metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Amidino­pyridinium hexa­chlorido­stannate(IV) dihydrate

crossmark logo

aEnvironmental Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria, and bCentre Universitaire Abdelhafid Boussouf - Mila, Algeria
*Correspondence e-mail: rochdi.ghallab@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 January 2022; accepted 18 February 2022; online 3 March 2022)

In the title hydrated mol­ecular salt {systematic name: 4-[amino­(iminium­yl)meth­yl]pyridin-1-ium hexa­chlorido­stannate(IV) dihydrate}, (C6H9N3)[SnCl6]·2H2O, the tin atom lies on a crystallographic inversion centre and the organic cation shows whole-mol­ecule disorder. Numerous N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds link the components in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title hydrated mol­ecular salt, with formula (C6H9N3)·[SnCl6]·2H2O, crystallizes in the triclinic space group P[\overline{1}]. The asymmetric unit is constituted by a Sn0.5Cl3 fragment (Sn site symmetry [\overline{1}]), a 4-amidino­pyridinium cation (twice protonated at N1 and N2) and a water mol­ecule, as shown in Fig. 1[link].

[Figure 1]
Figure 1
The mol­ecular structure showing 30% displacement ellipsoids.

The cation shows whole-mol­ecule disorder about an inversion centre and the water mol­ecule is disordered over adjacent positions (O⋯O = 1.13 Å) and there is also static disorder of two of the chloride ions of the anion. With the exception of Cl3, where the occupancy ratio is 0.67/0.33 (for Cl3A/Cl3B), each disordered atom is shared between two crystallographic sites with occupancies of 0.50. There are no abnormalities in the bond lengths and angles and they are comparable to those of similar types (Liu et al., 2011[Liu, F., Zhang, F., Chen, Q. & Zhang, H. (2011). Acta Cryst. E67, o781.]; Ghallab et al., 2020[Ghallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279-1283.]).

In the extended structure, cationic and anionic layers occur, with water mol­ecules inter­calating between them as shown in the projection of the structure onto the ac and bc planes (Figs. 2[link] and 3[link]). Cohesion in the crystal is ensured by numerous hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1WAi 0.86 1.96 2.760 (15) 154
N1—H1⋯O1WBi 0.86 1.87 2.649 (15) 149
N2—H2A⋯Cl2ii 0.86 2.68 3.431 (11) 147
N3—H3A⋯O1WAiii 0.86 2.13 2.961 (16) 162
N3—H3A⋯O1WBiii 0.86 1.96 2.795 (16) 163
N3—H3B⋯Cl1Aiv 0.86 2.69 3.093 (16) 110
N3—H3B⋯Cl3Biv 0.86 2.56 3.420 (16) 175
O1WA—H1WA⋯Cl2v 0.85 2.77 3.415 (8) 134
O1WA—H1WB⋯Cl3Avi 0.85 2.41 3.154 (9) 147
O1WB—H1WC⋯Cl1Av 0.85 2.60 3.305 (10) 142
O1WB—H1WC⋯Cl1Bv 0.85 2.36 3.085 (10) 144
O1WB—H1WC⋯Cl1Avii 0.85 2.69 3.251 (12) 124
O1WB—H1WC⋯Cl1Bvii 0.85 2.83 3.396 (13) 126
C1—H1A⋯Cl3Aviii 0.93 2.67 3.561 (17) 161
C1—H1A⋯Cl3Bviii 0.93 2.43 3.356 (17) 174
C5—H5⋯Cl1Avii 0.93 2.80 3.674 (12) 157
C5—H5⋯Cl1Bvii 0.93 2.56 3.385 (12) 149
Symmetry codes: (i) [-x+1, -y+4, -z+2]; (ii) [-x, -y+1, -z+1]; (iii) [x, y-1, z]; (iv) [-x+1, -y+2, -z+2]; (v) x, y+1, z+1; (vi) x, y+2, z+1; (vii) [-x+1, -y+3, -z+2]; (viii) [-x+1, -y+2, -z+1].
[Figure 2]
Figure 2
Projection of the crystal packing on the ac plane.
[Figure 3]
Figure 3
Projection of the crystal packing on the bc plane.

Synthesis and crystallization

Following the method of preparation described in the literature (Bouchene et al., 2018[Bouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). Acta Cryst. E74, 206-211.]), the compound was synthesized via the aqueous technique. A millimeter-sized transparent crystal was formed after three months of slow evaporation at ambient temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The disordered atoms were treated with constraints on distances and angles (by the SAME command and PART options). With the exception of Cl3, where the ratio is 0.67/0.33, each disordered atom is shared between two crystallographic sites with occupancy rates of 0.50.

Table 2
Experimental details

Crystal data
Chemical formula (C6H9N3)[SnCl6]·2H2O
Mr 490.58
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.4224 (13), 7.4518 (11), 8.4986 (16)
α, β, γ (°) 105.726 (7), 97.426 (9), 112.383 (7)
V3) 403.85 (12)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.57
Crystal size (mm) 0.17 × 0.13 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.676, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 10469, 2442, 1889
Rint 0.028
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.085, 1.15
No. of reflections 2442
No. of parameters 154
No. of restraints 53
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.22, −1.35
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SAINT (Bruker, 2016); cell refinement: APEX2 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-[Amino(iminiumyl)methyl]pyridin-1-ium hexachloridostannate(IV) dihydrate top
Crystal data top
(C6H9N3)[SnCl6]·2H2OZ = 1
Mr = 490.58F(000) = 238
Triclinic, P1Dx = 2.017 Mg m3
a = 7.4224 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4518 (11) ÅCell parameters from 1889 reflections
c = 8.4986 (16) Åθ = 5.0–30.5°
α = 105.726 (7)°µ = 2.57 mm1
β = 97.426 (9)°T = 296 K
γ = 112.383 (7)°Block, colourless
V = 403.85 (12) Å30.17 × 0.13 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
1889 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 30.5°, θmin = 5.0°
Tmin = 0.676, Tmax = 0.754h = 1010
10469 measured reflectionsk = 1010
2442 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0167P)2 + 0.8036P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2442 reflectionsΔρmax = 1.22 e Å3
154 parametersΔρmin = 1.35 e Å3
53 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.0000000.5000000.5000000.04673 (15)
Cl20.0563 (2)0.39683 (16)0.19228 (11)0.0675 (4)
Cl1B0.2964 (10)0.7987 (8)0.5355 (8)0.0640 (13)0.5
Cl3B0.2133 (9)0.3209 (8)0.5250 (8)0.0607 (14)0.33
Cl1A0.3472 (10)0.7539 (8)0.5316 (7)0.0612 (12)0.5
Cl3A0.1294 (5)0.2493 (4)0.4986 (4)0.0711 (9)0.67
C30.470 (3)1.475 (3)0.998 (2)0.039 (3)0.5
C40.5060 (13)1.6621 (11)1.1133 (9)0.0462 (19)0.5
H40.4656421.6672991.2129250.055*0.5
C50.5998 (16)1.8390 (14)1.0820 (13)0.062 (2)0.5
H50.6184361.9650081.1575900.074*0.5
N10.666 (2)1.8325 (16)0.9421 (16)0.081 (3)0.5
H10.7349611.9464200.9278150.097*0.5
C10.625 (3)1.6494 (18)0.8222 (18)0.088 (5)0.5
H1A0.6619581.6466340.7213740.105*0.5
C20.5291 (16)1.4684 (15)0.8517 (10)0.059 (2)0.5
H20.5042991.3421670.7723950.071*0.5
C60.3621 (14)1.2750 (14)1.0199 (13)0.053 (2)0.5
N20.227 (2)1.1247 (14)0.8868 (15)0.099 (4)0.5
H2A0.1530591.0081270.8950280.119*0.5
H2B0.2110661.1424210.7909760.119*0.5
N30.397 (2)1.2666 (18)1.1621 (18)0.089 (5)0.5
H3A0.3292331.1549021.1801990.106*0.5
H3B0.4887561.3723731.2436830.106*0.5
O1WA0.0858 (13)1.8847 (11)1.1795 (10)0.069 (2)0.5
H1WA0.1193621.7857361.1673880.103*0.5
H1WB0.1014221.9450361.2840780.103*0.5
O1WB0.2372 (18)1.8798 (12)1.1997 (9)0.091 (3)0.5
H1WC0.2973361.9133491.3026460.137*0.5
H1WD0.1103551.8283481.1876570.137*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0750 (3)0.02256 (16)0.02323 (16)0.00466 (17)0.00409 (16)0.00756 (12)
Cl20.1091 (10)0.0438 (5)0.0264 (4)0.0154 (6)0.0077 (5)0.0086 (4)
Cl1B0.064 (3)0.046 (2)0.0547 (17)0.0007 (15)0.0018 (17)0.0211 (17)
Cl3B0.067 (4)0.051 (3)0.056 (2)0.025 (2)0.004 (2)0.019 (2)
Cl1A0.072 (3)0.0429 (19)0.0492 (14)0.0061 (14)0.0161 (18)0.0157 (13)
Cl3A0.111 (3)0.0488 (14)0.0504 (13)0.0290 (14)0.0200 (16)0.0222 (12)
C30.041 (10)0.040 (8)0.038 (3)0.018 (7)0.013 (5)0.018 (4)
C40.057 (5)0.041 (4)0.033 (3)0.014 (4)0.012 (3)0.013 (3)
C50.058 (6)0.048 (5)0.073 (6)0.019 (5)0.020 (5)0.017 (4)
N10.096 (9)0.065 (6)0.116 (9)0.038 (6)0.054 (8)0.064 (7)
C10.137 (12)0.087 (9)0.092 (9)0.067 (10)0.081 (8)0.058 (8)
C20.083 (7)0.075 (6)0.039 (4)0.053 (6)0.023 (4)0.017 (4)
C60.049 (6)0.045 (4)0.064 (6)0.019 (4)0.018 (5)0.020 (4)
N20.120 (10)0.042 (4)0.094 (8)0.009 (6)0.017 (7)0.005 (5)
N30.094 (9)0.045 (6)0.092 (9)0.005 (6)0.006 (7)0.037 (6)
O1WA0.094 (6)0.049 (4)0.053 (4)0.014 (4)0.029 (4)0.023 (3)
O1WB0.133 (8)0.045 (4)0.044 (4)0.006 (5)0.005 (5)0.018 (3)
Geometric parameters (Å, º) top
Sn1—Cl22.4470 (10)C3—C41.372 (15)
Sn1—Cl2i2.4470 (10)C3—C21.366 (15)
Sn1—Cl1Bi2.371 (6)C3—C61.48 (2)
Sn1—Cl1B2.371 (6)C4—C51.354 (10)
Sn1—Cl3Bi2.451 (7)C5—N11.339 (11)
Sn1—Cl3B2.451 (7)N1—C11.358 (12)
Sn1—Cl1A2.475 (7)C1—C21.374 (12)
Sn1—Cl1Ai2.475 (7)C6—N21.306 (14)
Sn1—Cl3Ai2.402 (4)C6—N31.226 (16)
Sn1—Cl3A2.402 (4)
Cl2—Sn1—Cl2i180.0Cl1B—Sn1—Cl3Ai78.11 (14)
Cl2—Sn1—Cl3Bi87.17 (16)Cl3B—Sn1—Cl3Bi180.0
Cl2i—Sn1—Cl3Bi92.83 (16)Cl3B—Sn1—Cl1Ai105.72 (16)
Cl2—Sn1—Cl3B92.83 (16)Cl3Bi—Sn1—Cl1Ai74.28 (16)
Cl2i—Sn1—Cl3B87.17 (16)Cl3A—Sn1—Cl289.55 (8)
Cl2i—Sn1—Cl1A90.98 (14)Cl3Ai—Sn1—Cl290.45 (8)
Cl2—Sn1—Cl1A89.02 (14)Cl3A—Sn1—Cl1A88.16 (12)
Cl2—Sn1—Cl1Ai90.98 (14)Cl3Ai—Sn1—Cl1A91.84 (12)
Cl2i—Sn1—Cl1Ai89.02 (14)Cl3Ai—Sn1—Cl3A180.0
Cl1B—Sn1—Cl2i89.79 (15)C4—C3—C6123.3 (12)
Cl1B—Sn1—Cl290.21 (15)C2—C3—C4119.7 (15)
Cl1Bi—Sn1—Cl289.79 (15)C2—C3—C6117.0 (12)
Cl1Bi—Sn1—Cl2i90.21 (15)C5—C4—C3120.1 (10)
Cl1Bi—Sn1—Cl1B180.0N1—C5—C4120.0 (9)
Cl1B—Sn1—Cl3B87.92 (17)C5—N1—C1121.3 (9)
Cl1Bi—Sn1—Cl3B92.08 (17)N1—C1—C2119.2 (10)
Cl1Bi—Sn1—Cl3Bi87.92 (17)C3—C2—C1119.5 (11)
Cl1B—Sn1—Cl3Bi92.08 (17)N2—C6—C3116.5 (11)
Cl1B—Sn1—Cl1Ai166.23 (14)N3—C6—C3118.0 (11)
Cl1Bi—Sn1—Cl1Ai13.77 (14)N3—C6—N2125.4 (11)
Cl1Bi—Sn1—Cl3Ai101.89 (14)
C5—N1—C1—C26 (3)C2—C3—C6—N242 (2)
C1—N1—C5—C46 (2)C2—C3—C6—N3142.5 (16)
N1—C1—C2—C32 (3)C4—C3—C6—N2135.9 (17)
C1—C2—C3—C40 (3)C4—C3—C6—N340 (3)
C1—C2—C3—C6178.1 (16)C2—C3—C4—C50 (3)
C6—C3—C4—C5177.7 (14)C3—C4—C5—N13 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1WAii0.861.962.760 (15)154
N1—H1···O1WBii0.861.872.649 (15)149
N2—H2A···Cl2i0.862.683.431 (11)147
N3—H3A···O1WAiii0.862.132.961 (16)162
N3—H3A···O1WBiii0.861.962.795 (16)163
N3—H3B···Cl1Aiv0.862.693.093 (16)110
N3—H3B···Cl3Biv0.862.563.420 (16)175
O1WA—H1WA···Cl2v0.852.773.415 (8)134
O1WA—H1WB···Cl3Avi0.852.413.154 (9)147
O1WB—H1WC···Cl1Av0.852.603.305 (10)142
O1WB—H1WC···Cl1Bv0.852.363.085 (10)144
O1WB—H1WC···Cl1Avii0.852.693.251 (12)124
O1WB—H1WC···Cl1Bvii0.852.833.396 (13)126
C1—H1A···Cl3Aviii0.932.673.561 (17)161
C1—H1A···Cl3Bviii0.932.433.356 (17)174
C5—H5···Cl1Avii0.932.803.674 (12)157
C5—H5···Cl1Bvii0.932.563.385 (12)149
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+4, z+2; (iii) x, y1, z; (iv) x+1, y+2, z+2; (v) x, y+1, z+1; (vi) x, y+2, z+1; (vii) x+1, y+3, z+2; (viii) x+1, y+2, z+1.
 

Acknowledgements

Thanks are due to DRSDT–Algeria for support.

Funding information

Funding for this research was provided by: Unité de recherche de chimie de l'environnement, moléculaire et structurale UR.CHEMS; Direction Générale de la Recherche Scientifique et du Developpement Technologique DGRSDT Algérie.

References

First citationBouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). Acta Cryst. E74, 206–211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279–1283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, F., Zhang, F., Chen, Q. & Zhang, H. (2011). Acta Cryst. E67, o781.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds