metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[1,2-Bis(di­phenyl­phosphan­yl)ethane-κ2P,P]chlorido­(isonicotinamide-κN)palladium(II) nitrate aceto­nitrile monosolvate

crossmark logo

aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio TX 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio TX 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu

Edited by M. Zeller, Purdue University, USA (Received 21 October 2021; accepted 4 November 2021; online 19 November 2021)

The PdII central atom in the title complex, [PdCl(C26H24P2)(C6H6N2O)]NO3·CH3CN or [PdCl(dppe)(INAM)]NO3·CH3CN, where dppe is 1,2-bis­(di­phenyl­phosphan­yl)ethane and INAM is isonicotinamide, exists in a slightly distorted square-planar environment defined by the two P atoms of the dppe ligand, a chloride ligand and the N atom of the isonicotinamide pyridyl ring. The crystal packing in the structure is held together by hydrogen bonds between the amide of the INAM ligand and the nitrate ions that complete the outer coordination sphere. A mol­ecule of aceto­nitrile is also found in the asymmetric unit of the title complex.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Palladium complexes containing 1,2-bis­(di­phenyl­phosphan­yl)ethane as a ligand have received much attention over the last decade because of their application in catalysis (Naghipour et al., 2021[Naghipour, A., Sayadi, M., Sedghi, A., Sabounchei, S. J., Babaee, H. & Notash, B. (2021). Inorg. Chim. Acta, 515, 120039.]; Thapa et al., 2019[Thapa, K., Paul, P. & Bhattacharya, S. (2019). Inorg. Chim. Acta, 486, 232-239.]). Recently, some of the focus has shifted to exploring their cytotoxicity (Cullinane et al., 2018[Cullinane, C., Deacon, G. B., Drago, P. R., Erven, A. P., Junk, P. C., Luu, J., Meyer, G., Schmitz, S., Ott, I., Schur, J., Webster, L. K. & Klein, A. (2018). Dalton Trans. 47, 1918-1932.]; Kuijpers & Blom, 2021[Kuijpers, T. & Blom, B. (2021). Eur. J. Med. Chem. 223, 113651.]) and biological activity (Al-Janabi et al., 2021[Al-Janabi, A. S., Yousef, T. A., Al-Doori, M. E., Bedier, R. A. & Ahmed, B. M. (2021). J. Mol. Struct. 1246, 131035.]). In our research group, we have been exploring the synthesis of palladium(II) and copper(II) complexes containing various ancillary ligands and isonicotinamide as active ligand; isonicotinamide has proven to be an effective anti­metabolite due to its ability to enhance Sirt1 de­acetyl­ase activity, which reduces tumor growth (Li et al., 2009[Li, Y., Bäckesjö, C. M., Haldosén, L. A. & Lindgren, U. (2009). Eur. J. Pharmacol. 609, 13-18.]). With that in mind, herein, we report the synthesis and structure of the title palladium(II) dppe complex.

The asymmetric unit of the title compound, depicted in Fig. 1[link], consists of a PdII ion in a distorted square-planar coordination environment defined by the two phospho­rus atoms of the chelating dppe ligand, an N-bonded INAM mol­ecule, and a chloride ion. An aceto­nitrile mol­ecule and a nitrate ion complete the asymmetric unit. Selected bond lengths and angles involving the PdII atom are presented in Table 1[link]. The Pd—Cl bond length in the title complex is in good agreement with the reported values of similar palladium(II) dppe complexes currently available in in the CSD (version 5.42 with update September 2021; Koide et al., 1996[Koide, Y., Bott, S. G. & Barron, A. R. (1996). Organometallics, 15, 2213-2226.]; refcode TEPXIV; Owen et al., 2002[Owen, G. R., Vilar, R., White, A. J. & Williams, D. J. (2002). Organometallics, 21, 4799-4807.]; refcode HUHZOZ; Owen et al., 2003[Owen, G. R., Vilar, R., White, A. J. & Williams, D. J. (2003). Organometallics, 22, 4511-4521.]; refcode UMEDOF). Similarly, the Pd—N distance is also consistent with other structures found in the CSD, where a [Pd(dppe)]2+ unit is also bonded to the N-atom of a pyridyl ring (Guha et al., 2012[Guha, S., Goodson, F. S., Clark, R. J. & Saha, S. (2012). CrystEngComm, 14, 1213-1215.]; refcode TIFYEO; Uehara et al., 2013[Uehara, K., Oishi, T., Hirose, T. & Mizuno, N. (2013). Inorg. Chem. 52, 11200-11209.]; refcode WINQOB; Mane et al., 2021[Mane, P. A., Pathak, A. K., Bhuvanesh, N. & Dey, S. (2021). Inorg. Chem. Front. 8, 3815-3829.]; refcode UTECEE). Nothing unusual is observed in the bond lengths and angles involving the dppe ligand.

Table 1
Selected geometric parameters (Å, °)

Pd1—Cl1 2.3564 (11) Pd1—N1 2.100 (3)
Pd1—P1 2.2366 (11) Pd1—P2 2.2577 (12)
       
P1—Pd1—Cl1 90.06 (4) N1—Pd1—P1 176.86 (9)
P1—Pd1—P2 86.24 (4) N1—Pd1—P2 96.81 (9)
N1—Pd1—Cl1 86.98 (9) P2—Pd1—Cl1 173.44 (4)
[Figure 1]
Figure 1
The structures of the mol­ecular entities of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity.

Several hydrogen-bonding motifs are present in the crystal structure, with numerical values collated in Table 2[link]. In the crystal packing, mol­ecules self-assemble into sheets aligned along the a axis (Fig. 2[link]) and are held together by N—H⋯O inter­actions between adjacent isonicotinamide ligands. The nitrate ions fill the void between the PdII complex ions inter­acting with the isonicotinamide ligands in different units through additional N—H⋯O and C—H⋯O inter­actions (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O2 0.88 2.04 2.891 (4) 163
N2—H2D⋯O1i 0.88 2.19 3.047 (4) 163
C28—H28⋯O3ii 0.95 2.39 3.082 (5) 129
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Perspective view of the packing structure of the title salt along the crystallographic a-axis; H atoms are omitted for clarity.
[Figure 3]
Figure 3
Capped sticks representation of the title compound showing the hydrogen-bond inter­actions (pink).

Synthesis and crystallization

To synthesize the title compound, [1,2-bis­(di­phenyl­phos­phan­yl)ethane]­dichlorido­palladium(II) (0.100 g, 0.174 mmol) was suspended in 40 ml of aceto­nitrile and stirred for 15 min. Solid AgNO3 (0.030 g, 0.18 mmol) was added to the suspension and heated with stirring at 303 K for 2 h. After removing AgCl by filtration, using a 0.45 mm PTFE syringe filter, the resulting pale yellow solution was used to grow crystals by vapor diffusion with diethyl ether at 278 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [PdCl(C26H24P2)(C6H6N2O)]NO3·C2H3N
Mr 765.43
Crystal system, space group Orthorhombic, P212121
Temperature (K) 98
a, b, c (Å) 10.3343 (2), 14.8655 (4), 21.7942 (4)
V3) 3348.12 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.30 × 0.10 × 0.03
 
Data collection
Diffractometer XtaLAB AFC12 (RCD3): Kappa single
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.])
Tmin, Tmax 0.909, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36768, 6511, 5056
Rint 0.054
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.045, 0.97
No. of reflections 6511
No. of parameters 416
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.53
Absolute structure Flack x determined using 1879 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.028 (12)
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

[1,2-Bis(diphenylphosphanyl)ethane-κ2P,P]chlorido(isonicotinamide-κN)palladium(II) nitrate acetonitrile monosolvate top
Crystal data top
[PdCl(C26H24P2)(C6H6N2O)]NO3·C2H3NDx = 1.518 Mg m3
Mr = 765.43Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 14630 reflections
a = 10.3343 (2) Åθ = 2.6–28.4°
b = 14.8655 (4) ŵ = 0.77 mm1
c = 21.7942 (4) ÅT = 98 K
V = 3348.12 (13) Å3Plank, clear colourless
Z = 40.3 × 0.1 × 0.03 mm
F(000) = 1560
Data collection top
XtaLAB AFC12 (RCD3): Kappa single
diffractometer
6511 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source5056 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1212
Tmin = 0.909, Tmax = 1.000k = 1718
36768 measured reflectionsl = 2126
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.015P)2 + 0.050P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.60 e Å3
6511 reflectionsΔρmin = 0.53 e Å3
416 parametersAbsolute structure: Flack x determined using 1879 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.028 (12)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.67734 (2)0.50517 (2)0.74927 (2)0.01367 (7)
Cl10.68284 (10)0.35931 (7)0.79151 (5)0.0218 (3)
P10.64267 (10)0.56282 (8)0.84262 (5)0.0151 (3)
O10.9177 (2)0.2660 (2)0.49657 (13)0.0188 (8)
N10.7138 (3)0.4446 (2)0.66393 (15)0.0130 (8)
C10.6432 (4)0.6856 (3)0.83773 (18)0.0174 (10)
H1A0.59240.71120.87200.021*
H1B0.73310.70820.84100.021*
P20.64956 (9)0.64655 (8)0.71380 (5)0.0143 (3)
O20.8163 (3)0.0909 (2)0.40345 (13)0.0285 (7)
N20.7101 (3)0.2228 (2)0.48694 (15)0.0197 (9)
H2C0.72840.18590.45660.024*
H2D0.62980.22790.50000.024*
C20.5844 (4)0.7147 (3)0.77645 (18)0.0168 (10)
H2A0.60420.77900.76900.020*
H2B0.48920.70790.77800.020*
O30.6447 (2)0.1373 (2)0.35577 (13)0.0347 (9)
N30.7550 (3)0.1013 (3)0.35401 (17)0.0213 (9)
C30.4854 (3)0.5284 (3)0.87202 (18)0.0172 (11)
O40.8039 (3)0.07869 (19)0.30404 (13)0.0251 (7)
N40.9979 (4)0.5452 (3)0.7596 (2)0.0487 (12)
C40.4001 (3)0.4843 (3)0.83214 (19)0.0230 (11)
H40.42320.47500.79040.028*
C50.2814 (4)0.4542 (3)0.8540 (2)0.0298 (13)
H50.22190.42620.82680.036*
C60.2499 (4)0.4647 (3)0.9147 (2)0.0352 (14)
H60.17050.44120.92960.042*
C70.3327 (4)0.5092 (3)0.95467 (19)0.0346 (12)
H70.30900.51800.99640.042*
C80.4517 (4)0.5410 (3)0.9326 (2)0.0266 (12)
H80.50930.57140.95950.032*
C90.7583 (4)0.5316 (3)0.90152 (18)0.0171 (11)
C100.7398 (4)0.4525 (3)0.93414 (19)0.0250 (12)
H100.66750.41530.92520.030*
C110.8265 (4)0.4273 (3)0.97990 (18)0.0276 (11)
H110.81160.37411.00300.033*
C120.9337 (4)0.4795 (3)0.9917 (2)0.0285 (12)
H120.99340.46211.02260.034*
C130.9544 (4)0.5575 (3)0.9584 (2)0.0278 (12)
H131.02820.59360.96660.033*
C140.8680 (4)0.5832 (3)0.91306 (19)0.0219 (11)
H140.88370.63620.88980.026*
C150.8005 (4)0.6961 (3)0.68666 (18)0.0165 (10)
C160.8613 (4)0.7658 (3)0.71808 (19)0.0201 (10)
H160.82370.79050.75410.024*
C170.9785 (4)0.7988 (3)0.6957 (2)0.0242 (11)
H171.02140.84600.71700.029*
C181.0331 (4)0.7638 (3)0.6432 (2)0.0256 (12)
H181.11270.78720.62830.031*
C190.9720 (4)0.6942 (3)0.6118 (2)0.0271 (12)
H191.00970.67020.57550.033*
C200.8546 (4)0.6597 (3)0.63382 (18)0.0199 (10)
H200.81260.61190.61290.024*
C210.5341 (4)0.6623 (3)0.65165 (18)0.0165 (10)
C220.5517 (4)0.7282 (3)0.60718 (19)0.0222 (11)
H220.62830.76360.60720.027*
C230.4574 (4)0.7425 (3)0.5626 (2)0.0281 (12)
H230.47000.78670.53160.034*
C240.3441 (4)0.6914 (3)0.5636 (2)0.0324 (12)
H240.27900.70140.53360.039*
C250.3261 (4)0.6268 (3)0.6080 (2)0.0304 (12)
H250.24840.59260.60860.036*
C260.4203 (4)0.6111 (3)0.6518 (2)0.0227 (11)
H260.40780.56570.68190.027*
C270.8370 (4)0.4304 (3)0.64540 (17)0.0177 (10)
H270.90580.45870.66690.021*
C280.8648 (4)0.3759 (3)0.59625 (18)0.0161 (10)
H280.95200.36840.58350.019*
C290.7669 (3)0.3321 (3)0.56531 (18)0.0132 (10)
C300.6398 (3)0.3463 (3)0.58466 (18)0.0163 (10)
H300.56970.31760.56440.020*
C310.6181 (4)0.4027 (3)0.63362 (18)0.0169 (10)
H310.53140.41250.64660.020*
C320.8038 (4)0.2709 (3)0.51318 (18)0.0127 (9)
C331.0676 (5)0.5989 (4)0.7770 (2)0.0360 (13)
C341.1546 (5)0.6688 (4)0.8000 (2)0.0596 (17)
H34A1.21060.68970.76660.089*
H34B1.20790.64430.83320.089*
H34C1.10340.71950.81560.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01207 (12)0.01632 (15)0.01261 (12)0.00130 (15)0.00071 (16)0.00188 (19)
Cl10.0249 (5)0.0193 (6)0.0211 (6)0.0024 (5)0.0007 (5)0.0003 (5)
P10.0129 (6)0.0181 (7)0.0142 (6)0.0010 (5)0.0009 (5)0.0010 (5)
O10.0074 (15)0.028 (2)0.0212 (17)0.0013 (13)0.0016 (12)0.0099 (15)
N10.0139 (19)0.012 (2)0.0130 (19)0.0015 (15)0.0022 (15)0.0006 (16)
C10.018 (2)0.018 (2)0.016 (2)0.0007 (19)0.0045 (19)0.003 (2)
P20.0125 (6)0.0160 (7)0.0144 (6)0.0015 (5)0.0009 (5)0.0017 (5)
O20.0268 (17)0.037 (2)0.0217 (17)0.0077 (17)0.0009 (16)0.0044 (16)
N20.013 (2)0.027 (2)0.019 (2)0.0015 (17)0.0047 (15)0.0132 (18)
C20.0102 (19)0.019 (3)0.022 (2)0.0011 (18)0.0025 (17)0.001 (2)
O30.0113 (16)0.059 (2)0.034 (2)0.0073 (16)0.0046 (14)0.0062 (18)
N30.021 (2)0.018 (2)0.024 (2)0.0038 (17)0.0035 (19)0.000 (2)
C30.013 (2)0.017 (3)0.021 (2)0.0008 (18)0.0026 (18)0.001 (2)
O40.0301 (17)0.0287 (19)0.0166 (16)0.0077 (16)0.0098 (15)0.0024 (15)
N40.053 (3)0.046 (3)0.047 (3)0.008 (2)0.018 (3)0.003 (3)
C40.017 (2)0.025 (3)0.027 (3)0.003 (2)0.0033 (18)0.008 (2)
C50.013 (2)0.021 (3)0.055 (4)0.001 (2)0.000 (2)0.012 (3)
C60.014 (2)0.027 (3)0.064 (4)0.003 (2)0.017 (2)0.004 (3)
C70.034 (3)0.036 (3)0.034 (3)0.002 (3)0.024 (2)0.006 (3)
C80.025 (2)0.027 (3)0.028 (3)0.003 (2)0.006 (2)0.008 (2)
C90.019 (2)0.021 (3)0.011 (2)0.0050 (19)0.0020 (18)0.003 (2)
C100.027 (2)0.026 (3)0.023 (3)0.001 (2)0.005 (2)0.001 (3)
C110.038 (3)0.025 (3)0.019 (2)0.008 (3)0.004 (2)0.004 (2)
C120.024 (2)0.038 (4)0.023 (3)0.017 (2)0.009 (2)0.007 (3)
C130.015 (2)0.036 (3)0.032 (3)0.005 (2)0.005 (2)0.013 (3)
C140.018 (2)0.023 (3)0.025 (3)0.002 (2)0.003 (2)0.002 (2)
C150.014 (2)0.017 (2)0.018 (2)0.002 (2)0.0025 (19)0.005 (2)
C160.016 (2)0.020 (3)0.023 (3)0.0024 (19)0.000 (2)0.002 (2)
C170.016 (2)0.021 (3)0.036 (3)0.004 (2)0.004 (2)0.002 (2)
C180.016 (2)0.029 (3)0.032 (3)0.003 (2)0.002 (2)0.012 (3)
C190.021 (2)0.042 (3)0.019 (3)0.005 (2)0.005 (2)0.007 (3)
C200.015 (2)0.024 (3)0.020 (2)0.002 (2)0.0030 (19)0.002 (2)
C210.017 (2)0.018 (3)0.015 (2)0.003 (2)0.0020 (19)0.005 (2)
C220.021 (2)0.026 (3)0.019 (3)0.007 (2)0.004 (2)0.002 (2)
C230.038 (3)0.031 (3)0.015 (3)0.020 (3)0.003 (2)0.006 (2)
C240.028 (3)0.041 (3)0.028 (3)0.016 (3)0.016 (2)0.011 (3)
C250.020 (2)0.030 (3)0.042 (3)0.004 (3)0.011 (3)0.009 (3)
C260.021 (2)0.018 (3)0.029 (3)0.004 (2)0.007 (2)0.002 (2)
C270.013 (2)0.021 (2)0.018 (2)0.001 (2)0.0041 (19)0.001 (2)
C280.007 (2)0.024 (3)0.018 (2)0.0019 (19)0.0007 (18)0.003 (2)
C290.012 (2)0.012 (3)0.015 (2)0.0029 (18)0.0002 (18)0.004 (2)
C300.013 (2)0.017 (3)0.019 (2)0.0024 (19)0.0010 (18)0.004 (2)
C310.009 (2)0.020 (3)0.022 (3)0.0045 (19)0.0003 (18)0.003 (2)
C320.014 (2)0.013 (2)0.011 (2)0.001 (2)0.0025 (19)0.0012 (19)
C330.036 (3)0.035 (3)0.037 (3)0.004 (3)0.011 (2)0.004 (3)
C340.064 (4)0.046 (4)0.069 (4)0.014 (3)0.032 (3)0.016 (3)
Geometric parameters (Å, º) top
Pd1—Cl12.3564 (11)C11—C121.378 (6)
Pd1—P12.2366 (11)C12—H120.9500
Pd1—N12.100 (3)C12—C131.384 (6)
Pd1—P22.2577 (12)C13—H130.9500
P1—C11.828 (4)C13—C141.385 (6)
P1—C31.821 (4)C14—H140.9500
P1—C91.814 (4)C15—C161.392 (6)
O1—C321.233 (4)C15—C201.391 (5)
N1—C271.352 (5)C16—H160.9500
N1—C311.343 (5)C16—C171.394 (5)
C1—H1A0.9900C17—H170.9500
C1—H1B0.9900C17—C181.379 (6)
C1—C21.530 (5)C18—H180.9500
P2—C21.829 (4)C18—C191.391 (6)
P2—C151.823 (4)C19—H190.9500
P2—C211.820 (4)C19—C201.402 (5)
O2—N31.259 (4)C20—H200.9500
N2—H2C0.8800C21—C221.390 (6)
N2—H2D0.8800C21—C261.401 (5)
N2—C321.333 (5)C22—H220.9500
C2—H2A0.9900C22—C231.394 (6)
C2—H2B0.9900C23—H230.9500
O3—N31.260 (4)C23—C241.396 (6)
N3—O41.247 (4)C24—H240.9500
C3—C41.401 (5)C24—C251.376 (6)
C3—C81.378 (5)C25—H250.9500
N4—C331.140 (6)C25—C261.383 (5)
C4—H40.9500C26—H260.9500
C4—C51.390 (5)C27—H270.9500
C5—H50.9500C27—C281.373 (5)
C5—C61.371 (6)C28—H280.9500
C6—H60.9500C28—C291.379 (5)
C6—C71.388 (6)C29—C301.395 (5)
C7—H70.9500C29—C321.505 (5)
C7—C81.403 (6)C30—H300.9500
C8—H80.9500C30—C311.376 (5)
C9—C101.387 (6)C31—H310.9500
C9—C141.393 (5)C33—C341.463 (7)
C10—H100.9500C34—H34A0.9800
C10—C111.391 (6)C34—H34B0.9800
C11—H110.9500C34—H34C0.9800
P1—Pd1—Cl190.06 (4)C13—C12—H12120.1
P1—Pd1—P286.24 (4)C12—C13—H13119.8
N1—Pd1—Cl186.98 (9)C12—C13—C14120.4 (4)
N1—Pd1—P1176.86 (9)C14—C13—H13119.8
N1—Pd1—P296.81 (9)C9—C14—H14120.0
P2—Pd1—Cl1173.44 (4)C13—C14—C9120.1 (4)
C1—P1—Pd1109.20 (13)C13—C14—H14120.0
C3—P1—Pd1110.82 (14)C16—C15—P2121.9 (3)
C3—P1—C1107.71 (18)C20—C15—P2117.1 (3)
C9—P1—Pd1116.11 (14)C20—C15—C16121.0 (4)
C9—P1—C1107.14 (19)C15—C16—H16120.6
C9—P1—C3105.48 (19)C15—C16—C17118.8 (4)
C27—N1—Pd1120.0 (3)C17—C16—H16120.6
C31—N1—Pd1120.1 (2)C16—C17—H17119.6
C31—N1—C27118.3 (3)C18—C17—C16120.8 (4)
P1—C1—H1A109.8C18—C17—H17119.6
P1—C1—H1B109.8C17—C18—H18119.9
H1A—C1—H1B108.2C17—C18—C19120.2 (4)
C2—C1—P1109.4 (3)C19—C18—H18119.9
C2—C1—H1A109.8C18—C19—H19120.1
C2—C1—H1B109.8C18—C19—C20119.7 (4)
C2—P2—Pd1107.89 (14)C20—C19—H19120.1
C15—P2—Pd1112.25 (13)C15—C20—C19119.3 (4)
C15—P2—C2109.45 (19)C15—C20—H20120.3
C21—P2—Pd1117.25 (14)C19—C20—H20120.3
C21—P2—C2104.05 (18)C22—C21—P2121.6 (3)
C21—P2—C15105.49 (18)C22—C21—C26119.6 (4)
H2C—N2—H2D120.0C26—C21—P2118.6 (3)
C32—N2—H2C120.0C21—C22—H22119.9
C32—N2—H2D120.0C21—C22—C23120.1 (4)
C1—C2—P2110.4 (3)C23—C22—H22119.9
C1—C2—H2A109.6C22—C23—H23120.3
C1—C2—H2B109.6C22—C23—C24119.5 (4)
P2—C2—H2A109.6C24—C23—H23120.3
P2—C2—H2B109.6C23—C24—H24119.8
H2A—C2—H2B108.1C25—C24—C23120.3 (4)
O2—N3—O3118.8 (4)C25—C24—H24119.8
O4—N3—O2120.7 (3)C24—C25—H25119.7
O4—N3—O3120.5 (3)C24—C25—C26120.5 (4)
C4—C3—P1118.4 (3)C26—C25—H25119.7
C8—C3—P1121.6 (3)C21—C26—H26120.1
C8—C3—C4119.9 (4)C25—C26—C21119.9 (4)
C3—C4—H4120.2C25—C26—H26120.1
C5—C4—C3119.5 (4)N1—C27—H27119.3
C5—C4—H4120.2N1—C27—C28121.5 (4)
C4—C5—H5119.9C28—C27—H27119.3
C6—C5—C4120.3 (4)C27—C28—H28119.8
C6—C5—H5119.9C27—C28—C29120.4 (4)
C5—C6—H6119.6C29—C28—H28119.8
C5—C6—C7120.9 (4)C28—C29—C30118.1 (4)
C7—C6—H6119.6C28—C29—C32117.9 (3)
C6—C7—H7120.5C30—C29—C32123.9 (4)
C6—C7—C8119.1 (4)C29—C30—H30120.6
C8—C7—H7120.5C31—C30—C29118.7 (4)
C3—C8—C7120.3 (4)C31—C30—H30120.6
C3—C8—H8119.9N1—C31—C30123.0 (4)
C7—C8—H8119.9N1—C31—H31118.5
C10—C9—P1119.3 (3)C30—C31—H31118.5
C10—C9—C14119.1 (4)O1—C32—N2122.4 (3)
C14—C9—P1121.5 (3)O1—C32—C29119.9 (4)
C9—C10—H10119.8N2—C32—C29117.6 (3)
C9—C10—C11120.5 (4)N4—C33—C34178.7 (6)
C11—C10—H10119.8C33—C34—H34A109.5
C10—C11—H11120.0C33—C34—H34B109.5
C12—C11—C10120.0 (4)C33—C34—H34C109.5
C12—C11—H11120.0H34A—C34—H34B109.5
C11—C12—H12120.1H34A—C34—H34C109.5
C11—C12—C13119.9 (4)H34B—C34—H34C109.5
Pd1—P1—C1—C234.8 (3)C9—P1—C1—C2161.4 (3)
Pd1—P1—C3—C49.3 (4)C9—P1—C3—C4135.7 (3)
Pd1—P1—C3—C8167.7 (3)C9—P1—C3—C841.3 (4)
Pd1—P1—C9—C1086.2 (3)C9—C10—C11—C122.1 (6)
Pd1—P1—C9—C1491.1 (3)C10—C9—C14—C132.6 (6)
Pd1—N1—C27—C28167.1 (3)C10—C11—C12—C130.7 (6)
Pd1—N1—C31—C30166.1 (3)C11—C12—C13—C140.2 (6)
Pd1—P2—C2—C136.2 (3)C12—C13—C14—C91.2 (6)
Pd1—P2—C15—C16109.9 (3)C14—C9—C10—C113.1 (6)
Pd1—P2—C15—C2068.4 (3)C15—P2—C2—C186.2 (3)
Pd1—P2—C21—C22147.5 (3)C15—P2—C21—C2221.7 (4)
Pd1—P2—C21—C2637.5 (4)C15—P2—C21—C26163.3 (3)
P1—C1—C2—P245.1 (3)C15—C16—C17—C180.6 (6)
P1—C3—C4—C5177.5 (3)C16—C15—C20—C190.4 (6)
P1—C3—C8—C7176.4 (3)C16—C17—C18—C190.5 (7)
P1—C9—C10—C11179.5 (3)C17—C18—C19—C200.1 (7)
P1—C9—C14—C13180.0 (3)C18—C19—C20—C150.5 (6)
N1—C27—C28—C291.7 (6)C20—C15—C16—C170.1 (6)
C1—P1—C3—C4110.1 (3)C21—P2—C2—C1161.4 (3)
C1—P1—C3—C872.9 (4)C21—P2—C15—C16121.3 (3)
C1—P1—C9—C10151.5 (3)C21—P2—C15—C2060.4 (4)
C1—P1—C9—C1431.2 (4)C21—C22—C23—C241.3 (6)
P2—C15—C16—C17178.1 (3)C22—C21—C26—C250.3 (6)
P2—C15—C20—C19178.7 (3)C22—C23—C24—C250.7 (7)
P2—C21—C22—C23175.8 (3)C23—C24—C25—C260.4 (7)
P2—C21—C26—C25174.8 (3)C24—C25—C26—C210.9 (6)
C2—P2—C15—C169.9 (4)C26—C21—C22—C230.8 (6)
C2—P2—C15—C20171.8 (3)C27—N1—C31—C300.1 (6)
C2—P2—C21—C2293.5 (4)C27—C28—C29—C301.3 (6)
C2—P2—C21—C2681.5 (3)C27—C28—C29—C32178.0 (4)
C3—P1—C1—C285.6 (3)C28—C29—C30—C310.3 (6)
C3—P1—C9—C1036.9 (4)C28—C29—C32—O15.1 (6)
C3—P1—C9—C14145.8 (3)C28—C29—C32—N2174.3 (4)
C3—C4—C5—C62.3 (7)C29—C30—C31—N10.3 (6)
C4—C3—C8—C70.6 (7)C30—C29—C32—O1175.8 (4)
C4—C5—C6—C73.2 (7)C30—C29—C32—N24.9 (6)
C5—C6—C7—C82.1 (7)C31—N1—C27—C281.1 (6)
C6—C7—C8—C30.2 (7)C32—C29—C30—C31178.9 (4)
C8—C3—C4—C50.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O20.882.042.891 (4)163
N2—H2D···O1i0.882.193.047 (4)163
C28—H28···O3ii0.952.393.082 (5)129
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at The University of Texas at San Antonio.

Funding information

Funding for this research was provided by: The Welch Foundaton (award No. BN0032).

References

First citationAl-Janabi, A. S., Yousef, T. A., Al-Doori, M. E., Bedier, R. A. & Ahmed, B. M. (2021). J. Mol. Struct. 1246, 131035.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCullinane, C., Deacon, G. B., Drago, P. R., Erven, A. P., Junk, P. C., Luu, J., Meyer, G., Schmitz, S., Ott, I., Schur, J., Webster, L. K. & Klein, A. (2018). Dalton Trans. 47, 1918–1932.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuha, S., Goodson, F. S., Clark, R. J. & Saha, S. (2012). CrystEngComm, 14, 1213–1215.  CSD CrossRef CAS Google Scholar
First citationKoide, Y., Bott, S. G. & Barron, A. R. (1996). Organometallics, 15, 2213–2226.  CSD CrossRef CAS Google Scholar
First citationKuijpers, T. & Blom, B. (2021). Eur. J. Med. Chem. 223, 113651.  CrossRef PubMed Google Scholar
First citationLi, Y., Bäckesjö, C. M., Haldosén, L. A. & Lindgren, U. (2009). Eur. J. Pharmacol. 609, 13–18.  CrossRef PubMed CAS Google Scholar
First citationMane, P. A., Pathak, A. K., Bhuvanesh, N. & Dey, S. (2021). Inorg. Chem. Front. 8, 3815–3829.  CSD CrossRef CAS Google Scholar
First citationNaghipour, A., Sayadi, M., Sedghi, A., Sabounchei, S. J., Babaee, H. & Notash, B. (2021). Inorg. Chim. Acta, 515, 120039.  CSD CrossRef Google Scholar
First citationOwen, G. R., Vilar, R., White, A. J. & Williams, D. J. (2002). Organometallics, 21, 4799–4807.  CSD CrossRef CAS Google Scholar
First citationOwen, G. R., Vilar, R., White, A. J. & Williams, D. J. (2003). Organometallics, 22, 4511–4521.  CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThapa, K., Paul, P. & Bhattacharya, S. (2019). Inorg. Chim. Acta, 486, 232–239.  CSD CrossRef CAS Google Scholar
First citationUehara, K., Oishi, T., Hirose, T. & Mizuno, N. (2013). Inorg. Chem. 52, 11200–11209.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds