metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4-Butyl-1-methyl-1,2,4-triazol-5-yl­­idene)[(1,2,5,6-η)-cyclo­octa-1,5-diene](tri­phenyl­phosphane)iridium(I) tetra­fluorido­borate

crossmark logo

aDepartment of Chemistry, Millersville University, Millersville PA, 17551, USA, and bDepartment of Chemistry and Biochemistry, The University of Arizona, Tuscon, AZ, 85716, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 October 2021; accepted 28 October 2021; online 4 November 2021)

A new triazole-based N-heterocyclic cationic carbene iridium(I) complex with a tetra­fluorido­borate counter-anion, [Ir(C8H12)(C7H13N3)(C18H15P)]BF4, has been synthesized and structurally characterized. The IrI atom of the cationic complex has an expected square-planar coordination environment with unexceptional bond lengths. There are several close F⋯H contacts between the cations and the anions in the range 2.36–2.58 Å, stabilizing the orientation of the out-sphere [BF4] counter-anion. In the crystal, C—H⋯π(ring) inter­actions are observed that orient the phenyl rings of the tri­phenyl­phosphane ligands.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-heterocyclic carbenes (NHC) have become important alternatives to phosphanes as ancillary ligands in transition-metal chemistry, synthesis, and in homogeneous catalysis (Cazin, 2013[Cazin, C. S. J. (2013). Dalton Trans. 42, 7254.]; Díez-Gonzáles et al., 2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]; Rovis & Nolan, 2013[Rovis, T. & Nolan, S. (2013). Synlett, 24, 1188-1189.]; Ruff et al., 2016[Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327-335.]; Zuo et al., 2014[Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791-5801.]). Their catalytic activities in the transfer hydrogenation of ketones and imines have also been studied and reported (Albrecht et al., 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]). NHC ligands can be tuned sterically and electronically by having different substituents on the nitro­gen atoms (Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). Although many imidazole- and triazole-based NHC rhodium and iridium complexes have been prepared and structurally characterized (Herrmann et al., 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Wang & Lin, 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]; Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]), new imidazole and triazole-based NHC complexes of rhodium and iridium are still being synthesized to study the effect of different substituents on NHC ligands and other ligands coordinating to the metal in transfer hydrogenation reactions (Nichol et al., 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Idrees et al., 2017a[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017a). IUCrData, 2, x171081.],b[Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017b). IUCrData, 2, x171411.]; Rood et al., 2021[Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.]; Rushlow et al., 2021[Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.]; Newman et al., 2021[Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.]).

The mol­ecular structure of the title complex, [Ir(C8H12)(C18H15P)(C7H13N3)][BF4] (4), comprises an IrI cationic complex and a tetra­fluorido­borate counter-anion, illustrated in Fig. 1[link]. The coordination sphere around the IrI atom, formed by the bidentate cyclo­octa-1,5-diene (COD), the carbene C atom of the NHC, and the P atom of the tri­phenyl­phosphane ligand, exhibits a distorted square-planar geometry. The carbene atom, C19, deviates from the expected sp2 hybridization in that the N1—C19—N3 bond angle in the triazole-based carbene is 103.41 (18)°. Other selected bond lengths and angles in the structure are: Ir1—C19(NHC) = 2.043 (2) Å, Ir1—P1 = 2.3330 (6) Å, and C19—Ir1—P1 = 91.94 (6)°. Fig. 2[link] shows the molecular packing diagram of the complex (4). There are several close F⋯H contacts (likely, non-standard hydrogen bonds between the cation and anion), stabilizing the orientation of the [BF4] group as reported in Table 1[link] and shown as dotted green lines in Fig. 2[link]. An intra­molecular C—H⋯π(ring) inter­action is observed between a hydrogen atom on the butyl wingtip of the NHC (H21B) and a phenyl phosphane ring (C7–C12) with an H⋯centroid distance of 2.84 Å and a C—H⋯centroid angle of 139°. Inter­molecular C—H⋯π(ring) inter­actions are observed between phenyl phosphane rings on adjacent moieties with a hydrogen atom of a phenyl ring (H9) inter­acting with a phenyl phosphane ring (C13–C18). The inter­molecular C—H⋯π(ring) inter­action has an H⋯centroid distance of 2.77 Å and a C—H⋯centroid angle of 159°. The inter­action results in nearly perpendicular T-shaped orientations of the phenyl rings (C7–C12 and C13–C18), as seen in Fig. 3[link], with a dihedral angle of 80.43 (11)° between the ring planes.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F2 0.95 2.36 3.285 (3) 165
C20—H20⋯F1i 0.95 2.47 3.329 (3) 150
C25—H25B⋯F4ii 0.98 2.37 3.245 (3) 149
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular entities in the crystal structure of the title compound (4). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing unit-cell diagram of the title compound (4) shown along the a axis. Hydrogen-bonding inter­actions between F and H atoms are shown as dotted green lines. Add axis labels
[Figure 3]
Figure 3
View of the title compound (4) showing T-shaped distorted perpendicular inter­actions arising from C—H⋯π(ring) inter­actions between a hydrogen atom on a phenyl ring (H9) and a phenyl ring (C13–C18) of tri­phenyl­phosphane. [Symmetry code: (i) −x + 2, −y + 1, −z + 1].

Synthesis and crystallization

1-Methyl-1,2,4-triazole (1) was purchased from Matrix Scientific. All other compounds used in the syntheses, shown in Fig. 4[link], were obtained from Sigma–Aldrich and Strem and used as received; all syntheses were performed under a nitro­gen atmosphere. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz (operating at 162 MHz for 31P) Varian spectrometer and referenced to the residual solvent peak (δ in ppm).

[Figure 4]
Figure 4
Reaction scheme for the synthesis of the N-heterocyclic carbene (2) and subsequent formation of the title compound (4).

4-Butyl-1-methyl-1,2,4-triazolium bromide (2): 1-Methyl-1,2,4-triazole (1) (1.231 g, 14.82 mmol) and 1-bromo­butane (3.393 g, 24.76 mmol) were added to toluene (10 mL), and the mixture was refluxed in the dark for 24 h. After the mixture was cooled, the off-white solid was filtered, washed with ether, and dried under vacuum. Yield: 2.228 g (68%). 1H NMR: δ 11.42 (s, 1 H, N—C5H—N), 9.01 (s, 1 H, N—C3H—N), 4.56 (t, 2 H, N—CH­2 of n-Bu), 4.25 (s, 3 H, N—CH3), 1.95 (m, 2 H, CH2 of n-Bu), 1.40 (m, 2 H, CH2 of n-Bu), 0.96 (t, 3 H, CH3 of n-Bu). 13C NMR: δ 143.77 (N—C5—N), 143.35 (N—C3—N), 48.60 (N—CH3), 39.55 (N-CH­2 of n-Bu), 31.90 (CH­2 of n-Bu), 19.43 (CH­2 of n-Bu), 13.39 (CH­3 of n-Bu).

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](4-butyl-1-methyl-1,2,4-tri­azol-5-yl­idene)chloro­iridium (3): Triazolium bromide (2) (0.066 g, 0.300 mmol) and Ag2O (0.035 g, 0.151 mmol) were stirred at room temperature in the dark for 1 h in CH2Cl2 (10 mL). The mixture was then filtered through Celite into [Ir(cod)Cl]2 (0.100 g, 0.149 mmol), and stirred again in the dark for 1.5 h. The resulting solution was filtered through Celite and the solvent was removed at reduced pressure. The yellow solid product (3) was dried under vacuum. Yield: 0.134g (94%). 1H NMR: δ 7.85 (s, 1 H, N—C3H—N), 4.78 (t, 2 H, N—CH2 of n-Bu), 4.46 (m, 2 H, CH of COD), 4.35 (m, 2H of COD), 4.14 (s, 3 H, N—CH3), 3.01, 2.91 (m, 4 H, CH2 of COD), 2.25,2.09 (m, 4 H, CH2 of COD), 1.80 (m, 2 H, CH2 of n-Bu), 1.43 (m, 2 H, CH2 of n-Bu), 1.02 (t, 3 H, CH2 of n-Bu). 13C NMR: δ 178.56 (Ir—C), 143.73 (N—C3H—N), 86.06,85.48, 52.50, 52.10 (CH of COD), 48.80 (N—CH3), 48.59 (N- CH­2 of n-Bu), 33.77,33.20,32.65,32.50 (CH2 of COD), 31.35 (CH­2 of n-Bu), 19.95 (CH­2 of n-Bu), 13.76 (CH­3 of n-Bu).

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](4-butyl-1-methyl-1,2,4-tri­azol-5-yl­idene)(tri­phenyl­phosphane)iridium(I) tetra­fluorido­borate (4): Tri­phenyl­phosphane (0.074 g, 0.282 mmol) and AgBF4 (0.055 g, 0.282 mmol) were added to (3) (0.134 g, 0.282 mmol) in CH2Cl2 (10 mL). The solution was stirred in the dark for 1.5 h. The resulting mixture was filtered through Celite and the solvent was removed at reduced pressure. The bright-orange solid product (4) was dried under vacuum. Yield: 0.220 g (99%). 1H NMR: δ 8.14 (s, 1 H, N-C3H-N), 7.26–7.45 (m, 15 H, Har), 4.84 (s, 3H, N—CH3), 4.76 (t, 2 H, N—CH2 of CH­2 of n-Bu), 4.52 (m, 2 H, CH of COD), 4.36 (m, 2H, CH of COD), 3.95 (m, 2 H, CH2 of COD), 3.84 (m, 2 H, CH2 of COD), 2.43 (m, 2 H, CH2 of COD), 2.17 (m, 2 H, CH2 of COD), 1.55 (m, CH2 of n-Bu), 1.32 (m, 2 H, CH2 of n-Bu), 0.91 (t, 3 H, CH3 of n-Bu). 13C NMR: δ 178.27 (Ir—C), 143.44 (N—C3H—N), 133.57–129.04 (C arom), 87.66, 87.26, 86.06, 85.18 (CH of COD), 48.48 (N—CH3), 39.44 (N—CH­2 of n-Bu), 33.35, 31.78, 31.18, 30.60 (CH2 of COD), 26.23 (CH2 of n-Bu), 19.98 (CH2 of n-Bu), 13.65 (CH3 of n-Bu).31P NMR: δ 17.40.

The title compound (4) was crystallized by slow diffusion of pentane into a CH2Cl­2 solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ir(C8H12)(C7H13N3)(C18H15P)]BF4
Mr 788.66
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.8966 (9), 16.3247 (17), 20.0560 (19)
β (°) 102.285 (4)
V3) 3166.0 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.32
Crystal size (mm) 0.31 × 0.21 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.668, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 34219, 6457, 5986
Rint 0.028
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.039, 1.02
No. of reflections 6457
No. of parameters 390
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −0.46
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(4-Butyl-1-methyl-1,2,4-triazol-5-ylidene)[(1,2,5,6-η)-cycloocta-1,5-diene](triphenylphosphane)iridium(I) tetrafluoridoborate top
Crystal data top
[Ir(C8H12)(C7H13N3)(C18H15P)]BF4F(000) = 1568
Mr = 788.66Dx = 1.655 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8966 (9) ÅCell parameters from 9226 reflections
b = 16.3247 (17) Åθ = 2.4–26.4°
c = 20.0560 (19) ŵ = 4.32 mm1
β = 102.285 (4)°T = 100 K
V = 3166.0 (5) Å3Irregular, clear light pink
Z = 40.31 × 0.21 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
5986 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 26.4°, θmin = 1.6°
Tmin = 0.668, Tmax = 0.745h = 912
34219 measured reflectionsk = 2020
6457 independent reflectionsl = 2525
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.039 w = 1/[σ2(Fo2) + (0.0154P)2 + 3.1892P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
6457 reflectionsΔρmax = 0.88 e Å3
390 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.65716 (2)0.26151 (2)0.45405 (2)0.01160 (3)
P10.89650 (6)0.26064 (3)0.46457 (3)0.01218 (11)
F30.71162 (17)0.08389 (9)0.20651 (8)0.0358 (4)
F40.55953 (16)0.17666 (10)0.14868 (7)0.0353 (4)
F10.5266 (2)0.12606 (12)0.24796 (9)0.0503 (5)
F20.70664 (17)0.21312 (10)0.24647 (9)0.0433 (4)
N10.65074 (19)0.44904 (11)0.47394 (9)0.0162 (4)
N30.63018 (19)0.41838 (11)0.36915 (9)0.0161 (4)
N20.6419 (2)0.52330 (12)0.44004 (10)0.0211 (4)
C190.6459 (2)0.38401 (13)0.43264 (11)0.0133 (4)
C141.1314 (2)0.29788 (13)0.56684 (11)0.0173 (5)
H141.1799530.3007310.5308360.021*
C10.9725 (2)0.16434 (13)0.44288 (11)0.0142 (4)
C70.9666 (2)0.33788 (14)0.41425 (11)0.0153 (4)
C300.6753 (2)0.14351 (13)0.50736 (11)0.0164 (4)
H300.7725300.1248750.5250580.020*
C130.9890 (2)0.28236 (13)0.55206 (10)0.0140 (4)
C270.4612 (2)0.26324 (14)0.49000 (12)0.0165 (4)
H270.4393830.3175510.5082240.020*
C180.9175 (2)0.28029 (14)0.60557 (11)0.0169 (4)
H180.8207620.2702990.5960200.020*
C61.0729 (2)0.12075 (13)0.48883 (11)0.0166 (4)
H61.1023000.1398530.5343510.020*
C20.9277 (2)0.13410 (14)0.37611 (11)0.0189 (5)
H20.8566110.1617190.3449110.023*
C290.5865 (2)0.14483 (14)0.56032 (11)0.0191 (5)
H29A0.6396490.1705710.6025250.023*
H29B0.5657790.0877410.5714660.023*
C310.6252 (2)0.12923 (13)0.43760 (11)0.0173 (5)
H310.6944650.1029540.4146470.021*
C330.3877 (2)0.18133 (15)0.37746 (12)0.0208 (5)
H33A0.3965620.1911490.3298640.025*
H33B0.2893720.1692260.3766740.025*
C260.4292 (2)0.25843 (14)0.41893 (12)0.0175 (5)
H260.3888740.3098400.3958240.021*
C101.0450 (3)0.46222 (16)0.33383 (12)0.0271 (6)
H101.0701390.5043380.3061010.033*
C80.9513 (2)0.42037 (14)0.42979 (11)0.0174 (5)
H80.9149690.4343810.4684860.021*
C280.4490 (2)0.19174 (14)0.53677 (11)0.0190 (5)
H28A0.3776620.1533710.5125670.023*
H28B0.4178280.2124550.5774020.023*
C200.6288 (2)0.50151 (14)0.37636 (12)0.0209 (5)
H200.6193140.5390190.3394430.025*
C210.6380 (2)0.37261 (15)0.30676 (11)0.0211 (5)
H21A0.6199850.3139560.3139190.025*
H21B0.7330110.3772310.2986940.025*
C121.0261 (2)0.31863 (15)0.35861 (12)0.0215 (5)
H121.0400770.2629830.3479450.026*
C111.0647 (3)0.38084 (17)0.31903 (12)0.0275 (6)
H111.1050340.3673230.2814870.033*
C90.9881 (2)0.48205 (15)0.38964 (12)0.0220 (5)
H90.9746460.5378060.4001390.026*
C41.0889 (2)0.02184 (14)0.40176 (13)0.0224 (5)
H41.1300250.0258430.3875380.027*
C30.9873 (2)0.06395 (14)0.35580 (12)0.0214 (5)
H30.9586070.0445910.3103130.026*
C250.6757 (2)0.44862 (14)0.54844 (11)0.0201 (5)
H25A0.7708050.4309930.5672060.030*
H25B0.6110830.4106990.5632280.030*
H25C0.6617870.5039040.5648230.030*
C51.1299 (2)0.04971 (14)0.46846 (12)0.0208 (5)
H51.1972310.0200930.5002160.025*
C220.5356 (2)0.40274 (16)0.24331 (11)0.0227 (5)
H22A0.5503640.4621500.2379340.027*
H22B0.5562000.3747770.2028070.027*
C240.2888 (3)0.41824 (17)0.17845 (12)0.0273 (6)
H24A0.3129140.3902400.1393500.041*
H24B0.2996610.4774990.1737580.041*
H24C0.1926800.4058740.1800600.041*
C151.2020 (2)0.30915 (14)0.63392 (12)0.0213 (5)
H151.2990680.3182790.6437870.026*
C230.3847 (2)0.38868 (16)0.24451 (12)0.0246 (5)
H23A0.3619640.4182570.2837940.029*
H23B0.3690700.3295250.2506730.029*
C161.1305 (3)0.30704 (15)0.68664 (12)0.0242 (5)
H161.1788880.3153080.7323870.029*
C320.4761 (2)0.10623 (14)0.40586 (12)0.0200 (5)
H32A0.4342970.0790920.4407570.024*
H32B0.4753370.0665780.3684360.024*
B10.6273 (3)0.15018 (17)0.21277 (13)0.0199 (5)
C170.9887 (3)0.29291 (15)0.67276 (11)0.0224 (5)
H170.9402880.2918520.7089010.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01031 (5)0.01204 (5)0.01236 (4)0.00107 (3)0.00225 (3)0.00077 (3)
P10.0116 (3)0.0132 (3)0.0115 (2)0.0014 (2)0.0020 (2)0.00072 (19)
F30.0445 (10)0.0277 (8)0.0356 (9)0.0155 (7)0.0094 (7)0.0015 (7)
F40.0410 (9)0.0387 (9)0.0223 (8)0.0116 (7)0.0024 (6)0.0008 (6)
F10.0625 (12)0.0533 (12)0.0466 (11)0.0028 (9)0.0373 (9)0.0002 (8)
F20.0370 (9)0.0358 (9)0.0489 (10)0.0014 (8)0.0092 (8)0.0191 (8)
N10.0179 (10)0.0126 (9)0.0182 (9)0.0020 (7)0.0040 (7)0.0012 (7)
N30.0155 (9)0.0157 (10)0.0168 (9)0.0030 (7)0.0025 (7)0.0034 (7)
N20.0226 (11)0.0141 (10)0.0263 (11)0.0025 (8)0.0046 (8)0.0044 (8)
C190.0094 (10)0.0155 (11)0.0155 (10)0.0022 (8)0.0038 (8)0.0015 (8)
C140.0164 (11)0.0128 (11)0.0228 (11)0.0017 (9)0.0044 (9)0.0002 (9)
C10.0118 (10)0.0141 (11)0.0176 (11)0.0007 (8)0.0050 (8)0.0002 (8)
C70.0096 (10)0.0203 (12)0.0157 (10)0.0006 (9)0.0017 (8)0.0036 (8)
C300.0156 (11)0.0113 (11)0.0223 (11)0.0026 (9)0.0042 (9)0.0024 (8)
C130.0154 (11)0.0108 (10)0.0145 (10)0.0013 (8)0.0005 (8)0.0008 (8)
C270.0100 (10)0.0167 (11)0.0237 (11)0.0015 (9)0.0053 (9)0.0009 (9)
C180.0158 (11)0.0165 (11)0.0180 (11)0.0022 (9)0.0023 (9)0.0014 (8)
C60.0151 (11)0.0153 (11)0.0190 (11)0.0028 (9)0.0032 (9)0.0004 (8)
C20.0159 (11)0.0210 (12)0.0191 (11)0.0009 (9)0.0023 (9)0.0002 (9)
C290.0213 (12)0.0177 (12)0.0190 (11)0.0022 (9)0.0060 (9)0.0031 (9)
C310.0177 (12)0.0125 (11)0.0232 (12)0.0009 (9)0.0075 (9)0.0003 (8)
C330.0164 (12)0.0255 (13)0.0192 (11)0.0038 (10)0.0009 (9)0.0027 (9)
C260.0076 (10)0.0182 (11)0.0251 (12)0.0016 (8)0.0000 (9)0.0020 (9)
C100.0295 (14)0.0295 (14)0.0220 (12)0.0114 (11)0.0045 (10)0.0085 (10)
C80.0130 (11)0.0202 (12)0.0182 (11)0.0002 (9)0.0015 (8)0.0011 (9)
C280.0172 (12)0.0213 (12)0.0201 (11)0.0028 (9)0.0078 (9)0.0019 (9)
C200.0211 (12)0.0162 (12)0.0254 (12)0.0031 (9)0.0051 (10)0.0070 (9)
C210.0222 (12)0.0264 (13)0.0151 (11)0.0065 (10)0.0046 (9)0.0004 (9)
C120.0212 (12)0.0238 (12)0.0207 (12)0.0019 (10)0.0073 (9)0.0010 (9)
C110.0288 (14)0.0375 (15)0.0188 (12)0.0090 (12)0.0109 (10)0.0013 (10)
C90.0203 (12)0.0191 (12)0.0244 (12)0.0036 (10)0.0002 (9)0.0038 (9)
C40.0231 (13)0.0139 (11)0.0333 (13)0.0004 (9)0.0131 (10)0.0039 (9)
C30.0228 (12)0.0207 (12)0.0222 (12)0.0034 (10)0.0082 (10)0.0063 (9)
C250.0235 (12)0.0193 (12)0.0176 (11)0.0017 (10)0.0048 (9)0.0024 (9)
C50.0154 (11)0.0166 (12)0.0295 (13)0.0019 (9)0.0028 (9)0.0016 (9)
C220.0255 (13)0.0276 (13)0.0152 (11)0.0055 (10)0.0051 (9)0.0029 (9)
C240.0248 (13)0.0332 (15)0.0214 (12)0.0077 (11)0.0006 (10)0.0011 (10)
C150.0176 (12)0.0147 (11)0.0274 (12)0.0014 (9)0.0048 (9)0.0019 (9)
C230.0234 (13)0.0278 (14)0.0211 (12)0.0003 (10)0.0016 (10)0.0019 (10)
C160.0282 (13)0.0193 (12)0.0196 (11)0.0029 (10)0.0067 (10)0.0008 (9)
C320.0208 (12)0.0185 (12)0.0214 (12)0.0039 (9)0.0064 (9)0.0053 (9)
B10.0218 (14)0.0206 (13)0.0173 (12)0.0026 (11)0.0043 (10)0.0017 (10)
C170.0282 (13)0.0232 (12)0.0154 (11)0.0021 (10)0.0040 (9)0.0006 (9)
Geometric parameters (Å, º) top
Ir1—P12.3330 (6)C33—H33A0.9900
Ir1—C192.043 (2)C33—H33B0.9900
Ir1—C302.192 (2)C33—C261.516 (3)
Ir1—C272.208 (2)C33—C321.543 (3)
Ir1—C312.197 (2)C26—H261.0000
Ir1—C262.216 (2)C10—H100.9500
P1—C11.834 (2)C10—C111.384 (4)
P1—C71.841 (2)C10—C91.394 (4)
P1—C131.833 (2)C8—H80.9500
F3—B11.389 (3)C8—C91.386 (3)
F4—B11.386 (3)C28—H28A0.9900
F1—B11.394 (3)C28—H28B0.9900
F2—B11.380 (3)C20—H200.9500
N1—N21.384 (3)C21—H21A0.9900
N1—C191.341 (3)C21—H21B0.9900
N1—C251.462 (3)C21—C221.530 (3)
N3—C191.370 (3)C12—H120.9500
N3—C201.365 (3)C12—C111.392 (3)
N3—C211.474 (3)C11—H110.9500
N2—C201.305 (3)C9—H90.9500
C14—H140.9500C4—H40.9500
C14—C131.400 (3)C4—C31.392 (3)
C14—C151.390 (3)C4—C51.389 (3)
C1—C61.398 (3)C3—H30.9500
C1—C21.407 (3)C25—H25A0.9800
C7—C81.398 (3)C25—H25B0.9800
C7—C121.404 (3)C25—H25C0.9800
C30—H301.0000C5—H50.9500
C30—C291.515 (3)C22—H22A0.9900
C30—C311.401 (3)C22—H22B0.9900
C13—C181.406 (3)C22—C231.516 (3)
C27—H271.0000C24—H24A0.9800
C27—C261.395 (3)C24—H24B0.9800
C27—C281.518 (3)C24—H24C0.9800
C18—H180.9500C24—C231.534 (3)
C18—C171.396 (3)C15—H150.9500
C6—H60.9500C15—C161.392 (4)
C6—C51.389 (3)C23—H23A0.9900
C2—H20.9500C23—H23B0.9900
C2—C31.388 (3)C16—H160.9500
C29—H29A0.9900C16—C171.391 (3)
C29—H29B0.9900C32—H32A0.9900
C29—C281.546 (3)C32—H32B0.9900
C31—H311.0000C17—H170.9500
C31—C321.525 (3)
C19—Ir1—P191.94 (6)C33—C26—Ir1109.39 (15)
C19—Ir1—C30163.28 (8)C33—C26—H26114.1
C19—Ir1—C2792.51 (8)C11—C10—H10120.2
C19—Ir1—C31158.53 (9)C11—C10—C9119.6 (2)
C19—Ir1—C2687.09 (8)C9—C10—H10120.2
C30—Ir1—P188.54 (6)C7—C8—H8119.5
C30—Ir1—C2780.69 (8)C9—C8—C7121.1 (2)
C30—Ir1—C3137.22 (8)C9—C8—H8119.5
C30—Ir1—C2696.15 (8)C27—C28—C29112.87 (18)
C27—Ir1—P1156.32 (6)C27—C28—H28A109.0
C27—Ir1—C2636.76 (8)C27—C28—H28B109.0
C31—Ir1—P196.80 (6)C29—C28—H28A109.0
C31—Ir1—C2787.32 (8)C29—C28—H28B109.0
C31—Ir1—C2679.96 (8)H28A—C28—H28B107.8
C26—Ir1—P1166.86 (6)N3—C20—H20124.0
C1—P1—Ir1116.32 (7)N2—C20—N3111.9 (2)
C1—P1—C7103.62 (10)N2—C20—H20124.0
C7—P1—Ir1116.12 (7)N3—C21—H21A108.9
C13—P1—Ir1112.09 (7)N3—C21—H21B108.9
C13—P1—C1104.27 (10)N3—C21—C22113.45 (19)
C13—P1—C7102.86 (10)H21A—C21—H21B107.7
N2—N1—C25119.05 (18)C22—C21—H21A108.9
C19—N1—N2113.57 (18)C22—C21—H21B108.9
C19—N1—C25127.14 (19)C7—C12—H12119.9
C19—N3—C21124.44 (19)C11—C12—C7120.2 (2)
C20—N3—C19108.08 (18)C11—C12—H12119.9
C20—N3—C21126.70 (19)C10—C11—C12120.7 (2)
C20—N2—N1102.98 (18)C10—C11—H11119.7
N1—C19—Ir1130.67 (16)C12—C11—H11119.7
N1—C19—N3103.41 (18)C10—C9—H9120.0
N3—C19—Ir1125.92 (16)C8—C9—C10119.9 (2)
C13—C14—H14119.8C8—C9—H9120.0
C15—C14—H14119.8C3—C4—H4120.1
C15—C14—C13120.4 (2)C5—C4—H4120.1
C6—C1—P1123.34 (16)C5—C4—C3119.9 (2)
C6—C1—C2119.0 (2)C2—C3—C4120.3 (2)
C2—C1—P1117.67 (16)C2—C3—H3119.8
C8—C7—P1117.78 (17)C4—C3—H3119.8
C8—C7—C12118.5 (2)N1—C25—H25A109.5
C12—C7—P1123.60 (18)N1—C25—H25B109.5
Ir1—C30—H30114.4N1—C25—H25C109.5
C29—C30—Ir1109.27 (14)H25A—C25—H25B109.5
C29—C30—H30114.4H25A—C25—H25C109.5
C31—C30—Ir171.60 (12)H25B—C25—H25C109.5
C31—C30—H30114.4C6—C5—C4120.2 (2)
C31—C30—C29124.6 (2)C6—C5—H5119.9
C14—C13—P1120.85 (16)C4—C5—H5119.9
C14—C13—C18119.33 (19)C21—C22—H22A108.6
C18—C13—P1119.76 (16)C21—C22—H22B108.6
Ir1—C27—H27113.8H22A—C22—H22B107.6
C26—C27—Ir171.92 (13)C23—C22—C21114.7 (2)
C26—C27—H27113.8C23—C22—H22A108.6
C26—C27—C28123.9 (2)C23—C22—H22B108.6
C28—C27—Ir1112.53 (14)H24A—C24—H24B109.5
C28—C27—H27113.8H24A—C24—H24C109.5
C13—C18—H18120.0H24B—C24—H24C109.5
C17—C18—C13120.1 (2)C23—C24—H24A109.5
C17—C18—H18120.0C23—C24—H24B109.5
C1—C6—H6119.7C23—C24—H24C109.5
C5—C6—C1120.5 (2)C14—C15—H15120.0
C5—C6—H6119.7C14—C15—C16119.9 (2)
C1—C2—H2120.0C16—C15—H15120.0
C3—C2—C1120.1 (2)C22—C23—C24111.7 (2)
C3—C2—H2120.0C22—C23—H23A109.3
C30—C29—H29A108.9C22—C23—H23B109.3
C30—C29—H29B108.9C24—C23—H23A109.3
C30—C29—C28113.38 (18)C24—C23—H23B109.3
H29A—C29—H29B107.7H23A—C23—H23B108.0
C28—C29—H29A108.9C15—C16—H16119.8
C28—C29—H29B108.9C17—C16—C15120.4 (2)
Ir1—C31—H31113.6C17—C16—H16119.8
C30—C31—Ir171.18 (12)C31—C32—C33112.38 (19)
C30—C31—H31113.6C31—C32—H32A109.1
C30—C31—C32124.3 (2)C31—C32—H32B109.1
C32—C31—Ir1113.60 (15)C33—C32—H32A109.1
C32—C31—H31113.6C33—C32—H32B109.1
H33A—C33—H33B107.8H32A—C32—H32B107.9
C26—C33—H33A109.0F3—B1—F1109.5 (2)
C26—C33—H33B109.0F4—B1—F3109.9 (2)
C26—C33—C32113.01 (18)F4—B1—F1107.5 (2)
C32—C33—H33A109.0F2—B1—F3109.5 (2)
C32—C33—H33B109.0F2—B1—F4109.5 (2)
Ir1—C26—H26114.1F2—B1—F1110.8 (2)
C27—C26—Ir171.32 (12)C18—C17—H17120.1
C27—C26—C33125.7 (2)C16—C17—C18119.8 (2)
C27—C26—H26114.1C16—C17—H17120.1
Ir1—P1—C1—C6120.92 (17)C30—C31—C32—C3395.6 (3)
Ir1—P1—C1—C259.92 (19)C13—P1—C1—C63.0 (2)
Ir1—P1—C7—C864.05 (18)C13—P1—C1—C2176.11 (17)
Ir1—P1—C7—C12111.60 (18)C13—P1—C7—C858.73 (19)
Ir1—P1—C13—C14169.45 (15)C13—P1—C7—C12125.61 (19)
Ir1—P1—C13—C1813.1 (2)C13—C14—C15—C161.6 (3)
Ir1—C30—C29—C2837.1 (2)C13—C18—C17—C160.4 (4)
Ir1—C30—C31—C32106.2 (2)C6—C1—C2—C32.8 (3)
Ir1—C27—C26—C33100.9 (2)C2—C1—C6—C51.5 (3)
Ir1—C27—C28—C2911.8 (2)C29—C30—C31—Ir1101.1 (2)
Ir1—C31—C32—C3313.0 (2)C29—C30—C31—C325.1 (3)
P1—C1—C6—C5177.65 (17)C31—C30—C29—C2843.4 (3)
P1—C1—C2—C3176.41 (18)C26—C27—C28—C2994.6 (3)
P1—C7—C8—C9173.12 (17)C26—C33—C32—C3133.8 (3)
P1—C7—C12—C11173.78 (18)C8—C7—C12—C111.8 (3)
P1—C13—C18—C17176.94 (17)C28—C27—C26—Ir1105.4 (2)
N1—N2—C20—N30.5 (2)C28—C27—C26—C334.6 (3)
N3—C21—C22—C2366.4 (3)C20—N3—C19—Ir1179.37 (16)
N2—N1—C19—Ir1178.98 (15)C20—N3—C19—N11.0 (2)
N2—N1—C19—N31.4 (2)C20—N3—C21—C2248.3 (3)
C19—N1—N2—C201.2 (2)C21—N3—C19—Ir18.9 (3)
C19—N3—C20—N20.3 (3)C21—N3—C19—N1171.45 (19)
C19—N3—C21—C22143.0 (2)C21—N3—C20—N2170.5 (2)
C14—C13—C18—C170.6 (3)C21—C22—C23—C24178.4 (2)
C14—C15—C16—C170.6 (4)C12—C7—C8—C92.8 (3)
C1—P1—C7—C8167.13 (17)C11—C10—C9—C80.2 (4)
C1—P1—C7—C1217.2 (2)C9—C10—C11—C121.1 (4)
C1—P1—C13—C1463.90 (19)C3—C4—C5—C61.9 (4)
C1—P1—C13—C18113.56 (18)C25—N1—N2—C20176.05 (19)
C1—C6—C5—C40.8 (3)C25—N1—C19—Ir14.7 (3)
C1—C2—C3—C41.8 (3)C25—N1—C19—N3175.69 (19)
C7—P1—C1—C6110.38 (19)C5—C4—C3—C20.6 (4)
C7—P1—C1—C268.78 (19)C15—C14—C13—P1175.91 (17)
C7—P1—C13—C1444.0 (2)C15—C14—C13—C181.6 (3)
C7—P1—C13—C18138.53 (18)C15—C16—C17—C180.4 (4)
C7—C8—C9—C101.8 (3)C32—C33—C26—Ir137.6 (2)
C7—C12—C11—C100.1 (4)C32—C33—C26—C2742.9 (3)
C30—C29—C28—C2732.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F20.952.363.285 (3)165
C20—H20···F1i0.952.473.329 (3)150
C25—H25B···F4ii0.982.373.245 (3)149
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Funding information

KTC was supported in this work by the Millersville University Chemistry Department and the Neimeyer-Hodgson Research Grant.

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCazin, C. S. J. (2013). Dalton Trans. 42, 7254.  Web of Science CrossRef Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017a). IUCrData, 2, x171081.  Google Scholar
First citationIdrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017b). IUCrData, 2, x171411.  Google Scholar
First citationNewman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.  Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.  Google Scholar
First citationRovis, T. & Nolan, S. (2013). Synlett, 24, 1188–1189.  Web of Science CrossRef CAS Google Scholar
First citationRuff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationRushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds