metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis­(di­methylamine-κN)bis­[4-(1,2,4-triazol-1-yl)benzoato-κO]copper(II)

crossmark logo

aCollege of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
*Correspondence e-mail: ceshzb@lnu.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 December 2021; accepted 12 January 2022; online 14 January 2022)

In the title compound, [Cu(C9H6N3O2)2(C2H7N)2], the Cu2+ cation is situated on an inversion center and is coordinated by the N atoms of two di­methyl­amine ligands and the carboxyl­ate O atoms of two 4-(1,2,4-triazol-1-yl)benzoate anions, leading to a slightly distorted square-planar N2O2 coordination environment. In the crystal, inter­molecular N—H⋯N hydrogen bonds between the amine function and the central N atom of the triazole ring lead to the formation of ribbons parallel to [1[\overline{1}]1]. Weak inter­molecular C—H⋯O hydrogen-bonding inter­actions are also observed that consolidate the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The rational design of coordination polymers is based on the combination of metal ions and versatile organic ligands, resulting in various supra­molecular assemblies. The resulting crystal structures determine the potential applications of the coordination polymers. Different polymers based on 4-(1,2,4-triazol-1-yl)benzoic acid complexes have been reported (Du et al., 2014[Du, M., Li, C.-P., Chen, M., Ge, Z.-W., Wang, X., Wang, L. & Liu, C.-S. (2014). J. Am. Chem. Soc. 136, 10906-10909.]). They not only feature structural varieties, but also can be applied in gas storage (Wang et al., 2012[Wang, Y.-L., Fu, J.-H., Wei, J.-J., Xu, X., Li, X.-F. & Liu, Q.-Y. (2012). Cryst. Growth Des. 12, 4663-4668.]). In this context we have investigated crystals formed from a copper(II) solution and 4-(1,2,4-triazol-1-yl)benzoic acid under solvothermal conditions.

As shown in Fig. 1[link], the asymmetric unit of the title compound comprises one CuII atom, one 4-(1,2,4-triazol-1-yl)benzoate ligand, and one di­methyl­amine mol­ecule generated in situ from the decomposition of the solvent dimethyl formamide. The complete mol­ecule is generated by inversion symmetry. The CuII atom has a distorted square-planar coordination environment, being coordinated by two symmetry-related benzoato O atoms [Cu—O1 = 1.9611 (14) Å] and two symmetry-related N atoms [Cu—N4 = 2.0096 (19) Å of the amine ligands. The second carboxyl­ate O atom of the anion seems to be too far away [Cu—O2 = 2.80136 (19) Å] to contribute to a significant bonding. Nevertheless, the non-bonding O2 atom is involved as an acceptor in weak C—H⋯O hydrogen-bonding inter­actions (Table 1[link], Fig. 2[link]). Stronger N—H⋯N hydrogen bonds between the amine NH group and the central N atom of the triazole ring are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N3i 0.91 2.17 3.034 (3) 160
C9—H9A⋯O2ii 0.93 2.50 3.428 (3) 173
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+2, -y+1, -z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (A) −x + 2, −y, −z + 1.]
[Figure 2]
Figure 2
The crystal packing of the complex mol­ecules. Hydrogen-bonding inter­actions are shown as dashed lines.

Synthesis and crystallization

A mixture of Cu(NO3)2·3H2O (0.0725 mg, 0.3 mmol), 4-(1,2,4-triazol-1-yl)benzoic acid (0.057 g, 0.3 mmol), di­methyl­formamide (5 ml), ethanol (5 ml) and water (5 ml) was placed in a Teflon reactor with a 23 ml capacity, which was heated at 433 K for 3 days and then cooled to room temperature at a rate of 10 K h−1. Blue block-shaped crystals of the title compound were obtained in 52% yield after being washed with di­methyl­formamide and dried in air.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C9H6N3O2)2(C2H7N)2]
Mr 530.06
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.3657 (5), 8.1428 (7), 12.1896 (11)
α, β, γ (°) 72.595 (2), 89.376 (2), 87.805 (2)
V3) 602.47 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.95
Crystal size (mm) 0.36 × 0.32 × 0.27
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.727, 0.785
No. of measured, independent and observed [I > 2σ(I)] reflections 3971, 2727, 2345
Rint 0.017
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.03
No. of reflections 2727
No. of parameters 160
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.20
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(dimethylamine-κN)bis[4-(1,2,4-triazol-1-yl)benzoato-κO]copper(II) top
Crystal data top
[Cu(C9H6N3O2)2(C2H7N)2]Z = 1
Mr = 530.06F(000) = 275
Triclinic, P1Dx = 1.461 Mg m3
a = 6.3657 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1428 (7) ÅCell parameters from 1477 reflections
c = 12.1896 (11) Åθ = 2.6–26.4°
α = 72.595 (2)°µ = 0.95 mm1
β = 89.376 (2)°T = 293 K
γ = 87.805 (2)°Block, blue
V = 602.47 (9) Å30.36 × 0.32 × 0.27 mm
Data collection top
Bruker SMART CCD
diffractometer
2727 independent reflections
Radiation source: fine-focus sealed tube2345 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.017
ω scanθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.727, Tmax = 0.785k = 1010
3971 measured reflectionsl = 1015
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.1332P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2727 reflectionsΔρmax = 0.28 e Å3
160 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.0000000.0000000.5000000.03668 (13)
O10.8278 (3)0.19597 (19)0.40688 (13)0.0456 (4)
N40.8929 (3)0.1440 (2)0.40592 (16)0.0478 (5)
H40.8340290.0692340.3420600.072*
O21.0899 (3)0.2218 (2)0.28158 (16)0.0564 (5)
N30.3345 (3)0.9752 (2)0.18059 (16)0.0470 (5)
C80.1967 (4)0.9638 (3)0.0944 (2)0.0475 (5)
H8A0.0693591.0263290.1055180.057*
N10.4455 (3)0.7973 (2)0.01740 (15)0.0357 (4)
C10.9149 (3)0.2671 (3)0.31047 (18)0.0397 (5)
C20.7914 (3)0.4135 (2)0.22845 (17)0.0347 (4)
C30.8841 (3)0.5111 (3)0.1285 (2)0.0443 (5)
H3A1.0249770.4895760.1148670.053*
C40.7728 (3)0.6395 (3)0.0487 (2)0.0462 (5)
H4A0.8382500.7044950.0178640.055*
C50.5630 (3)0.6712 (2)0.06815 (17)0.0332 (4)
C60.4692 (3)0.5793 (3)0.16901 (19)0.0429 (5)
H6A0.3296510.6037470.1836630.052*
C70.5831 (3)0.4506 (3)0.24845 (18)0.0438 (5)
H7A0.5189020.3882160.3162080.053*
C90.4888 (4)0.8692 (3)0.12927 (18)0.0437 (5)
H9A0.6112770.8469010.1654630.052*
N20.2529 (3)0.8588 (2)0.00657 (16)0.0467 (5)
C111.0630 (5)0.2323 (4)0.3597 (3)0.0766 (9)
H11A1.1647570.1504500.3215050.115*
H11B1.1295850.3202750.4215040.115*
H11C1.0052850.2837430.3058450.115*
C100.7338 (6)0.2657 (4)0.4651 (3)0.0853 (10)
H10A0.6249850.2053760.4943760.128*
H10B0.6740230.3173050.4119250.128*
H10C0.7983230.3538370.5275850.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0456 (2)0.0340 (2)0.02439 (18)0.00871 (14)0.00500 (14)0.00062 (13)
O10.0569 (9)0.0417 (8)0.0312 (7)0.0137 (7)0.0080 (7)0.0019 (6)
N40.0643 (12)0.0411 (10)0.0328 (9)0.0055 (9)0.0129 (9)0.0034 (8)
O20.0430 (9)0.0580 (10)0.0580 (11)0.0168 (8)0.0055 (8)0.0038 (8)
N30.0571 (11)0.0418 (10)0.0366 (10)0.0088 (8)0.0123 (9)0.0043 (8)
C80.0512 (13)0.0448 (12)0.0427 (12)0.0162 (10)0.0140 (10)0.0089 (10)
N10.0387 (9)0.0317 (8)0.0330 (8)0.0042 (7)0.0060 (7)0.0045 (7)
C10.0453 (12)0.0350 (10)0.0360 (11)0.0061 (9)0.0121 (9)0.0069 (8)
C20.0388 (10)0.0325 (9)0.0305 (10)0.0036 (8)0.0075 (8)0.0060 (8)
C30.0333 (10)0.0467 (12)0.0446 (12)0.0055 (9)0.0017 (9)0.0018 (10)
C40.0398 (11)0.0451 (12)0.0412 (12)0.0019 (9)0.0036 (9)0.0055 (9)
C50.0365 (10)0.0288 (9)0.0315 (10)0.0025 (8)0.0064 (8)0.0051 (7)
C60.0350 (10)0.0496 (12)0.0366 (11)0.0087 (9)0.0009 (9)0.0027 (9)
C70.0449 (12)0.0460 (12)0.0311 (10)0.0067 (9)0.0029 (9)0.0017 (9)
C90.0482 (12)0.0427 (11)0.0349 (11)0.0050 (9)0.0043 (9)0.0040 (9)
N20.0425 (10)0.0498 (11)0.0407 (10)0.0145 (8)0.0048 (8)0.0049 (8)
C110.100 (2)0.0749 (19)0.0628 (18)0.0288 (17)0.0177 (17)0.0357 (16)
C100.103 (3)0.082 (2)0.065 (2)0.0332 (19)0.0135 (18)0.0088 (17)
Geometric parameters (Å, º) top
Cu1—O11.9611 (14)C2—C31.380 (3)
Cu1—O1i1.9612 (14)C2—C71.384 (3)
Cu1—N42.0096 (19)C3—C41.375 (3)
Cu1—N4i2.0096 (19)C3—H3A0.9300
O1—C11.276 (3)C4—C51.382 (3)
N4—C101.470 (4)C4—H4A0.9300
N4—C111.475 (4)C5—C61.377 (3)
N4—H40.9071C6—C71.382 (3)
O2—C11.240 (3)C6—H6A0.9300
N3—C91.314 (3)C7—H7A0.9300
N3—C81.345 (3)C9—H9A0.9300
C8—N21.315 (3)C11—H11A0.9600
C8—H8A0.9300C11—H11B0.9600
N1—C91.343 (3)C11—H11C0.9600
N1—N21.368 (2)C10—H10A0.9600
N1—C51.421 (2)C10—H10B0.9600
C1—C21.507 (3)C10—H10C0.9600
O1—Cu1—O1i180.00 (8)C3—C4—C5119.5 (2)
O1—Cu1—N489.16 (7)C3—C4—H4A120.2
O1i—Cu1—N490.84 (7)C5—C4—H4A120.2
O1—Cu1—N4i90.84 (7)C6—C5—C4119.96 (18)
O1i—Cu1—N4i89.16 (7)C6—C5—N1120.69 (18)
N4—Cu1—N4i180.00 (7)C4—C5—N1119.34 (18)
C1—O1—Cu1111.32 (13)C5—C6—C7119.81 (19)
C10—N4—C11111.0 (2)C5—C6—H6A120.1
C10—N4—Cu1113.77 (18)C7—C6—H6A120.1
C11—N4—Cu1112.97 (17)C6—C7—C2120.9 (2)
C10—N4—H4108.7C6—C7—H7A119.6
C11—N4—H4103.5C2—C7—H7A119.6
Cu1—N4—H4106.2N3—C9—N1110.8 (2)
C9—N3—C8102.46 (18)N3—C9—H9A124.6
N2—C8—N3116.0 (2)N1—C9—H9A124.6
N2—C8—H8A122.0C8—N2—N1101.72 (18)
N3—C8—H8A122.0N4—C11—H11A109.5
C9—N1—N2109.03 (17)N4—C11—H11B109.5
C9—N1—C5129.63 (18)H11A—C11—H11B109.5
N2—N1—C5121.27 (17)N4—C11—H11C109.5
O2—C1—O1124.09 (19)H11A—C11—H11C109.5
O2—C1—C2119.7 (2)H11B—C11—H11C109.5
O1—C1—C2116.21 (18)N4—C10—H10A109.5
C3—C2—C7118.30 (18)N4—C10—H10B109.5
C3—C2—C1119.88 (19)H10A—C10—H10B109.5
C7—C2—C1121.79 (19)N4—C10—H10C109.5
C4—C3—C2121.5 (2)H10A—C10—H10C109.5
C4—C3—H3A119.3H10B—C10—H10C109.5
C2—C3—H3A119.3
C9—N3—C8—N20.1 (3)C9—N1—C5—C417.1 (3)
Cu1—O1—C1—O22.6 (3)N2—N1—C5—C4166.2 (2)
Cu1—O1—C1—C2176.67 (13)C4—C5—C6—C72.7 (3)
O2—C1—C2—C38.7 (3)N1—C5—C6—C7176.47 (19)
O1—C1—C2—C3172.0 (2)C5—C6—C7—C20.5 (4)
O2—C1—C2—C7169.3 (2)C3—C2—C7—C61.6 (3)
O1—C1—C2—C710.0 (3)C1—C2—C7—C6176.4 (2)
C7—C2—C3—C41.6 (4)C8—N3—C9—N10.0 (3)
C1—C2—C3—C4176.4 (2)N2—N1—C9—N30.0 (3)
C2—C3—C4—C50.5 (4)C5—N1—C9—N3177.02 (19)
C3—C4—C5—C62.7 (3)N3—C8—N2—N10.1 (3)
C3—C4—C5—N1176.5 (2)C9—N1—N2—C80.0 (2)
C9—N1—C5—C6162.0 (2)C5—N1—N2—C8177.35 (18)
N2—N1—C5—C614.7 (3)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N3ii0.912.173.034 (3)160
C9—H9A···O2iii0.932.503.428 (3)173
Symmetry codes: (ii) x+1, y+1, z; (iii) x+2, y+1, z.
 

Funding information

Funding for this research was provided by: Scientific Research Foundation of the Education Department of Liaoning Province (grant No. LJC202004).

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M., Li, C.-P., Chen, M., Ge, Z.-W., Wang, X., Wang, L. & Liu, C.-S. (2014). J. Am. Chem. Soc. 136, 10906–10909.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, Y.-L., Fu, J.-H., Wei, J.-J., Xu, X., Li, X.-F. & Liu, Q.-Y. (2012). Cryst. Growth Des. 12, 4663–4668.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds