organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-5-(4-Chloro­benzyl­­idene)-1-phenyl-4,5,6,7-tetra­hydro-1H-indazol-4-one: crystal structure and Hirshfeld surface analysis

crossmark logo

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Physics, University College of Engineering Nagercoil, Anna University, Nagercoil 629 004, Tamilnadu, India, cDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and dDepartment of Physics, Bhairahawa M. Campus, Tribhuvan University, Nepal
*Correspondence e-mail: shalikaa.bh@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 2 November 2021; accepted 10 November 2021; online 16 November 2021)

In the title compound, C20H15ClN2O, the non-aromatic six-membered ring adopts a distorted envelope conformation with methyl­ene-C atom nearest to the five-membered ring being the flap atom. The dihedral angle between the phenyl and chloro­benzene rings is 74.5 (1)°. The heterocyclic ring forms dihedral angles of 37.9 (1) and 64.3 (1)° with the phenyl and chloro­benzene rings, respectively. In the crystal, weak C—H⋯O inter­actions feature predominantly within the three-dimensional architecture. The inter­molecular inter­actions are further analysed with the calculation of the Hirshfeld surfaces highlighting the prominent role of C—H⋯O inter­actions, along with H⋯H (36.8%) and C⋯H/H⋯C (26.5%) contacts.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Many heterocyclic compounds are studied for their biological and pharmacological activities. For example, 1,2-diazole derivatives are known to possess anti-depressant, anti-viral, anti-inflammatory and anti-cancer activities (Popat et al., 2003[Popat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). Indian J. Chem. Sect. B, 42, 1497-1501.]; Faisal et al., 2019[Faisal, M., Saeed, A., Hussain, S., Dar, P. & Larik, F. A. (2019). J. Chem. Sci. 131(8), 1-30.]). The crystal and mol­ecular structure of one such indazole derivative, namely, (E)-5-(4-chloro­benzyl­idene)-1-phenyl-4,5,6,7-tetra­hydro-1H- indazol-4-one, is reported herein.

The non-aromatic six-membered ring adopts a distorted envelope conformation with the methyl­ene-C10 atom being the flap atom, Fig. 1[link]. The heterocyclic ring forms dihedral angles of 37.9 (1) and 64.3 (1)° with the phenyl and chloro­benzene rings, respectively. The dihedral angle between the pendant rings is 74.5 (1)°. The mol­ecular structure features a weak intra­molecular inter­action through C14—H14⋯O1 (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1 0.93 2.43 2.804 (3) 104
C5—H5⋯O1i 0.93 2.53 3.320 (3) 143
C7—H7⋯O1ii 0.93 2.59 3.493 (3) 163
C17—H17⋯O1iii 0.93 2.40 3.260 (3) 154
C2—H2⋯Cl1iv 0.93 2.90 3.633 (3) 137
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x, -y+2, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids

The mol­ecular packing features two ring motifs, viz., R22(10) and R22(16) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), each around an inversion centre, through two C—H⋯O inter­actions, i.e. C7—H7⋯O1ii and C5—H5⋯O1i, respectively, Fig. 2[link]; for symmetry codes, refer to Table 1[link]. The centrosymmetric dimers thus formed are connected through two C—H⋯X inter­actions, viz., C17—H17⋯Oiii and C2—H2⋯Cliv, leading to chain C(8) and C(15) motifs, respectively. The first named inter­action serves to connect the mol­ecules along the along [001] and the latter along [101], Fig. 3[link]. Clearly, the carbonyl-O1 atom plays a pivotal role in the supra­molecular assembly.

[Figure 2]
Figure 2
A view of the unit-cell contents viewed in projection down the b-axis.
[Figure 3]
Figure 3
Views of significant C—H⋯X inter­actions (X = O or Cl) shown as dashed lines forming (a) an R22(10) ring motif, (b) an R22(16) ring, (c) a C(8) chain motif and (d) a C(15) chain.

The inter­molecular inter­actions in the crystal state can be visualized through the calculation of the Hirshfeld surfaces and associated two-dimensional fingerprint plots. These were generated by Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer, University of Western Australia, Crawley.]). The Hirshfeld surface is colour-mapped with the normalized contact distance, dnorm, i.e. from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The different types of inter­molecular inter­actions can be identified by colour-coding distances from the surface to the nearest atom exterior (de) or inter­ior (di) plots to the surface. The three-dimensional Hirshfeld surfaces and selected two-dimensional fingerprint plots (with percentage contributions) are given in Fig. 4[link].

[Figure 4]
Figure 4
Hirshfeld three-dimensional surfaces (showing dnorm, di and de) and selected two-dimensional fingerprint plots

The presence of spikes due to O⋯H/H⋯O inter­actions (8.6%) correspond to C—H⋯O inter­molecular inter­actions, which feature predominantly within the crystalline assembly. The contribution of C⋯H/H⋯C contacts (26.5%), leading to a pair of well-defined wings, is also noteworthy. The H⋯H inter­actions contribute 36.8% with widely scattered points of high density, which is consistent with the large number of hydrogen atoms at the surface of the mol­ecule. The Cl⋯H/H⋯Cl contacts also make a notable contribution to the total Hirshfeld surfaces, comprising about 12.9%. The large number of H⋯H, Cl⋯H/H⋯Cl, O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions play a significant role in the packing in the crystal.

Synthesis and crystallization

A mixture of 1-phenyl-1,5,6,7-tetra­hydro-4H-indazol-4-one, (1 mmol) and 4-chloro­benzaldehyde (1 mmol) was dissolved in ethanol followed by the addition of NaOH. The resulting mixture was stirred at room temperature for 1 h to afford (E)-5-(4-chloro­benzyl­idene)-1-phenyl-1,5,6,7-tetra­hydro-4H-ind­a­zol-4-ones as the precipitate. This was filtered off and recrystallized from ethanol to afford colourless crystals; yield: 95%, m.p. 183–184°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H15ClN2O
Mr 334.79
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 30.4808 (16), 8.6604 (5), 14.0457 (7)
β (°) 115.071 (2)
V3) 3358.4 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.22 × 0.20 × 0.16
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 42189, 2949, 2353
Rint 0.056
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.146, 1.12
No. of reflections 2949
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL97 and SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020) and PLATON (Spek, 2020); software used to prepare material for publication: SHELXL97 (Sheldrick, 2015b).

(E)-5-(4-Chlorobenzylidene)-1-phenyl-4,5,6,7-tetrahydro-1H-indazol-4-one top
Crystal data top
C20H15ClN2OF(000) = 1392
Mr = 334.79Dx = 1.324 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.4808 (16) ÅCell parameters from 2246 reflections
b = 8.6604 (5) Åθ = 2.9–23.5°
c = 14.0457 (7) ŵ = 0.24 mm1
β = 115.071 (2)°T = 293 K
V = 3358.4 (3) Å3Block, colourless
Z = 80.22 × 0.20 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
Rint = 0.056
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 3.2°
ω and φ scansh = 3636
42189 measured reflectionsk = 1010
2949 independent reflectionsl = 1616
2353 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0578P)2 + 3.7997P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.146(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.39 e Å3
2949 reflectionsΔρmin = 0.44 e Å3
218 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0169 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms were included in their geometrically calculated positions and refined isotropically with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30506 (10)0.5737 (4)0.3310 (2)0.0788 (9)
H10.30080.62690.27020.095*
C20.26559 (11)0.5226 (5)0.3465 (3)0.0966 (12)
H20.23450.54140.29530.116*
C30.27141 (10)0.4449 (4)0.4359 (3)0.0853 (9)
H30.24450.41130.44500.102*
C40.31708 (10)0.4167 (3)0.5118 (2)0.0706 (7)
H40.32120.36470.57290.085*
C50.35712 (9)0.4656 (3)0.49759 (19)0.0580 (6)
H50.38810.44530.54870.070*
C60.35095 (8)0.5440 (3)0.40771 (17)0.0531 (6)
C70.43290 (9)0.6267 (3)0.30115 (16)0.0558 (6)
H70.44220.63010.24610.067*
C80.46319 (8)0.6698 (3)0.40535 (15)0.0466 (5)
C90.43539 (8)0.6472 (2)0.46043 (15)0.0447 (5)
C100.45229 (8)0.6841 (3)0.57428 (15)0.0490 (5)
H10A0.46640.59310.61650.059*
H10B0.42520.71780.58820.059*
C110.49020 (8)0.8128 (3)0.60228 (17)0.0536 (6)
H11A0.47390.90900.57200.064*
H11B0.50550.82540.67800.064*
C120.52910 (8)0.7832 (3)0.56429 (16)0.0460 (5)
C130.51238 (8)0.7266 (3)0.45363 (16)0.0480 (5)
C140.57663 (8)0.8010 (3)0.62150 (17)0.0503 (5)
H140.59620.77700.58760.060*
C150.60225 (8)0.8534 (3)0.73111 (17)0.0483 (5)
C160.58651 (9)0.9775 (3)0.77156 (18)0.0545 (6)
H160.55891.03150.72780.065*
C170.61102 (9)1.0221 (3)0.87534 (19)0.0599 (6)
H170.60021.10560.90110.072*
C180.65138 (9)0.9423 (3)0.93968 (19)0.0617 (7)
C190.66861 (9)0.8207 (3)0.9027 (2)0.0666 (7)
H190.69620.76760.94730.080*
C200.64429 (8)0.7783 (3)0.7983 (2)0.0595 (6)
H200.65630.69780.77250.071*
N10.39190 (7)0.5928 (2)0.39106 (13)0.0502 (5)
N20.39011 (8)0.5812 (2)0.29111 (14)0.0588 (5)
O10.53879 (6)0.7264 (2)0.40725 (12)0.0669 (5)
Cl10.68147 (4)0.99499 (12)1.07100 (6)0.1050 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0585 (16)0.120 (3)0.0481 (14)0.0063 (16)0.0129 (12)0.0020 (15)
C20.0489 (15)0.156 (3)0.0687 (19)0.0017 (18)0.0097 (14)0.014 (2)
C30.0570 (16)0.119 (3)0.082 (2)0.0160 (17)0.0322 (15)0.0208 (19)
C40.0634 (16)0.0813 (19)0.0700 (17)0.0088 (14)0.0310 (14)0.0017 (14)
C50.0515 (13)0.0658 (15)0.0528 (13)0.0032 (11)0.0185 (11)0.0002 (11)
C60.0450 (12)0.0638 (14)0.0472 (12)0.0030 (10)0.0163 (10)0.0126 (11)
C70.0719 (16)0.0620 (14)0.0346 (11)0.0053 (12)0.0235 (11)0.0014 (10)
C80.0588 (12)0.0498 (12)0.0326 (10)0.0014 (10)0.0205 (9)0.0006 (9)
C90.0512 (12)0.0463 (12)0.0342 (10)0.0015 (9)0.0159 (9)0.0006 (8)
C100.0503 (12)0.0643 (14)0.0354 (10)0.0041 (10)0.0208 (9)0.0065 (10)
C110.0565 (13)0.0652 (14)0.0418 (11)0.0061 (11)0.0234 (10)0.0131 (10)
C120.0542 (12)0.0478 (12)0.0389 (11)0.0037 (10)0.0225 (9)0.0017 (9)
C130.0612 (13)0.0496 (12)0.0380 (10)0.0013 (10)0.0256 (10)0.0011 (9)
C140.0583 (13)0.0526 (13)0.0458 (12)0.0079 (10)0.0278 (10)0.0038 (10)
C150.0494 (12)0.0484 (12)0.0476 (12)0.0080 (10)0.0211 (10)0.0035 (9)
C160.0570 (13)0.0497 (13)0.0512 (13)0.0031 (10)0.0175 (11)0.0019 (10)
C170.0673 (15)0.0550 (14)0.0565 (14)0.0070 (12)0.0253 (12)0.0130 (11)
C180.0647 (15)0.0654 (16)0.0472 (13)0.0158 (12)0.0162 (12)0.0066 (11)
C190.0528 (13)0.0643 (16)0.0637 (16)0.0029 (12)0.0064 (12)0.0019 (13)
C200.0498 (13)0.0578 (14)0.0671 (15)0.0046 (11)0.0211 (12)0.0139 (12)
N10.0526 (10)0.0598 (12)0.0343 (9)0.0020 (9)0.0146 (8)0.0049 (8)
N20.0689 (13)0.0686 (13)0.0332 (9)0.0044 (10)0.0163 (9)0.0038 (9)
O10.0719 (11)0.0929 (14)0.0488 (9)0.0152 (10)0.0382 (9)0.0104 (9)
Cl10.1194 (8)0.1189 (8)0.0501 (4)0.0154 (6)0.0101 (4)0.0184 (4)
Geometric parameters (Å, º) top
C1—C61.380 (3)C10—H10B0.9700
C1—C21.383 (4)C11—C121.514 (3)
C1—H10.9300C11—H11A0.9700
C2—C31.367 (5)C11—H11B0.9700
C2—H20.9300C12—C141.335 (3)
C3—C41.370 (4)C12—C131.498 (3)
C3—H30.9300C13—O11.232 (2)
C4—C51.384 (3)C14—C151.472 (3)
C4—H40.9300C14—H140.9300
C5—C61.375 (3)C15—C201.389 (3)
C5—H50.9300C15—C161.393 (3)
C6—N11.428 (3)C16—C171.382 (3)
C7—N21.312 (3)C16—H160.9300
C7—C81.410 (3)C17—C181.366 (4)
C7—H70.9300C17—H170.9300
C8—C91.382 (3)C18—C191.373 (4)
C8—C131.445 (3)C18—Cl11.737 (2)
C9—N11.354 (3)C19—C201.384 (3)
C9—C101.492 (3)C19—H190.9300
C10—C111.532 (3)C20—H200.9300
C10—H10A0.9700N1—N21.385 (2)
C6—C1—C2118.6 (3)C10—C11—H11A108.8
C6—C1—H1120.7C12—C11—H11B108.8
C2—C1—H1120.7C10—C11—H11B108.8
C3—C2—C1121.3 (3)H11A—C11—H11B107.7
C3—C2—H2119.4C14—C12—C13117.88 (19)
C1—C2—H2119.4C14—C12—C11125.50 (19)
C2—C3—C4119.7 (3)C13—C12—C11116.62 (18)
C2—C3—H3120.1O1—C13—C8122.14 (19)
C4—C3—H3120.1O1—C13—C12122.5 (2)
C3—C4—C5120.0 (3)C8—C13—C12115.31 (18)
C3—C4—H4120.0C12—C14—C15128.6 (2)
C5—C4—H4120.0C12—C14—H14115.7
C6—C5—C4119.8 (2)C15—C14—H14115.7
C6—C5—H5120.1C20—C15—C16117.5 (2)
C4—C5—H5120.1C20—C15—C14119.6 (2)
C5—C6—C1120.5 (2)C16—C15—C14122.9 (2)
C5—C6—N1120.5 (2)C17—C16—C15121.3 (2)
C1—C6—N1119.0 (2)C17—C16—H16119.3
N2—C7—C8112.04 (19)C15—C16—H16119.3
N2—C7—H7124.0C18—C17—C16119.3 (2)
C8—C7—H7124.0C18—C17—H17120.3
C9—C8—C7104.84 (19)C16—C17—H17120.3
C9—C8—C13123.08 (18)C17—C18—C19121.3 (2)
C7—C8—C13132.08 (19)C17—C18—Cl1119.5 (2)
N1—C9—C8106.97 (18)C19—C18—Cl1119.2 (2)
N1—C9—C10129.34 (19)C18—C19—C20119.0 (2)
C8—C9—C10123.66 (19)C18—C19—H19120.5
C9—C10—C11108.14 (18)C20—C19—H19120.5
C9—C10—H10A110.1C19—C20—C15121.4 (2)
C11—C10—H10A110.1C19—C20—H20119.3
C9—C10—H10B110.1C15—C20—H20119.3
C11—C10—H10B110.1C9—N1—N2111.14 (18)
H10A—C10—H10B108.4C9—N1—C6129.95 (17)
C12—C11—C10113.84 (19)N2—N1—C6118.87 (17)
C12—C11—H11A108.8C7—N2—N1105.00 (17)
C6—C1—C2—C30.3 (5)C11—C12—C13—C815.1 (3)
C1—C2—C3—C40.0 (6)C13—C12—C14—C15179.6 (2)
C2—C3—C4—C50.6 (5)C11—C12—C14—C150.8 (4)
C3—C4—C5—C60.8 (4)C12—C14—C15—C20137.4 (3)
C4—C5—C6—C10.4 (4)C12—C14—C15—C1643.2 (4)
C4—C5—C6—N1178.9 (2)C20—C15—C16—C171.6 (3)
C2—C1—C6—C50.1 (4)C14—C15—C16—C17179.0 (2)
C2—C1—C6—N1178.3 (3)C15—C16—C17—C180.3 (4)
N2—C7—C8—C90.0 (3)C16—C17—C18—C191.3 (4)
N2—C7—C8—C13179.9 (2)C16—C17—C18—Cl1178.43 (19)
C7—C8—C9—N10.5 (2)C17—C18—C19—C200.3 (4)
C13—C8—C9—N1179.6 (2)Cl1—C18—C19—C20179.4 (2)
C7—C8—C9—C10177.5 (2)C18—C19—C20—C151.7 (4)
C13—C8—C9—C102.3 (3)C16—C15—C20—C192.7 (4)
N1—C9—C10—C11150.9 (2)C14—C15—C20—C19177.9 (2)
C8—C9—C10—C1126.7 (3)C8—C9—N1—N20.9 (2)
C9—C10—C11—C1248.7 (3)C10—C9—N1—N2177.0 (2)
C10—C11—C12—C14133.4 (2)C8—C9—N1—C6176.8 (2)
C10—C11—C12—C1345.5 (3)C10—C9—N1—C65.3 (4)
C9—C8—C13—O1169.9 (2)C5—C6—N1—C937.2 (4)
C7—C8—C13—O110.2 (4)C1—C6—N1—C9144.3 (3)
C9—C8—C13—C129.1 (3)C5—C6—N1—N2140.4 (2)
C7—C8—C13—C12170.7 (2)C1—C6—N1—N238.1 (3)
C14—C12—C13—O115.3 (3)C8—C7—N2—N10.5 (3)
C11—C12—C13—O1165.8 (2)C9—N1—N2—C70.9 (3)
C14—C12—C13—C8163.8 (2)C6—N1—N2—C7177.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O10.932.432.804 (3)104
C5—H5···O1i0.932.533.320 (3)143
C7—H7···O1ii0.932.593.493 (3)163
C17—H17···O1iii0.932.403.260 (3)154
C2—H2···Cl1iv0.932.903.633 (3)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2; (iii) x, y+2, z+1/2; (iv) x1/2, y1/2, z1.
 

Acknowledgements

JS thanks the management of Madura College for their constant support and encouragement. The authors' contributions are as follows. Conceptualization, CSM; methodology, CSM, SA; investigation, CSM, RRK; synthesis, ; X-ray analysis, ; validation, SA; writing (original draft), CSM; writing (review and editing of the manuscript), SRB; visualization, JS; resources, RRK, SRR; supervision, JS; project administration, SRB.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaisal, M., Saeed, A., Hussain, S., Dar, P. & Larik, F. A. (2019). J. Chem. Sci. 131(8), 1–30.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPopat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). Indian J. Chem. Sect. B, 42, 1497–1501.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer, University of Western Australia, Crawley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds