metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(2-amino-3,5-di­chloro­pyridinium) hexa­chlorido­stannate(IV) dihydrate

crossmark logo

aEnvironmental Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria
*Correspondence e-mail: rochdi.ghallab@gmail.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 22 December 2021; accepted 17 February 2022; online 3 March 2022)

The title hybrid compound, (C5H5N2Cl2)2[SnCl6]·2H2O, was synthesized and its structure was identified by single-crystal X-ray diffraction. The structure is non-polymeric (0D) in terms of containing isolated [SnCl6]2− polyhedra. The special position (0,0,0) of the SnIV atom in the crystal structure gives rise to a stacking structure with alternating cationic and anionic layers parallel to (001). The water mol­ecules are inter­calated between these layers, which are linked by cation–anion hydrogen bonds and dominant non-covalent inter­actions. The stability of the three-dimensional network for this compound is also discussed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Bis(2-amino-3,5-di­chloro­pyridinium) hexa­chlorido­stannate(IV) dihydrate, (C5H5N2Cl2)2[SnCl6]·2H2O, crystallizes in the triclinic space group P[\overline{1}] (Fig. 1[link]). The tin(IV) atom is hexa­coordinated by chlorine atoms, generating a weakly distorted octa­hedron. The Sn—Cl bond lengths range from 2.4162 (5) to 2.4389 (5) Å while the Cl—Sn—Cl angles have a deviation of about ±1° [89.277 (19)–90.723 (19)°], see Table 1[link]. These values are comparable to those of the same anion associated with other types of cations (Bouchene et al., 2018[Bouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). Acta Cryst. E74, 206-211.]). The absence of larger distortions can probably be attributed to the fact that the hexa­chlorido­stannate(IV) anions are free, i.e. none of the chloride ions are bridging, although they do accept N—H⋯Cl, O—H⋯Cl and C—H⋯Cl hydrogen bonds (Table 2[link]).

Table 1
Selected geometric parameters (Å, °)

Sn1—Cl1 2.4162 (5) C1—N2 1.315 (3)
Sn1—Cl2 2.4389 (5) C2—C3 1.356 (3)
Sn1—Cl3 2.4253 (5) C2—Cl4 1.713 (2)
N1—C1 1.345 (3) C3—C4 1.393 (3)
N1—C5 1.350 (3) C4—C5 1.348 (3)
C1—C2 1.417 (3) C4—Cl5 1.726 (2)
       
Cl1—Sn1—Cl2 90.722 (19) N2—C1—N1 119.49 (18)
Cl1i—Sn1—Cl2 89.278 (19) N2—C1—C2 124.50 (19)
Cl1—Sn1—Cl2i 89.277 (19) C1—C2—Cl4 117.52 (16)
Cl1—Sn1—Cl3 89.906 (19) C3—C2—C1 120.82 (18)
Cl1—Sn1—Cl3i 90.093 (19) C3—C2—Cl4 121.66 (15)
Cl1i—Sn1—Cl3 90.093 (19) C2—C3—C4 119.71 (18)
Cl3i—Sn1—Cl2 89.81 (2) C3—C4—Cl5 120.22 (16)
Cl3—Sn1—Cl2 90.19 (2) C5—C4—C3 119.70 (19)
Cl3—Sn1—Cl2i 89.81 (2) C5—C4—Cl5 120.08 (18)
C1—N1—C5 124.32 (17) C4—C5—N1 119.4 (2)
N1—C1—C2 116.00 (18)    
Symmetry code: (i) [-x+2, -y, -z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1W 0.86 1.86 2.685 (2) 160
O1W—H1WA⋯Cl1ii 0.85 2.67 3.296 (2) 131
O1W—H1WB⋯Cl2 0.85 2.47 3.301 (2) 168
N2—H2A⋯Cl3iii 0.86 2.78 3.381 (2) 129
N2—H2A⋯O1W 0.86 2.38 3.065 (3) 137
N2—H2B⋯Cl2iv 0.86 2.67 3.435 (2) 149
C3—H3⋯Cl3v 0.93 2.77 3.695 (2) 177
C5—H5⋯Cl2ii 0.93 2.80 3.615 (2) 147
Symmetry codes: (ii) [-x+1, -y, -z]; (iii) x, y+1, z; (iv) [-x+2, -y+1, -z]; (v) x, y+1, z+1.
[Figure 1]
Figure 1
The molecular components in the crystal structure of the title compound, showing displacement ellipsoids at the 30% probability level [symmetry code: (i) −x + 2, −y, −z].

In the cation, we note an increase in C1—C2 and C2—Cl4 bond lengths and a decrease in C1—N2 bond lengths (Table 1[link]). This phenomenon is due to resonance-assisted hydrogen bonding, commonly observed for this kind of mol­ecule (Bertolasi et al., 1998[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1998). Acta Cryst. B54, 50-65.]). The C—N—C angle is 124.32 (17)°. This large angle can be attributed to the protonation of the N atom. These values are comparable with those of the same cation associated with other types of anions (Ghallab et al., 2020[Ghallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279-1283.]). The inter­molecular inter­actions in the title compound were analysed using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), which shows that the structural cohesion in the crystal structure is ensured by N—H⋯O, N—H⋯Cl, O—H⋯Cl and C—H⋯Cl hydrogen bonds (Fig. 2[link]a, Table 2[link]). We also note the presence of Cl⋯Cl halogen bonds (Fig. 2[link]a), and of π-stacking inter­actions between centrosymmetrically related aromatic rings of the cations as well as Y—XCg inter­actions (Fig. 2[link]b).

[Figure 2]
Figure 2
(a) Hydrogen bonds [yellow, purple and violet dashed lines; symmetry codes: (ii) −x + 1, −y, −z; (iii) x, y + 1, z; (iv) −x + 2, −y + 1, −z; (v) x, y + 1, z + 1] and halogen bonds (red dashed lines) in the title compound. (b) A view of the π-stacking inter­actions [blue dashed lines; symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 2 − x, 1 − y, 1 − z] and C—Cl⋯Cg [green dashed lines; symmetry operations: (i) 2 − x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, 1 − z] inter­actions.

Synthesis and crystallization

Tin(II) chloride dihydrate (2.25 mmol) was mixed with 2-amino-3,5-di­chloro­pyridine (3.3 mmol) in 1:2 molar ratio and a few drops of hydro­chloric acid in an aliquot of distilled water were added. After stirring, the mixture was refluxed for one h at 343 K. After two weeks of slow solvent evaporation, single crystals suitable for X-ray analysis were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula (C5H5Cl2N2)2[SnCl6]·2H2O
Mr 695.44
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.4624 (2), 8.4715 (2), 10.1324 (2)
α, β, γ (°) 101.434 (1), 90.043 (1), 107.554 (1)
V3) 597.34 (2)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.20
Crystal size (mm) 0.17 × 0.13 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.716, 0.785
No. of measured, independent and observed [I > 2σ(I)] reflections 13446, 3617, 3320
Rint 0.017
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 1.02
No. of reflections 3617
No. of parameters 125
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.55
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SAINT (Bruker, 2016); cell refinement: APEX2 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(2-amino-3,5-dichloropyridinium) hexachloridostannate(IV) dihydrate top
Crystal data top
(C5H5Cl2N2)2[SnCl6]·2H2OZ = 1
Mr = 695.44F(000) = 338
Triclinic, P1Dx = 1.933 Mg m3
a = 7.4624 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4715 (2) ÅCell parameters from 8759 reflections
c = 10.1324 (2) Åθ = 2.9–30.9°
α = 101.434 (1)°µ = 2.20 mm1
β = 90.043 (1)°T = 296 K
γ = 107.554 (1)°Block, clear light white
V = 597.34 (2) Å30.17 × 0.13 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
3320 reflections with I > 2σ(I)
φ and ω scansRint = 0.017
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 30.5°, θmin = 3.6°
Tmin = 0.716, Tmax = 0.785h = 1010
13446 measured reflectionsk = 1112
3617 independent reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0221P)2 + 0.2999P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3617 reflectionsΔρmax = 0.43 e Å3
125 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: iterativeExtinction coefficient: 0.0164 (12)
Special details top

Refinement. Approximate positions for all H atoms were first obtained from difference Fourier maps. H atoms were then placed in idealized positions and refined using the riding-atom approximation: C—H = 0.93 Å and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(C,N). H atoms of the water molecule were located in a difference Fourier map and the water molecule geometry was eventually idealized, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn11.0000000.0000000.0000000.03672 (7)
Cl10.75548 (7)0.01363 (7)0.15744 (5)0.05267 (13)
Cl20.79968 (8)0.04433 (7)0.17040 (5)0.05363 (13)
Cl30.87570 (9)0.30370 (6)0.08206 (5)0.05831 (15)
O1W0.6070 (3)0.3039 (2)0.02149 (16)0.0668 (5)
H1WA0.4880750.2759090.0082320.100*
H1WB0.6465350.2255090.0215980.100*
N10.6643 (3)0.3678 (2)0.29104 (16)0.0475 (4)
H10.6366150.3231220.2067560.057*
C10.7864 (3)0.5252 (2)0.32410 (19)0.0423 (4)
C20.8268 (3)0.5946 (2)0.4640 (2)0.0440 (4)
C30.7460 (3)0.5045 (3)0.55683 (19)0.0500 (5)
H30.7733670.5512640.6484140.060*
C40.6218 (3)0.3417 (3)0.5144 (2)0.0485 (5)
C50.5824 (3)0.2753 (3)0.3814 (2)0.0504 (5)
H50.4994350.1667630.3522310.061*
N20.8609 (3)0.6033 (3)0.2280 (2)0.0635 (5)
H2A0.8314170.5537560.1447540.076*
H2B0.9390270.7039330.2483860.076*
Cl40.97856 (10)0.79620 (8)0.51057 (8)0.0752 (2)
Cl50.51633 (12)0.22629 (11)0.63144 (8)0.0814 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04012 (10)0.03823 (10)0.02500 (8)0.00279 (7)0.00185 (6)0.00539 (6)
Cl10.0505 (3)0.0630 (3)0.0385 (2)0.0095 (2)0.0146 (2)0.0090 (2)
Cl20.0537 (3)0.0674 (3)0.0377 (2)0.0142 (2)0.0065 (2)0.0131 (2)
Cl30.0850 (4)0.0373 (2)0.0378 (2)0.0008 (2)0.0014 (2)0.00182 (18)
O1W0.0687 (10)0.0721 (11)0.0450 (8)0.0080 (8)0.0052 (7)0.0001 (8)
N10.0607 (10)0.0453 (9)0.0327 (7)0.0142 (8)0.0013 (7)0.0026 (6)
C10.0504 (10)0.0414 (9)0.0383 (9)0.0185 (8)0.0079 (8)0.0083 (7)
C20.0461 (10)0.0422 (9)0.0421 (9)0.0178 (8)0.0021 (8)0.0014 (8)
C30.0571 (12)0.0667 (13)0.0328 (8)0.0331 (10)0.0002 (8)0.0038 (8)
C40.0546 (12)0.0595 (12)0.0439 (10)0.0288 (10)0.0119 (9)0.0216 (9)
C50.0538 (12)0.0443 (10)0.0524 (11)0.0132 (9)0.0055 (9)0.0112 (9)
N20.0852 (14)0.0542 (11)0.0511 (10)0.0171 (10)0.0201 (10)0.0175 (9)
Cl40.0688 (4)0.0496 (3)0.0897 (5)0.0096 (3)0.0104 (3)0.0128 (3)
Cl50.0971 (5)0.1009 (5)0.0742 (4)0.0474 (4)0.0359 (4)0.0562 (4)
Geometric parameters (Å, º) top
Sn1—Cl12.4162 (5)C1—C21.417 (3)
Sn1—Cl1i2.4162 (5)C1—N21.315 (3)
Sn1—Cl22.4389 (5)C2—C31.356 (3)
Sn1—Cl2i2.4389 (5)C2—Cl41.713 (2)
Sn1—Cl32.4253 (5)C3—H30.9300
Sn1—Cl3i2.4253 (5)C3—C41.393 (3)
O1W—H1WA0.8499C4—C51.348 (3)
O1W—H1WB0.8496C4—Cl51.726 (2)
N1—H10.8600C5—H50.9300
N1—C11.345 (3)N2—H2A0.8600
N1—C51.350 (3)N2—H2B0.8600
Cl1—Sn1—Cl1i180.0N1—C1—C2116.00 (18)
Cl1—Sn1—Cl290.722 (19)N2—C1—N1119.49 (18)
Cl1i—Sn1—Cl289.278 (19)N2—C1—C2124.50 (19)
Cl1—Sn1—Cl2i89.277 (19)C1—C2—Cl4117.52 (16)
Cl1i—Sn1—Cl2i90.723 (19)C3—C2—C1120.82 (18)
Cl1—Sn1—Cl389.906 (19)C3—C2—Cl4121.66 (15)
Cl1—Sn1—Cl3i90.093 (19)C2—C3—H3120.1
Cl1i—Sn1—Cl3i89.907 (19)C2—C3—C4119.71 (18)
Cl1i—Sn1—Cl390.093 (19)C4—C3—H3120.1
Cl2i—Sn1—Cl2180.0C3—C4—Cl5120.22 (16)
Cl3i—Sn1—Cl289.81 (2)C5—C4—C3119.70 (19)
Cl3i—Sn1—Cl2i90.19 (2)C5—C4—Cl5120.08 (18)
Cl3—Sn1—Cl290.19 (2)N1—C5—H5120.3
Cl3—Sn1—Cl2i89.81 (2)C4—C5—N1119.4 (2)
Cl3—Sn1—Cl3i180.0C4—C5—H5120.3
H1WA—O1W—H1WB109.5C1—N2—H2A120.0
C1—N1—H1117.8C1—N2—H2B120.0
C1—N1—C5124.32 (17)H2A—N2—H2B120.0
C5—N1—H1117.8
N1—C1—C2—C30.4 (3)C5—N1—C1—C20.6 (3)
N1—C1—C2—Cl4178.93 (15)C5—N1—C1—N2178.8 (2)
C1—N1—C5—C40.3 (3)N2—C1—C2—C3179.0 (2)
C1—C2—C3—C40.0 (3)N2—C1—C2—Cl41.7 (3)
C2—C3—C4—C50.3 (3)Cl4—C2—C3—C4179.31 (16)
C2—C3—C4—Cl5179.42 (16)Cl5—C4—C5—N1179.25 (16)
C3—C4—C5—N10.1 (3)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.861.862.685 (2)160
O1W—H1WA···Cl1ii0.852.673.296 (2)131
O1W—H1WB···Cl20.852.473.301 (2)168
N2—H2A···Cl3iii0.862.783.381 (2)129
N2—H2A···O1W0.862.383.065 (3)137
N2—H2B···Cl40.862.612.986 (2)108
N2—H2B···Cl2iv0.862.673.435 (2)149
C3—H3···Cl3v0.932.773.695 (2)177
C5—H5···Cl2ii0.932.803.615 (2)147
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+2, y+1, z; (v) x, y+1, z+1.
 

Acknowledgements

Thanks are due to DRSDT–Algeria for support.

Funding information

Funding for this research was provided by: Unité de recherche de chimie de l'environnement, moléculaire et structurale 113 UR.CHEMS; Direction Générale de la Recherche Scientifique et du Développement Technologique DGRSDT Algérie.

References

First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1998). Acta Cryst. B54, 50–65.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). Acta Cryst. E74, 206–211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279–1283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds