O3ii0.982.643.578 (4)160
C8—H8C···O4iii0.982.633.546 (4)156
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+5/2, z+1/2.
 

Funding information

The authors acknowledge the support from the National Institutes of Health (NIH) through the National Institute of General Medical Science (NIGMS) grant No. 5 P2O GM103424–17 and the US Department of Education (US DoE; Title III, HBGI Part B grant No. P031B040030). Its contents are solely the responsibility of authors and do not represent the official views of NIH, NIGMS, or US DoE. The upgrade of the diffractometer was made possible by grant No. LEQSF(2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents

References

First citationBertolini, A., Ferrari, A., Ottani, A., Guerzoni, S., Tacchi, R. & Leone, S. (2006). CNS Drug Rev. 12, 250–275.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeere, C. J., Hines, J. E. III, Agu, O. A., Fronczek, F. R. & Uppu, R. M. (2019). CSD Communication (CCDC 1910293). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc223tcd.  Google Scholar
First citationDeere, C. J., Hines, J. E. III & Uppu, R. M. (2022). Unpublished.  Google Scholar
First citationDubach, U. C., Rosner, B. & Pfister, E. (1983). New Engl. J. Med. 308, 357–362.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHines, J. E. III, Deere, C. J., Fronczek, F. R. & Uppu, R. M. (2022). IUCr Data, 7, x220201.  Google Scholar
First citationHinson, J. A. (1983). Environ. Health Perspect. 49, 71–79.  CrossRef CAS PubMed Google Scholar
First citationKapetanović, I. M., Strong, J. M. & Mieyal, J. J. (1979). J. Pharmacol. Exp. Ther. 209, 20–24.  PubMed Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMulder, G. J., Kadlubar, F. F., Mays, J. B. & Hinson, J. A. (1984). Mol. Pharmacol. 26, 342–347.  CAS PubMed Web of Science Google Scholar
First citationNakanishi, K., Kurata, Y., Oshima, M., Fukushima, S. & Ito, N. (1982). Int. J. Cancer, 29, 439–444.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSalahifar, E., Nematollahi, D., Bayat, M., Mahyari, A. & Amiri Rudbari, H. (2015). Org. Lett. 17, 4666–4669.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUppu, R. M. & Martin, R. J. (2005). Toxicologist (supplement to Toxicol. Sci), p. 319. https://www.toxicology.org/pubs/docs/Tox/2005Tox.pdf  Google Scholar
First citationUppu, S. N., Agu, O. A., Deere, C. J. & Fronczek, F. R. (2020). CSD Communication (CCDC 2021362). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc25vd7p.  Google Scholar
First citationVeronese, M. E., McLean, S., D'Souza, C. A. & Davies, N. W. (1985). Xenobiotica, 15, 929–940.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds