organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,2-Bis(pyridin-4-yl)ethene–4-hy­dr­oxy-3-meth­­oxy­benzoic acid (1/1)

crossmark logo

aDepartment of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260-3000, USA
*Correspondence e-mail: jbb6@buffalo.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 February 2022; accepted 19 March 2022; online 29 March 2022)

In the title 1:1 co-crystal [alternatively called bi­pyridine ethyl­ene–p-vanillic acid (1/1)], C12H10N2·C8H8O4, the dihedral angle between the pyridine rings is 59.51 (5)°. In the crystal, the mol­ecules are linked by O—H⋯N hydrogen bonds, generating [401] chains of alternating C12H10N2 and C8H8O4 mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

4-Hy­droxy-3-meth­oxy­benzoic acid, C8H8O4, known commonly as p-vanillic acid, is used as a flavoring agent and naturally found in a variety of fruits and edible plants (Ingole et al., 2021[Ingole, A., Kadam, M., Dalu, A., Kute, S., Mange, P., Theng, V., Lahane, R., Nikas, A., Kawal, Y., Nagrik, S. & Patil, P. (2021). J. Drug. Deliv. Ther. 11, 200-204.]). In addition, p-vanillic acid is currently being investigated for its inflammatory pain-inhibiting properties (Calixto-Campos et al., 2015[Calixto-Campos, C., Carvalho, T. T., Hohmann, M. S. N., Pinho-Ribeiro, F. A., Fattori, V., Manchope, M. F., Zarpelon, A. C., Baracat, M. M., Georgetti, S. R., Casagrande, R. & Verri, W. A. (2015). J. Nat. Prod. 78, 1799-1808.]). Despite the prevalence of the mol­ecule in our foods and its potential medicinal benefits, structural information on vanillic acid is sparse with few crystal structures being reported thus far. As such it is crucial to expand the number of structures containing vanillic acid in order to better understand the non-covalent inter­actions involving this mol­ecule. Bi­pyridine ethyl­ene (C12H10N2; BPyE) was selected as a suitable coformer for the present study because of its ability to form both simple and complex hydrogen-bonded networks with organic acids (Delori et al., 2013[Delori, A., Eddleston, M. D. & Jones, W. (2013). CrystEngComm, 15, 73-77.]; Bhattacharya et al., 2013[Bhattacharya, S., Stojaković, J., Saha, B. K. & MacGillivray, L. R. (2013). Org. Lett. 15, 744-747.]).

When p-vanillic acid is combined with BPyE in a 1:1 molar ratio, the resulting 1:1 co-crystal possesses monoclinic (P21/c) symmetry at 90 K. The vanillic acid has two distinct O—H⋯N-type hydrogen-bonding inter­actions (Table 1[link]); one of these involves the carb­oxy­lic acid group and a BPyE N atom acceptor and resulting in a 2.6295 (12) Å distance between heteroatoms (Fig. 1[link]). The other hydrogen bond occurs between the para-position hydroxyl group and the other pyridine N atom of a BPyE mol­ecule resulting in a 2.6868 (13) Å distance between heteroatoms (Fig. 2[link]). The co-crystal structure may be described as dimolecular units made up of one acid plus one coformer, which form C22(19) chain motifs. These chains propagate in the [401] direction, forming twisting wires (Fig. 3[link]). The wires stack along [010], forming sheets, which subsequently form layers parallel to (10[\overline{4}]), with every other sheet being rotated 180° about [010]. Two weak C—H⋯O contacts are also observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.99 (2) 1.65 (2) 2.6295 (12) 169 (2)
O4—H4⋯N2ii 0.92 (2) 1.84 (2) 2.6868 (13) 154 (2)
C4—H4A⋯O2iii 0.95 2.53 3.2341 (14) 132
C9—H9⋯O3iv 0.95 2.45 3.3520 (14) 158
Symmetry codes: (i) [x-1, y, z]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
A bimolecular unit consisting of p-vanillic acid and BPyE with the hydrogen bond depicted as a blue dashed line. The BPyE mol­ecule illustrated is generated by the symmetry operation x – 1, y, z from the asymmetric mol­ecule.
[Figure 2]
Figure 2
Part of a [401] hydrogen-bonded chain of p-vanillic acid and BPyE mol­ecules. The O⋯N distances are shown for each O—H⋯N hydrogen-bonding inter­action.
[Figure 3]
Figure 3
plane depicting twisting hydrogen-bonded wires running approximately parallel to (10[\overline{4}]). Hydrogen-bonding inter­actions are depicted as bright-blue dashed lines.

Synthesis and crystallization

A 1:1 molar ratio of bi­pyridine ethyl­ene (182.2 mg, 1 mmol) and p-vanillic acid (168.1 mg, 1 mmol) was added to a 25 ml scintillation vial to which methanol was added until both compounds dissolved (approximately 20 ml). The resulting solution was vortexed for 30 s at 3000 rpm on a VWR Mini Vortexer MV I. The solution was then stored in the dark uncapped to allow for crystal formation while the solvent slowly evaporated.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H10N2·C8H8O4
Mr 350.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 90
a, b, c (Å) 9.1486 (5), 9.2114 (5), 20.3429 (12)
β (°) 98.416 (1)
V3) 1695.86 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.54 × 0.22 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.648, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 33598, 5958, 4683
Rint 0.084
(sin θ/λ)max−1) 0.748
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.03
No. of reflections 5958
No. of parameters 245
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,2-Bis(pyridin-4-yl)ethene; 4-hydroxy-3-methoxybenzoic acid top
Crystal data top
C12H10N2·C8H8O4F(000) = 736
Mr = 350.36Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1486 (5) ÅCell parameters from 5974 reflections
b = 9.2114 (5) Åθ = 2.4–32.1°
c = 20.3429 (12) ŵ = 0.10 mm1
β = 98.416 (1)°T = 90 K
V = 1695.86 (16) Å3Plate, clear colourless
Z = 40.54 × 0.22 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
4683 reflections with I > 2σ(I)
φ and ω scansRint = 0.084
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 32.1°, θmin = 2.0°
Tmin = 0.648, Tmax = 0.746h = 1313
33598 measured reflectionsk = 1313
5958 independent reflectionsl = 3030
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.6347P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.40 e Å3
5958 reflectionsΔρmin = 0.26 e Å3
245 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0070 (15)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The O-bound H atoms were located in difference maps and their positions were freely refined. The C-bound H atoms were placed geometrically (C—H = 0.95–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.43471 (9)0.32423 (9)0.77939 (4)0.01865 (17)
O20.05986 (9)0.39976 (10)0.62580 (4)0.01877 (17)
O40.41561 (9)0.50304 (10)0.88365 (4)0.02072 (18)
O10.17538 (9)0.55862 (10)0.68391 (4)0.02055 (18)
N10.58124 (10)0.49305 (11)0.60383 (5)0.01647 (18)
N20.30499 (10)0.09310 (11)0.39212 (5)0.0198 (2)
C110.30840 (11)0.38151 (12)0.54449 (5)0.01433 (19)
C50.30531 (11)0.49848 (12)0.83165 (5)0.01447 (19)
C10.06039 (11)0.47842 (12)0.67408 (5)0.01454 (19)
C20.06755 (11)0.49121 (12)0.72818 (5)0.01337 (19)
C30.06593 (11)0.58633 (12)0.78115 (5)0.01466 (19)
H30.0162590.6487810.7823940.018*
C70.19036 (11)0.40137 (12)0.72604 (5)0.01356 (19)
H70.1925060.3375760.6895040.016*
C160.01655 (11)0.18988 (12)0.43775 (5)0.01485 (19)
C120.44140 (11)0.31630 (12)0.53464 (5)0.0158 (2)
H120.4411060.2323950.5074630.019*
C60.30870 (11)0.40521 (12)0.77703 (5)0.01375 (19)
C90.45404 (12)0.55722 (13)0.61287 (5)0.0171 (2)
H90.4581340.6419520.6397020.021*
C100.31694 (11)0.50520 (12)0.58473 (5)0.0154 (2)
H100.2293480.5532330.5927210.019*
C130.57369 (11)0.37518 (13)0.56488 (5)0.0164 (2)
H130.6632530.3298690.5576530.020*
C150.13307 (11)0.24385 (13)0.46164 (5)0.0163 (2)
H150.2109710.2207510.4372690.020*
C40.18456 (11)0.58996 (12)0.83222 (5)0.0158 (2)
H4A0.1832270.6558530.8680480.019*
C200.06769 (12)0.17485 (13)0.36998 (5)0.0172 (2)
H200.0047310.1963810.3380530.021*
C140.16281 (11)0.32450 (13)0.51668 (5)0.0163 (2)
H140.0825480.3467740.5397500.020*
C170.11344 (12)0.15200 (13)0.48206 (6)0.0180 (2)
H170.0830030.1591930.5286420.022*
C180.25442 (12)0.10380 (13)0.45737 (6)0.0192 (2)
H180.3184470.0770040.4881180.023*
C190.21164 (12)0.12807 (13)0.34974 (6)0.0199 (2)
H190.2455440.1205120.3034470.024*
C80.44161 (13)0.22430 (14)0.72620 (6)0.0221 (2)
H8A0.4304640.2771760.6839570.033*
H8B0.3619020.1528840.7251700.033*
H8C0.5371850.1743020.7329890.033*
H40.499 (2)0.458 (3)0.8743 (11)0.055 (6)*
H10.259 (3)0.528 (3)0.6504 (12)0.066 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0149 (3)0.0218 (4)0.0183 (4)0.0073 (3)0.0006 (3)0.0023 (3)
O20.0165 (4)0.0236 (4)0.0156 (4)0.0004 (3)0.0004 (3)0.0028 (3)
O40.0136 (4)0.0285 (5)0.0181 (4)0.0034 (3)0.0043 (3)0.0043 (3)
O10.0116 (3)0.0257 (4)0.0226 (4)0.0033 (3)0.0031 (3)0.0063 (3)
N10.0135 (4)0.0191 (5)0.0156 (4)0.0005 (3)0.0016 (3)0.0012 (3)
N20.0141 (4)0.0209 (5)0.0229 (5)0.0007 (3)0.0020 (3)0.0022 (4)
C110.0129 (4)0.0171 (5)0.0125 (4)0.0002 (4)0.0003 (3)0.0012 (4)
C50.0123 (4)0.0158 (5)0.0148 (4)0.0010 (3)0.0006 (3)0.0010 (4)
C10.0119 (4)0.0158 (5)0.0157 (4)0.0006 (3)0.0012 (3)0.0016 (4)
C20.0107 (4)0.0147 (5)0.0144 (4)0.0004 (3)0.0005 (3)0.0009 (3)
C30.0118 (4)0.0152 (5)0.0167 (4)0.0017 (3)0.0010 (3)0.0003 (4)
C70.0131 (4)0.0142 (5)0.0134 (4)0.0001 (3)0.0021 (3)0.0002 (3)
C160.0125 (4)0.0154 (5)0.0159 (4)0.0013 (3)0.0004 (3)0.0015 (4)
C120.0138 (4)0.0172 (5)0.0156 (4)0.0015 (4)0.0004 (3)0.0020 (4)
C60.0115 (4)0.0142 (5)0.0154 (4)0.0018 (3)0.0015 (3)0.0016 (4)
C90.0164 (5)0.0181 (5)0.0158 (5)0.0005 (4)0.0010 (4)0.0012 (4)
C100.0126 (4)0.0189 (5)0.0145 (4)0.0015 (4)0.0008 (3)0.0011 (4)
C130.0120 (4)0.0199 (5)0.0166 (5)0.0021 (4)0.0000 (3)0.0009 (4)
C150.0119 (4)0.0201 (5)0.0164 (5)0.0002 (4)0.0008 (3)0.0002 (4)
C40.0135 (4)0.0176 (5)0.0160 (4)0.0002 (4)0.0015 (3)0.0030 (4)
C200.0161 (5)0.0187 (5)0.0164 (5)0.0001 (4)0.0010 (4)0.0027 (4)
C140.0117 (4)0.0197 (5)0.0169 (5)0.0002 (4)0.0008 (3)0.0007 (4)
C170.0146 (4)0.0222 (5)0.0165 (5)0.0008 (4)0.0001 (4)0.0001 (4)
C180.0135 (5)0.0221 (5)0.0218 (5)0.0008 (4)0.0018 (4)0.0000 (4)
C190.0174 (5)0.0226 (6)0.0180 (5)0.0005 (4)0.0029 (4)0.0035 (4)
C80.0230 (5)0.0235 (6)0.0198 (5)0.0101 (4)0.0031 (4)0.0025 (4)
Geometric parameters (Å, º) top
O3—C61.3680 (12)C16—C151.4705 (15)
O3—C81.4292 (14)C16—C201.3963 (15)
O2—C11.2211 (13)C16—C171.3979 (15)
O4—C51.3516 (12)C12—H120.9500
O4—H40.92 (2)C12—C131.3854 (15)
O1—C11.3243 (13)C9—H90.9500
O1—H10.99 (2)C9—C101.3858 (15)
N1—C91.3417 (14)C10—H100.9500
N1—C131.3400 (15)C13—H130.9500
N2—C181.3439 (15)C15—H150.9500
N2—C191.3386 (16)C15—C141.3379 (15)
C11—C121.3975 (15)C4—H4A0.9500
C11—C101.3984 (15)C20—H200.9500
C11—C141.4661 (14)C20—C191.3895 (15)
C5—C61.4083 (15)C14—H140.9500
C5—C41.3908 (15)C17—H170.9500
C1—C21.4892 (14)C17—C181.3869 (15)
C2—C31.3906 (15)C18—H180.9500
C2—C71.4012 (14)C19—H190.9500
C3—H30.9500C8—H8A0.9800
C3—C41.3886 (14)C8—H8B0.9800
C7—H70.9500C8—H8C0.9800
C7—C61.3858 (14)
C6—O3—C8117.07 (9)C10—C9—H9118.6
C5—O4—H4112.0 (14)C11—C10—H10120.2
C1—O1—H1107.0 (14)C9—C10—C11119.55 (10)
C13—N1—C9117.86 (9)C9—C10—H10120.2
C19—N2—C18117.30 (10)N1—C13—C12123.09 (10)
C12—C11—C10117.32 (10)N1—C13—H13118.5
C12—C11—C14123.47 (10)C12—C13—H13118.5
C10—C11—C14119.18 (9)C16—C15—H15119.0
O4—C5—C6122.43 (9)C14—C15—C16121.99 (10)
O4—C5—C4118.53 (10)C14—C15—H15119.0
C4—C5—C6119.04 (9)C5—C4—H4A119.5
O2—C1—O1123.31 (10)C3—C4—C5120.93 (10)
O2—C1—C2123.10 (10)C3—C4—H4A119.5
O1—C1—C2113.58 (9)C16—C20—H20120.4
C3—C2—C1121.74 (9)C19—C20—C16119.30 (10)
C3—C2—C7119.71 (9)C19—C20—H20120.4
C7—C2—C1118.52 (9)C11—C14—H14117.1
C2—C3—H3120.0C15—C14—C11125.72 (10)
C4—C3—C2119.94 (10)C15—C14—H14117.1
C4—C3—H3120.0C16—C17—H17120.3
C2—C7—H7119.9C18—C17—C16119.35 (10)
C6—C7—C2120.26 (10)C18—C17—H17120.3
C6—C7—H7119.9N2—C18—C17123.28 (11)
C20—C16—C15121.40 (10)N2—C18—H18118.4
C20—C16—C17117.35 (10)C17—C18—H18118.4
C17—C16—C15121.24 (10)N2—C19—C20123.38 (10)
C11—C12—H12120.3N2—C19—H19118.3
C13—C12—C11119.36 (10)C20—C19—H19118.3
C13—C12—H12120.3O3—C8—H8A109.5
O3—C6—C5114.87 (9)O3—C8—H8B109.5
O3—C6—C7125.05 (10)O3—C8—H8C109.5
C7—C6—C5120.07 (9)H8A—C8—H8B109.5
N1—C9—H9118.6H8A—C8—H8C109.5
N1—C9—C10122.81 (10)H8B—C8—H8C109.5
O2—C1—C2—C3177.25 (11)C12—C11—C14—C1526.50 (18)
O2—C1—C2—C74.63 (16)C6—C5—C4—C32.43 (16)
O4—C5—C6—O32.61 (15)C9—N1—C13—C120.93 (16)
O4—C5—C6—C7177.83 (10)C10—C11—C12—C130.39 (16)
O4—C5—C4—C3177.84 (10)C10—C11—C14—C15155.42 (11)
O1—C1—C2—C33.78 (15)C13—N1—C9—C101.19 (16)
O1—C1—C2—C7174.34 (10)C15—C16—C20—C19177.84 (11)
N1—C9—C10—C110.66 (17)C15—C16—C17—C18178.96 (11)
C11—C12—C13—N10.15 (17)C4—C5—C6—O3177.11 (9)
C1—C2—C3—C4176.90 (10)C4—C5—C6—C72.45 (16)
C1—C2—C7—C6177.00 (9)C20—C16—C15—C14146.38 (12)
C2—C3—C4—C50.61 (17)C20—C16—C17—C180.85 (17)
C2—C7—C6—O3178.84 (10)C14—C11—C12—C13177.72 (10)
C2—C7—C6—C50.68 (16)C14—C11—C10—C9178.05 (10)
C3—C2—C7—C61.15 (16)C17—C16—C15—C1433.42 (17)
C7—C2—C3—C41.20 (16)C17—C16—C20—C191.97 (17)
C16—C15—C14—C11179.32 (10)C18—N2—C19—C200.37 (18)
C16—C20—C19—N21.42 (19)C19—N2—C18—C171.59 (18)
C16—C17—C18—N20.98 (19)C8—O3—C6—C5177.99 (10)
C12—C11—C10—C90.15 (16)C8—O3—C6—C72.47 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.99 (2)1.65 (2)2.6295 (12)169 (2)
O4—H4···N2ii0.92 (2)1.84 (2)2.6868 (13)154 (2)
C4—H4A···O2iii0.952.533.2341 (14)132
C9—H9···O3iv0.952.453.3520 (14)158
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. DMR-2003932).

References

First citationBhattacharya, S., Stojaković, J., Saha, B. K. & MacGillivray, L. R. (2013). Org. Lett. 15, 744–747.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalixto-Campos, C., Carvalho, T. T., Hohmann, M. S. N., Pinho-Ribeiro, F. A., Fattori, V., Manchope, M. F., Zarpelon, A. C., Baracat, M. M., Georgetti, S. R., Casagrande, R. & Verri, W. A. (2015). J. Nat. Prod. 78, 1799–1808.  CAS PubMed Google Scholar
First citationDelori, A., Eddleston, M. D. & Jones, W. (2013). CrystEngComm, 15, 73–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIngole, A., Kadam, M., Dalu, A., Kute, S., Mange, P., Theng, V., Lahane, R., Nikas, A., Kawal, Y., Nagrik, S. & Patil, P. (2021). J. Drug. Deliv. Ther. 11, 200–204.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds