metal-organic compounds
4-Amidinopyridinium hexachloridostannate(IV) dihydrate
aEnvironmental Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria, and bCentre Universitaire Abdelhafid Boussouf - Mila, Algeria
*Correspondence e-mail: rochdi.ghallab@gmail.com
In the title hydrated molecular salt {systematic name: 4-[amino(iminiumyl)methyl]pyridin-1-ium hexachloridostannate(IV) dihydrate}, (C6H9N3)[SnCl6]·2H2O, the tin atom lies on a crystallographic inversion centre and the organic cation shows whole-molecule disorder. Numerous N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds link the components in the crystal.
CCDC reference: 2153109
Structure description
The title hydrated molecular salt, with formula (C6H9N3)·[SnCl6]·2H2O, crystallizes in the triclinic P. The is constituted by a Sn0.5Cl3 fragment (Sn ), a 4-amidinopyridinium cation (twice protonated at N1 and N2) and a water molecule, as shown in Fig. 1.
The cation shows whole-molecule disorder about an inversion centre and the water molecule is disordered over adjacent positions (O⋯O = 1.13 Å) and there is also static disorder of two of the chloride ions of the anion. With the exception of Cl3, where the occupancy ratio is 0.67/0.33 (for Cl3A/Cl3B), each disordered atom is shared between two crystallographic sites with occupancies of 0.50. There are no abnormalities in the bond lengths and angles and they are comparable to those of similar types (Liu et al., 2011; Ghallab et al., 2020).
In the extended structure, cationic and anionic layers occur, with water molecules intercalating between them as shown in the projection of the structure onto the ac and bc planes (Figs. 2 and 3). Cohesion in the crystal is ensured by numerous hydrogen bonds (Table 1).
Synthesis and crystallization
Following the method of preparation described in the literature (Bouchene et al., 2018), the compound was synthesized via the aqueous technique. A millimeter-sized transparent crystal was formed after three months of slow evaporation at ambient temperature.
Refinement
Crystal data, data collection and structure . The disordered atoms were treated with constraints on distances and angles (by the SAME command and PART options). With the exception of Cl3, where the ratio is 0.67/0.33, each disordered atom is shared between two crystallographic sites with occupancy rates of 0.50.
details are summarized in Table 2
|
Structural data
CCDC reference: 2153109
https://doi.org/10.1107/S241431462200195X/hb4399sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462200195X/hb4399Isup2.hkl
Data collection: SAINT (Bruker, 2016); cell
APEX2 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).(C6H9N3)[SnCl6]·2H2O | Z = 1 |
Mr = 490.58 | F(000) = 238 |
Triclinic, P1 | Dx = 2.017 Mg m−3 |
a = 7.4224 (13) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.4518 (11) Å | Cell parameters from 1889 reflections |
c = 8.4986 (16) Å | θ = 5.0–30.5° |
α = 105.726 (7)° | µ = 2.57 mm−1 |
β = 97.426 (9)° | T = 296 K |
γ = 112.383 (7)° | Block, colourless |
V = 403.85 (12) Å3 | 0.17 × 0.13 × 0.11 mm |
Bruker APEXII CCD diffractometer | 1889 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.028 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 30.5°, θmin = 5.0° |
Tmin = 0.676, Tmax = 0.754 | h = −10→10 |
10469 measured reflections | k = −10→10 |
2442 independent reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0167P)2 + 0.8036P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max < 0.001 |
2442 reflections | Δρmax = 1.22 e Å−3 |
154 parameters | Δρmin = −1.35 e Å−3 |
53 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sn1 | 0.000000 | 0.500000 | 0.500000 | 0.04673 (15) | |
Cl2 | −0.0563 (2) | 0.39683 (16) | 0.19228 (11) | 0.0675 (4) | |
Cl1B | 0.2964 (10) | 0.7987 (8) | 0.5355 (8) | 0.0640 (13) | 0.5 |
Cl3B | 0.2133 (9) | 0.3209 (8) | 0.5250 (8) | 0.0607 (14) | 0.33 |
Cl1A | 0.3472 (10) | 0.7539 (8) | 0.5316 (7) | 0.0612 (12) | 0.5 |
Cl3A | 0.1294 (5) | 0.2493 (4) | 0.4986 (4) | 0.0711 (9) | 0.67 |
C3 | 0.470 (3) | 1.475 (3) | 0.998 (2) | 0.039 (3) | 0.5 |
C4 | 0.5060 (13) | 1.6621 (11) | 1.1133 (9) | 0.0462 (19) | 0.5 |
H4 | 0.465642 | 1.667299 | 1.212925 | 0.055* | 0.5 |
C5 | 0.5998 (16) | 1.8390 (14) | 1.0820 (13) | 0.062 (2) | 0.5 |
H5 | 0.618436 | 1.965008 | 1.157590 | 0.074* | 0.5 |
N1 | 0.666 (2) | 1.8325 (16) | 0.9421 (16) | 0.081 (3) | 0.5 |
H1 | 0.734961 | 1.946420 | 0.927815 | 0.097* | 0.5 |
C1 | 0.625 (3) | 1.6494 (18) | 0.8222 (18) | 0.088 (5) | 0.5 |
H1A | 0.661958 | 1.646634 | 0.721374 | 0.105* | 0.5 |
C2 | 0.5291 (16) | 1.4684 (15) | 0.8517 (10) | 0.059 (2) | 0.5 |
H2 | 0.504299 | 1.342167 | 0.772395 | 0.071* | 0.5 |
C6 | 0.3621 (14) | 1.2750 (14) | 1.0199 (13) | 0.053 (2) | 0.5 |
N2 | 0.227 (2) | 1.1247 (14) | 0.8868 (15) | 0.099 (4) | 0.5 |
H2A | 0.153059 | 1.008127 | 0.895028 | 0.119* | 0.5 |
H2B | 0.211066 | 1.142421 | 0.790976 | 0.119* | 0.5 |
N3 | 0.397 (2) | 1.2666 (18) | 1.1621 (18) | 0.089 (5) | 0.5 |
H3A | 0.329233 | 1.154902 | 1.180199 | 0.106* | 0.5 |
H3B | 0.488756 | 1.372373 | 1.243683 | 0.106* | 0.5 |
O1WA | 0.0858 (13) | 1.8847 (11) | 1.1795 (10) | 0.069 (2) | 0.5 |
H1WA | 0.119362 | 1.785736 | 1.167388 | 0.103* | 0.5 |
H1WB | 0.101422 | 1.945036 | 1.284078 | 0.103* | 0.5 |
O1WB | 0.2372 (18) | 1.8798 (12) | 1.1997 (9) | 0.091 (3) | 0.5 |
H1WC | 0.297336 | 1.913349 | 1.302646 | 0.137* | 0.5 |
H1WD | 0.110355 | 1.828348 | 1.187657 | 0.137* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.0750 (3) | 0.02256 (16) | 0.02323 (16) | 0.00466 (17) | 0.00409 (16) | 0.00756 (12) |
Cl2 | 0.1091 (10) | 0.0438 (5) | 0.0264 (4) | 0.0154 (6) | 0.0077 (5) | 0.0086 (4) |
Cl1B | 0.064 (3) | 0.046 (2) | 0.0547 (17) | −0.0007 (15) | −0.0018 (17) | 0.0211 (17) |
Cl3B | 0.067 (4) | 0.051 (3) | 0.056 (2) | 0.025 (2) | −0.004 (2) | 0.019 (2) |
Cl1A | 0.072 (3) | 0.0429 (19) | 0.0492 (14) | 0.0061 (14) | 0.0161 (18) | 0.0157 (13) |
Cl3A | 0.111 (3) | 0.0488 (14) | 0.0504 (13) | 0.0290 (14) | 0.0200 (16) | 0.0222 (12) |
C3 | 0.041 (10) | 0.040 (8) | 0.038 (3) | 0.018 (7) | 0.013 (5) | 0.018 (4) |
C4 | 0.057 (5) | 0.041 (4) | 0.033 (3) | 0.014 (4) | 0.012 (3) | 0.013 (3) |
C5 | 0.058 (6) | 0.048 (5) | 0.073 (6) | 0.019 (5) | 0.020 (5) | 0.017 (4) |
N1 | 0.096 (9) | 0.065 (6) | 0.116 (9) | 0.038 (6) | 0.054 (8) | 0.064 (7) |
C1 | 0.137 (12) | 0.087 (9) | 0.092 (9) | 0.067 (10) | 0.081 (8) | 0.058 (8) |
C2 | 0.083 (7) | 0.075 (6) | 0.039 (4) | 0.053 (6) | 0.023 (4) | 0.017 (4) |
C6 | 0.049 (6) | 0.045 (4) | 0.064 (6) | 0.019 (4) | 0.018 (5) | 0.020 (4) |
N2 | 0.120 (10) | 0.042 (4) | 0.094 (8) | 0.009 (6) | 0.017 (7) | 0.005 (5) |
N3 | 0.094 (9) | 0.045 (6) | 0.092 (9) | −0.005 (6) | −0.006 (7) | 0.037 (6) |
O1WA | 0.094 (6) | 0.049 (4) | 0.053 (4) | 0.014 (4) | 0.029 (4) | 0.023 (3) |
O1WB | 0.133 (8) | 0.045 (4) | 0.044 (4) | −0.006 (5) | −0.005 (5) | 0.018 (3) |
Sn1—Cl2 | 2.4470 (10) | C3—C4 | 1.372 (15) |
Sn1—Cl2i | 2.4470 (10) | C3—C2 | 1.366 (15) |
Sn1—Cl1Bi | 2.371 (6) | C3—C6 | 1.48 (2) |
Sn1—Cl1B | 2.371 (6) | C4—C5 | 1.354 (10) |
Sn1—Cl3Bi | 2.451 (7) | C5—N1 | 1.339 (11) |
Sn1—Cl3B | 2.451 (7) | N1—C1 | 1.358 (12) |
Sn1—Cl1A | 2.475 (7) | C1—C2 | 1.374 (12) |
Sn1—Cl1Ai | 2.475 (7) | C6—N2 | 1.306 (14) |
Sn1—Cl3Ai | 2.402 (4) | C6—N3 | 1.226 (16) |
Sn1—Cl3A | 2.402 (4) | ||
Cl2—Sn1—Cl2i | 180.0 | Cl1B—Sn1—Cl3Ai | 78.11 (14) |
Cl2—Sn1—Cl3Bi | 87.17 (16) | Cl3B—Sn1—Cl3Bi | 180.0 |
Cl2i—Sn1—Cl3Bi | 92.83 (16) | Cl3B—Sn1—Cl1Ai | 105.72 (16) |
Cl2—Sn1—Cl3B | 92.83 (16) | Cl3Bi—Sn1—Cl1Ai | 74.28 (16) |
Cl2i—Sn1—Cl3B | 87.17 (16) | Cl3A—Sn1—Cl2 | 89.55 (8) |
Cl2i—Sn1—Cl1A | 90.98 (14) | Cl3Ai—Sn1—Cl2 | 90.45 (8) |
Cl2—Sn1—Cl1A | 89.02 (14) | Cl3A—Sn1—Cl1A | 88.16 (12) |
Cl2—Sn1—Cl1Ai | 90.98 (14) | Cl3Ai—Sn1—Cl1A | 91.84 (12) |
Cl2i—Sn1—Cl1Ai | 89.02 (14) | Cl3Ai—Sn1—Cl3A | 180.0 |
Cl1B—Sn1—Cl2i | 89.79 (15) | C4—C3—C6 | 123.3 (12) |
Cl1B—Sn1—Cl2 | 90.21 (15) | C2—C3—C4 | 119.7 (15) |
Cl1Bi—Sn1—Cl2 | 89.79 (15) | C2—C3—C6 | 117.0 (12) |
Cl1Bi—Sn1—Cl2i | 90.21 (15) | C5—C4—C3 | 120.1 (10) |
Cl1Bi—Sn1—Cl1B | 180.0 | N1—C5—C4 | 120.0 (9) |
Cl1B—Sn1—Cl3B | 87.92 (17) | C5—N1—C1 | 121.3 (9) |
Cl1Bi—Sn1—Cl3B | 92.08 (17) | N1—C1—C2 | 119.2 (10) |
Cl1Bi—Sn1—Cl3Bi | 87.92 (17) | C3—C2—C1 | 119.5 (11) |
Cl1B—Sn1—Cl3Bi | 92.08 (17) | N2—C6—C3 | 116.5 (11) |
Cl1B—Sn1—Cl1Ai | 166.23 (14) | N3—C6—C3 | 118.0 (11) |
Cl1Bi—Sn1—Cl1Ai | 13.77 (14) | N3—C6—N2 | 125.4 (11) |
Cl1Bi—Sn1—Cl3Ai | 101.89 (14) | ||
C5—N1—C1—C2 | −6 (3) | C2—C3—C6—N2 | −42 (2) |
C1—N1—C5—C4 | 6 (2) | C2—C3—C6—N3 | 142.5 (16) |
N1—C1—C2—C3 | 2 (3) | C4—C3—C6—N2 | 135.9 (17) |
C1—C2—C3—C4 | 0 (3) | C4—C3—C6—N3 | −40 (3) |
C1—C2—C3—C6 | 178.1 (16) | C2—C3—C4—C5 | 0 (3) |
C6—C3—C4—C5 | −177.7 (14) | C3—C4—C5—N1 | −3 (2) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1WAii | 0.86 | 1.96 | 2.760 (15) | 154 |
N1—H1···O1WBii | 0.86 | 1.87 | 2.649 (15) | 149 |
N2—H2A···Cl2i | 0.86 | 2.68 | 3.431 (11) | 147 |
N3—H3A···O1WAiii | 0.86 | 2.13 | 2.961 (16) | 162 |
N3—H3A···O1WBiii | 0.86 | 1.96 | 2.795 (16) | 163 |
N3—H3B···Cl1Aiv | 0.86 | 2.69 | 3.093 (16) | 110 |
N3—H3B···Cl3Biv | 0.86 | 2.56 | 3.420 (16) | 175 |
O1WA—H1WA···Cl2v | 0.85 | 2.77 | 3.415 (8) | 134 |
O1WA—H1WB···Cl3Avi | 0.85 | 2.41 | 3.154 (9) | 147 |
O1WB—H1WC···Cl1Av | 0.85 | 2.60 | 3.305 (10) | 142 |
O1WB—H1WC···Cl1Bv | 0.85 | 2.36 | 3.085 (10) | 144 |
O1WB—H1WC···Cl1Avii | 0.85 | 2.69 | 3.251 (12) | 124 |
O1WB—H1WC···Cl1Bvii | 0.85 | 2.83 | 3.396 (13) | 126 |
C1—H1A···Cl3Aviii | 0.93 | 2.67 | 3.561 (17) | 161 |
C1—H1A···Cl3Bviii | 0.93 | 2.43 | 3.356 (17) | 174 |
C5—H5···Cl1Avii | 0.93 | 2.80 | 3.674 (12) | 157 |
C5—H5···Cl1Bvii | 0.93 | 2.56 | 3.385 (12) | 149 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+4, −z+2; (iii) x, y−1, z; (iv) −x+1, −y+2, −z+2; (v) x, y+1, z+1; (vi) x, y+2, z+1; (vii) −x+1, −y+3, −z+2; (viii) −x+1, −y+2, −z+1. |
Acknowledgements
Thanks are due to DRSDT–Algeria for support.
Funding information
Funding for this research was provided by: Unité de recherche de chimie de l'environnement, moléculaire et structurale UR.CHEMS; Direction Générale de la Recherche Scientifique et du Developpement Technologique DGRSDT Algérie.
References
Bouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). Acta Cryst. E74, 206–211. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279–1283. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, F., Zhang, F., Chen, Q. & Zhang, H. (2011). Acta Cryst. E67, o781. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.