inorganic compounds
Nitrosonium tetrafluoridoborate, NOBF4
aDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si
The +BF4−, was refined on the basis of single-crystal X-ray diffraction data at 150 K. The compound crystallizes in the baryte structure type with orthorhombic Pnma symmetry. The exhibits cationic disorder with equal occupation of N and O atoms at the same site.
of oxidonitrogen(1+) tetrafluoridoborate (nitrosonium tetrafluoridoborate), NOKeywords: crystal structure; tetrafluoridoborate; nitrosonium; redetermination.
CCDC reference: 2122392
Structure description
Numerous nitrosonium fluorido salts are known (e.g., Sunder et al., 1979; Mazej et al., 2009) and several of them have been structurally characterized (e.g., Adam et al., 1996). Nonetheless, for nitrosonium tetrafluoridoborate (NOBF4), which is an efficient one-electron oxidant, nitrosating and diazotizing agent (Olah et al., 2004), only the unit-cell parameters derived from X-ray powder diffraction data have been reported previously (a = 6.983 Å, b = 8.911 Å, c = 5.675 Å, Pbnm; Evans et al., 1964). Nitrosonium tetrafluoridoborate crystallizes in the baryte (BaSO4) structure type and is isotypic with ammonium, alkali metal (K, Rb, Cs) (Clark & Lynton, 1969) and dioxygen(1+) tetrafluoridoborates (Wilson et al., 1971). The current (Table 1) refined from single-crystal X-ray data at 150 K is in good agreement with the aforementioned previously published values.
The 4 is composed of atoms B1, F1, and F2, which coincide with the crystallographic mirror plane (Wyckoff position 4c; .m.), whereas atoms F3 and disordered N1/O1, are located on general positions (Wyckoff position 8d) (Fig. 1). The BF4− anion has a slightly distorted tetrahedral shape, with F—B—F bond angles ranging from 108.42 (6) to 111.11 (7)° and B—F bond lengths of 1.3863 (10), 1.3872 (10) and 1.4042 (6) Å involving atoms F1, F2, and F3, respectively. Similar values were observed in NO2BF4 (Krossing et al., 2007) and other BF4− salts (Radan et al., 2011; Lozinšek et al., 2009) or complexes (Tavčar & Žemva, 2005). The NO+ cation is disordered across a crystallographic mirror plane, with atoms N1 and O1 sharing the same site. It is noteworthy that the orientational cationic disorder in the salt NOBF4 was studied previously by measurements from 10 to 304 K (Callanan et al., 1981). The N—O bond length of 1.0216 (10) Å in NOBF4 is similar to the values reported for other nitrosonium fluoride salts, for instance: 1.052 (6) Å in NOUF6 at 100 K (Scheibe et al., 2016) and 1.012 (6) Å in NOSbF6 at 150 K (Mazej & Goreshnik, 2021), with both salts also exhibiting disordered NO+ groups. Each anion is surrounded by seven cations and vice versa, with fourteen (N/O)⋯F contacts shorter than 3.0 Å; the shortest contacts [2.6211 (6), 2.6222 (6), and 2.6560 (6) Å] involve atom F3. In the the NO+ cations are oriented parallel to the b axis (Fig. 2).
of the NOBFSynthesis and crystallization
A sample of NOBF4 suitable for single-crystal X-ray diffraction was obtained from a commercial source (Alfa Aesar, 98%). Crystals were placed onto a watch glass and covered with a protective layer of perfluorodecalin (ABCR, AB102850, 98%, cis and trans) inside an argon-filled glovebox (MBraun, H2O < 0.5 ppm). A suitable colorless crystal was selected under a polarizing microscope outside the glovebox, mounted on a MiTeGen Dual Thickness MicroLoop with the aid of Baysilone-Paste, and quickly transferred into a cold nitrogen stream of the X-ray diffractometer.
Refinement
Crystal data, data collection and structure . The coordinates and anisotropic displacement parameters of the disordered atoms O1 and N1 sharing the same site were constrained to be equal (EXYZ, EADP) and their site occupancy factor set to 0.5.
details are summarized in Table 1Structural data
CCDC reference: 2122392
https://doi.org/10.1107/S2414314621012153/wm4156sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621012153/wm4156Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).NO+·BF4− | Dx = 2.274 Mg m−3 |
Mr = 116.82 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 8015 reflections |
a = 8.8588 (3) Å | θ = 3.8–37.6° |
b = 5.6268 (2) Å | µ = 0.31 mm−1 |
c = 6.8460 (2) Å | T = 150 K |
V = 341.25 (2) Å3 | Irregular, clear colourless |
Z = 4 | 0.24 × 0.19 × 0.12 mm |
F(000) = 224 |
New Gemini, Dual, Cu at home/near, Atlas diffractometer | 976 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 824 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 10.6426 pixels mm-1 | θmax = 37.9°, θmin = 3.8° |
ω scans | h = −15→15 |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2021) | k = −9→9 |
Tmin = 0.948, Tmax = 0.975 | l = −11→11 |
16165 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: iterative |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.045P)2 + 0.0254P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.081 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.22 e Å−3 |
976 reflections | Δρmin = −0.28 e Å−3 |
37 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
F1 | 0.34796 (7) | 0.250000 | 0.97160 (7) | 0.02402 (13) | |
F2 | 0.59689 (6) | 0.250000 | 0.88293 (9) | 0.02508 (13) | |
F3 | 0.42423 (4) | 0.45243 (7) | 0.70118 (6) | 0.02149 (11) | |
B1 | 0.44886 (9) | 0.250000 | 0.81682 (11) | 0.01500 (14) | |
O1 | 0.31375 (5) | 0.34078 (9) | 0.35238 (7) | 0.02274 (12) | 0.5 |
N1 | 0.31375 (5) | 0.34078 (9) | 0.35238 (7) | 0.02274 (12) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0301 (3) | 0.0280 (3) | 0.0140 (2) | 0.000 | 0.00714 (18) | 0.000 |
F2 | 0.0191 (2) | 0.0290 (3) | 0.0272 (3) | 0.000 | −0.01088 (19) | 0.000 |
F3 | 0.02134 (18) | 0.02461 (19) | 0.01852 (18) | 0.00146 (13) | −0.00060 (11) | 0.00719 (12) |
B1 | 0.0152 (3) | 0.0187 (3) | 0.0111 (3) | 0.000 | −0.0013 (2) | 0.000 |
O1 | 0.0181 (2) | 0.0266 (2) | 0.0235 (2) | 0.00024 (16) | −0.00237 (14) | 0.00430 (17) |
N1 | 0.0181 (2) | 0.0266 (2) | 0.0235 (2) | 0.00024 (16) | −0.00237 (14) | 0.00430 (17) |
F1—B1 | 1.3863 (10) | F3—B1 | 1.4042 (6) |
F2—B1 | 1.3872 (10) | O1—N1i | 1.0216 (10) |
F1—B1—F2 | 111.11 (7) | F2—B1—F3i | 109.32 (4) |
F1—B1—F3i | 109.32 (4) | F2—B1—F3 | 109.32 (4) |
F1—B1—F3 | 109.31 (4) | F3i—B1—F3 | 108.42 (6) |
Symmetry code: (i) x, −y+1/2, z. |
Funding information
The author is grateful for research funding from the Jožef Stefan Institute Director's Fund, the Slovenian Research Agency (N1-0189, P1-0045), and the European Research Council (950625).
References
Adam, S., Ellern, A. & Seppelt, K. (1996). Chem. Eur. J. 2, 398–402. CrossRef ICSD CAS Web of Science Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Callanan, J. E., Granville, N. W., Green, N. H., Staveley, L. A. K., Weir, R. D. & White, M. A. (1981). J. Chem. Phys. 74, 1911–1915. CrossRef CAS Google Scholar
Clark, M. J. R. & Lynton, H. (1969). Can. J. Chem. 47, 2579–2586. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Evans, J. C., Rinn, H. W., Kuhn, S. J. & Olah, G. A. (1964). Inorg. Chem. 3, 857–861. CrossRef CAS Google Scholar
Krossing, I., Raabe, I. & Birtalan, E. (2007). Acta Cryst. E63, i43–i44. CrossRef IUCr Journals Google Scholar
Lozinšek, M., Bunič, T., Goreshnik, E., Meden, A., Tramšek, M., Tavčar, G. & Žemva, B. (2009). J. Solid State Chem. 182, 2897–2903. Google Scholar
Mazej, Z. & Goreshnik, E. (2021). Eur. J. Inorg. Chem. pp. 1776–1785. CrossRef Google Scholar
Mazej, Z., Ponikvar-Svet, M., Liebman, J. F., Passmore, J. & Jenkins, H. D. B. (2009). J. Fluorine Chem. 130, 788–791. CrossRef CAS Google Scholar
Olah, G. A., Prakash, G. K. S., Wang, Q., Li, X.-y., Prakash, G. K. S. & Hu, J. (2004). Nitrosonium Tetrafluoroborate. In Encyclopedia of Reagents for Organic Synthesis. Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984. Web of Science CrossRef CAS IUCr Journals Google Scholar
Radan, K., Lozinšek, M., Goreshnik, E. & Žemva, B. (2011). J. Fluorine Chem. 132, 767–771. CrossRef CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, The Woodlands, TX, USA. Google Scholar
Scheibe, B., Lippert, S., Rudel, S. S., Buchner, M. R., Burghaus, O., Pietzonka, C., Koch, M., Karttunen, A. J. & Kraus, F. (2016). Chem. Eur. J. 22, 12145–12153. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sunder, W. A., Wayda, A. L., Distefano, D., Falconer, W. E. & Griffiths, J. E. (1979). J. Fluorine Chem. 14, 299–325. CrossRef CAS Google Scholar
Tavčar, G. & Žemva, B. (2005). Inorg. Chem. 44, 1525–1529. Web of Science PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilson, J. N., Curtis, R. M. & Goetschel, C. T. (1971). J. Appl. Cryst. 4, 261–262. CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.