metal-organic compounds
Bis(2-amino-3,5-dichloropyridinium) hexachloridostannate(IV) dihydrate
aEnvironmental Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria
*Correspondence e-mail: rochdi.ghallab@gmail.com
The title hybrid compound, (C5H5N2Cl2)2[SnCl6]·2H2O, was synthesized and its structure was identified by single-crystal X-ray diffraction. The structure is non-polymeric (0D) in terms of containing isolated [SnCl6]2− polyhedra. The special position (0,0,0) of the SnIV atom in the gives rise to a stacking structure with alternating cationic and anionic layers parallel to (001). The water molecules are intercalated between these layers, which are linked by cation–anion hydrogen bonds and dominant non-covalent interactions. The stability of the three-dimensional network for this compound is also discussed.
CCDC reference: 2152891
Structure description
Bis(2-amino-3,5-dichloropyridinium) hexachloridostannate(IV) dihydrate, (C5H5N2Cl2)2[SnCl6]·2H2O, crystallizes in the triclinic P (Fig. 1). The tin(IV) atom is hexacoordinated by chlorine atoms, generating a weakly distorted octahedron. The Sn—Cl bond lengths range from 2.4162 (5) to 2.4389 (5) Å while the Cl—Sn—Cl angles have a deviation of about ±1° [89.277 (19)–90.723 (19)°], see Table 1. These values are comparable to those of the same anion associated with other types of cations (Bouchene et al., 2018). The absence of larger distortions can probably be attributed to the fact that the hexachloridostannate(IV) anions are free, i.e. none of the chloride ions are bridging, although they do accept N—H⋯Cl, O—H⋯Cl and C—H⋯Cl hydrogen bonds (Table 2).
|
In the cation, we note an increase in C1—C2 and C2—Cl4 bond lengths and a decrease in C1—N2 bond lengths (Table 1). This phenomenon is due to resonance-assisted hydrogen bonding, commonly observed for this kind of molecule (Bertolasi et al., 1998). The C—N—C angle is 124.32 (17)°. This large angle can be attributed to the protonation of the N atom. These values are comparable with those of the same cation associated with other types of anions (Ghallab et al., 2020). The intermolecular interactions in the title compound were analysed using PLATON (Spek, 2020), which shows that the structural cohesion in the is ensured by N—H⋯O, N—H⋯Cl, O—H⋯Cl and C—H⋯Cl hydrogen bonds (Fig. 2a, Table 2). We also note the presence of Cl⋯Cl halogen bonds (Fig. 2a), and of π-stacking interactions between centrosymmetrically related aromatic rings of the cations as well as Y—X⋯Cg interactions (Fig. 2b).
Synthesis and crystallization
Tin(II) chloride dihydrate (2.25 mmol) was mixed with 2-amino-3,5-dichloropyridine (3.3 mmol) in 1:2 molar ratio and a few drops of hydrochloric acid in an
of distilled water were added. After stirring, the mixture was refluxed for one h at 343 K. After two weeks of slow solvent evaporation, single crystals suitable for X-ray analysis were obtained.Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 2152891
https://doi.org/10.1107/S2414314622001912/bh4066sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622001912/bh4066Isup2.hkl
Data collection: SAINT (Bruker, 2016); cell
APEX2 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).(C5H5Cl2N2)2[SnCl6]·2H2O | Z = 1 |
Mr = 695.44 | F(000) = 338 |
Triclinic, P1 | Dx = 1.933 Mg m−3 |
a = 7.4624 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.4715 (2) Å | Cell parameters from 8759 reflections |
c = 10.1324 (2) Å | θ = 2.9–30.9° |
α = 101.434 (1)° | µ = 2.20 mm−1 |
β = 90.043 (1)° | T = 296 K |
γ = 107.554 (1)° | Block, clear light white |
V = 597.34 (2) Å3 | 0.17 × 0.13 × 0.11 mm |
Bruker APEXII CCD diffractometer | 3320 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.017 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 30.5°, θmin = 3.6° |
Tmin = 0.716, Tmax = 0.785 | h = −10→10 |
13446 measured reflections | k = −11→12 |
3617 independent reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.057 | w = 1/[σ2(Fo2) + (0.0221P)2 + 0.2999P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3617 reflections | Δρmax = 0.43 e Å−3 |
125 parameters | Δρmin = −0.55 e Å−3 |
0 restraints | Extinction correction: SHELXL (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: iterative | Extinction coefficient: 0.0164 (12) |
Refinement. Approximate positions for all H atoms were first obtained from difference Fourier maps. H atoms were then placed in idealized positions and refined using the riding-atom approximation: C—H = 0.93 Å and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(C,N). H atoms of the water molecule were located in a difference Fourier map and the water molecule geometry was eventually idealized, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O). |
x | y | z | Uiso*/Ueq | ||
Sn1 | 1.000000 | 0.000000 | 0.000000 | 0.03672 (7) | |
Cl1 | 0.75548 (7) | −0.01363 (7) | 0.15744 (5) | 0.05267 (13) | |
Cl2 | 0.79968 (8) | 0.04433 (7) | −0.17040 (5) | 0.05363 (13) | |
Cl3 | 0.87570 (9) | −0.30370 (6) | −0.08206 (5) | 0.05831 (15) | |
O1W | 0.6070 (3) | 0.3039 (2) | 0.02149 (16) | 0.0668 (5) | |
H1WA | 0.488075 | 0.275909 | 0.008232 | 0.100* | |
H1WB | 0.646535 | 0.225509 | −0.021598 | 0.100* | |
N1 | 0.6643 (3) | 0.3678 (2) | 0.29104 (16) | 0.0475 (4) | |
H1 | 0.636615 | 0.323122 | 0.206756 | 0.057* | |
C1 | 0.7864 (3) | 0.5252 (2) | 0.32410 (19) | 0.0423 (4) | |
C2 | 0.8268 (3) | 0.5946 (2) | 0.4640 (2) | 0.0440 (4) | |
C3 | 0.7460 (3) | 0.5045 (3) | 0.55683 (19) | 0.0500 (5) | |
H3 | 0.773367 | 0.551264 | 0.648414 | 0.060* | |
C4 | 0.6218 (3) | 0.3417 (3) | 0.5144 (2) | 0.0485 (5) | |
C5 | 0.5824 (3) | 0.2753 (3) | 0.3814 (2) | 0.0504 (5) | |
H5 | 0.499435 | 0.166763 | 0.352231 | 0.061* | |
N2 | 0.8609 (3) | 0.6033 (3) | 0.2280 (2) | 0.0635 (5) | |
H2A | 0.831417 | 0.553756 | 0.144754 | 0.076* | |
H2B | 0.939027 | 0.703933 | 0.248386 | 0.076* | |
Cl4 | 0.97856 (10) | 0.79620 (8) | 0.51057 (8) | 0.0752 (2) | |
Cl5 | 0.51633 (12) | 0.22629 (11) | 0.63144 (8) | 0.0814 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.04012 (10) | 0.03823 (10) | 0.02500 (8) | 0.00279 (7) | 0.00185 (6) | 0.00539 (6) |
Cl1 | 0.0505 (3) | 0.0630 (3) | 0.0385 (2) | 0.0095 (2) | 0.0146 (2) | 0.0090 (2) |
Cl2 | 0.0537 (3) | 0.0674 (3) | 0.0377 (2) | 0.0142 (2) | −0.0065 (2) | 0.0131 (2) |
Cl3 | 0.0850 (4) | 0.0373 (2) | 0.0378 (2) | 0.0008 (2) | 0.0014 (2) | 0.00182 (18) |
O1W | 0.0687 (10) | 0.0721 (11) | 0.0450 (8) | 0.0080 (8) | −0.0052 (7) | 0.0001 (8) |
N1 | 0.0607 (10) | 0.0453 (9) | 0.0327 (7) | 0.0142 (8) | 0.0013 (7) | 0.0026 (6) |
C1 | 0.0504 (10) | 0.0414 (9) | 0.0383 (9) | 0.0185 (8) | 0.0079 (8) | 0.0083 (7) |
C2 | 0.0461 (10) | 0.0422 (9) | 0.0421 (9) | 0.0178 (8) | −0.0021 (8) | −0.0014 (8) |
C3 | 0.0571 (12) | 0.0667 (13) | 0.0328 (8) | 0.0331 (10) | −0.0002 (8) | 0.0038 (8) |
C4 | 0.0546 (12) | 0.0595 (12) | 0.0439 (10) | 0.0288 (10) | 0.0119 (9) | 0.0216 (9) |
C5 | 0.0538 (12) | 0.0443 (10) | 0.0524 (11) | 0.0132 (9) | 0.0055 (9) | 0.0112 (9) |
N2 | 0.0852 (14) | 0.0542 (11) | 0.0511 (10) | 0.0171 (10) | 0.0201 (10) | 0.0175 (9) |
Cl4 | 0.0688 (4) | 0.0496 (3) | 0.0897 (5) | 0.0096 (3) | −0.0104 (3) | −0.0128 (3) |
Cl5 | 0.0971 (5) | 0.1009 (5) | 0.0742 (4) | 0.0474 (4) | 0.0359 (4) | 0.0562 (4) |
Sn1—Cl1 | 2.4162 (5) | C1—C2 | 1.417 (3) |
Sn1—Cl1i | 2.4162 (5) | C1—N2 | 1.315 (3) |
Sn1—Cl2 | 2.4389 (5) | C2—C3 | 1.356 (3) |
Sn1—Cl2i | 2.4389 (5) | C2—Cl4 | 1.713 (2) |
Sn1—Cl3 | 2.4253 (5) | C3—H3 | 0.9300 |
Sn1—Cl3i | 2.4253 (5) | C3—C4 | 1.393 (3) |
O1W—H1WA | 0.8499 | C4—C5 | 1.348 (3) |
O1W—H1WB | 0.8496 | C4—Cl5 | 1.726 (2) |
N1—H1 | 0.8600 | C5—H5 | 0.9300 |
N1—C1 | 1.345 (3) | N2—H2A | 0.8600 |
N1—C5 | 1.350 (3) | N2—H2B | 0.8600 |
Cl1—Sn1—Cl1i | 180.0 | N1—C1—C2 | 116.00 (18) |
Cl1—Sn1—Cl2 | 90.722 (19) | N2—C1—N1 | 119.49 (18) |
Cl1i—Sn1—Cl2 | 89.278 (19) | N2—C1—C2 | 124.50 (19) |
Cl1—Sn1—Cl2i | 89.277 (19) | C1—C2—Cl4 | 117.52 (16) |
Cl1i—Sn1—Cl2i | 90.723 (19) | C3—C2—C1 | 120.82 (18) |
Cl1—Sn1—Cl3 | 89.906 (19) | C3—C2—Cl4 | 121.66 (15) |
Cl1—Sn1—Cl3i | 90.093 (19) | C2—C3—H3 | 120.1 |
Cl1i—Sn1—Cl3i | 89.907 (19) | C2—C3—C4 | 119.71 (18) |
Cl1i—Sn1—Cl3 | 90.093 (19) | C4—C3—H3 | 120.1 |
Cl2i—Sn1—Cl2 | 180.0 | C3—C4—Cl5 | 120.22 (16) |
Cl3i—Sn1—Cl2 | 89.81 (2) | C5—C4—C3 | 119.70 (19) |
Cl3i—Sn1—Cl2i | 90.19 (2) | C5—C4—Cl5 | 120.08 (18) |
Cl3—Sn1—Cl2 | 90.19 (2) | N1—C5—H5 | 120.3 |
Cl3—Sn1—Cl2i | 89.81 (2) | C4—C5—N1 | 119.4 (2) |
Cl3—Sn1—Cl3i | 180.0 | C4—C5—H5 | 120.3 |
H1WA—O1W—H1WB | 109.5 | C1—N2—H2A | 120.0 |
C1—N1—H1 | 117.8 | C1—N2—H2B | 120.0 |
C1—N1—C5 | 124.32 (17) | H2A—N2—H2B | 120.0 |
C5—N1—H1 | 117.8 | ||
N1—C1—C2—C3 | 0.4 (3) | C5—N1—C1—C2 | −0.6 (3) |
N1—C1—C2—Cl4 | −178.93 (15) | C5—N1—C1—N2 | 178.8 (2) |
C1—N1—C5—C4 | 0.3 (3) | N2—C1—C2—C3 | −179.0 (2) |
C1—C2—C3—C4 | 0.0 (3) | N2—C1—C2—Cl4 | 1.7 (3) |
C2—C3—C4—C5 | −0.3 (3) | Cl4—C2—C3—C4 | 179.31 (16) |
C2—C3—C4—Cl5 | −179.42 (16) | Cl5—C4—C5—N1 | 179.25 (16) |
C3—C4—C5—N1 | 0.1 (3) |
Symmetry code: (i) −x+2, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1W | 0.86 | 1.86 | 2.685 (2) | 160 |
O1W—H1WA···Cl1ii | 0.85 | 2.67 | 3.296 (2) | 131 |
O1W—H1WB···Cl2 | 0.85 | 2.47 | 3.301 (2) | 168 |
N2—H2A···Cl3iii | 0.86 | 2.78 | 3.381 (2) | 129 |
N2—H2A···O1W | 0.86 | 2.38 | 3.065 (3) | 137 |
N2—H2B···Cl4 | 0.86 | 2.61 | 2.986 (2) | 108 |
N2—H2B···Cl2iv | 0.86 | 2.67 | 3.435 (2) | 149 |
C3—H3···Cl3v | 0.93 | 2.77 | 3.695 (2) | 177 |
C5—H5···Cl2ii | 0.93 | 2.80 | 3.615 (2) | 147 |
Symmetry codes: (ii) −x+1, −y, −z; (iii) x, y+1, z; (iv) −x+2, −y+1, −z; (v) x, y+1, z+1. |
Acknowledgements
Thanks are due to DRSDT–Algeria for support.
Funding information
Funding for this research was provided by: Unité de recherche de chimie de l'environnement, moléculaire et structurale 113 UR.CHEMS; Direction Générale de la Recherche Scientifique et du Développement Technologique DGRSDT Algérie.
References
Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1998). Acta Cryst. B54, 50–65. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). Acta Cryst. E74, 206–211. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279–1283. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.