organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[2-(2-hy­dr­oxy­phen­yl)-1H-benzimidazol-3-ium] chloranilate

crossmark logo

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 October 2021; accepted 31 October 2021; online 4 November 2021)

In the crystal of the title mol­ecular salt {systematic name: bis­[2-(2-hy­droxy­phen­yl)-1H-benzimidazol-3-ium] 2,5-di­chloro-3,6-dioxo­cyclo­hexa-1,4-diene-1,4-diolate}, 2C13H11N2O+·C6Cl2O42−, the chloranilate anion is located on an inversion centre, so that the asymmetric unit contains one cation and one half of the chloranilate anion. In the crystal, the cation and the anion are connected by a bifurcated N—H⋯(O,O) hydrogen bond, forming a 2:1 unit. The units are linked into a layer lying parallel to ([\overline{1}]01) via O—H⋯O and N—H⋯Cl hydrogen bonds. Between the layers, a C—Cl⋯π inter­action is observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We have prepared the title compound in order to continue our studies of D—H⋯A hydrogen bonding (D = N, O or C; A = N, O or Cl) in chloranilic acid–organic base systems (Gotoh & Ishida, 2017a[Gotoh, K. & Ishida, H. (2017a). Acta Cryst. E73, 1546-1550.],b[Gotoh, K. & Ishida, H. (2017b). Acta Cryst. E73, 1840-1844.], 2018[Gotoh, K. & Ishida, H. (2018). Acta Cryst. E74, 1727-1730.], and references therein). In the cation, the C4–C9 benzene ring and the C10/N1/C11–C16/N2 benzimidazolium ring system are twisted to each other with a dihedral angle of 17.95 (7)°. An intra­molecular N—H⋯O hydrogen bond (N2—H2⋯O3; Table 1[link]) is observed. In the crystal, the chloranilate anion is located on an inversion centre, and the cation and the anion are connected by a bifurcated N—H⋯(O,O) hydrogen bond [N1—H1⋯(O1i,O2); symmetry code as given in Table 1[link]], forming a cation–anion 2:1 unit (Fig. 1[link]). The 2:1 units are further linked into a layer parallel to the ([\overline{1}]01) plane via O—H⋯O and N—H⋯Cl hydrogen bonds (O3—H3⋯O1iii and N2—H2⋯Cl1ii; Fig. 2[link], Table 1[link]). A C—Cl⋯π inter­action [C2—Cl1⋯Cg3iv; Cl1⋯Cg3iv = 3.6539 (10) Å and C2—Cl1⋯Cg3iv = 139.21 (5)°; symmetry code: (iv) x, y, z − 1] is observed between the layers, where Cg3 is the centroid of the C11–C16 ring.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.91 (3) 2.01 (3) 2.7635 (18) 139 (3)
N1—H1⋯O1i 0.91 (3) 2.16 (3) 2.9336 (18) 142 (3)
N2—H2⋯O3 0.878 (18) 2.138 (19) 2.6704 (19) 118.4 (15)
N2—H2⋯Cl1ii 0.878 (18) 2.823 (18) 3.5907 (14) 146.9 (16)
O3—H3⋯O1iii 0.94 (3) 1.73 (3) 2.6524 (18) 165 (3)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x+1, -y+1, -z+1]; (iii) x+1, y, z+1.
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate the bifurcated N—H⋯(O,O) hydrogen bonds.
[Figure 2]
Figure 2
A packing diagram of the title compound, showing the hydrogen-bonded layer structure formed via the N—H⋯O, O—H⋯O and N—H⋯Cl hydrogen bonds (magenta dotted lines). H atoms not involved in the hydrogen bonds are omitted for clarity. [Symmetry codes: (i) −x, −y, −z; (ii) −x + 1, −y + 1, −z + 1; (iii) x + 1, y, z + 1; (v) −x + 1, −y, −z + 1.]

Synthesis and crystallization

Single crystals of the title salt were obtained by slow evaporation from a methanol solution of chloranilic acid with 2-(2-hy­droxy­phen­yl)-1H-benzimidazole in a ca 1:1 molar ratio at room temperature [150 ml methanol solution of chloranilic acid (0.45 g) and 2-(2-hy­droxy­phen­yl)-1H-benzimidazole (0.45 g)].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C13H11N2O+·C6Cl2O42−
Mr 629.45
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 180
a, b, c (Å) 8.6694 (11), 9.1751 (13), 10.0313 (14)
α, β, γ (°) 113.654 (4), 95.963 (5), 105.579 (4)
V3) 683.47 (17)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.23 × 0.17 × 0.06
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.871, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 14095, 3980, 3105
Rint 0.025
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.10
No. of reflections 3980
No. of parameters 211
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.26
Computer programs: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), CrystalStructure (Rigaku, 2018[Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: PROCESS-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2020).

Bis[2-(2-hydroxyphenyl)-1H-benzimidazol-3-ium] 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolate top
Crystal data top
2C13H11N2O+·C6Cl2O42Z = 1
Mr = 629.45F(000) = 324.00
Triclinic, P1Dx = 1.529 Mg m3
a = 8.6694 (11) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.1751 (13) ÅCell parameters from 10316 reflections
c = 10.0313 (14) Åθ = 3.4–30.1°
α = 113.654 (4)°µ = 0.29 mm1
β = 95.963 (5)°T = 180 K
γ = 105.579 (4)°Block, brown
V = 683.47 (17) Å30.23 × 0.17 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3105 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.025
ω scansθmax = 30.0°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1211
Tmin = 0.871, Tmax = 0.983k = 1212
14095 measured reflectionsl = 1414
3980 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.046P)2 + 0.2103P]
where P = (Fo2 + 2Fc2)/3
3980 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.26 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09994 (4)0.34752 (4)0.02027 (4)0.02882 (10)
O10.14183 (13)0.01196 (13)0.24683 (11)0.0289 (2)
O20.21238 (14)0.27933 (13)0.23324 (12)0.0346 (3)
O30.75991 (14)0.23427 (14)0.69412 (12)0.0329 (2)
N10.35863 (16)0.30308 (17)0.50287 (14)0.0295 (3)
N20.55002 (15)0.40290 (15)0.70561 (13)0.0254 (2)
C10.07044 (16)0.01567 (16)0.12934 (14)0.0209 (3)
C20.04335 (16)0.15741 (16)0.00910 (15)0.0215 (3)
C30.11500 (16)0.15402 (16)0.12180 (15)0.0220 (3)
C40.59135 (17)0.19499 (17)0.47216 (15)0.0243 (3)
C50.71650 (18)0.16090 (17)0.54313 (16)0.0257 (3)
C60.7897 (2)0.0516 (2)0.45539 (18)0.0322 (3)
H60.8730990.0263220.5020620.039*
C70.7424 (2)0.0201 (2)0.30162 (19)0.0358 (3)
H70.7922390.0959730.2429940.043*
C80.6224 (2)0.0171 (2)0.23097 (18)0.0361 (3)
H80.5921070.0310760.1246780.043*
C90.54818 (19)0.12356 (19)0.31562 (17)0.0305 (3)
H90.4663440.1492220.2674060.037*
C100.50320 (17)0.29865 (17)0.55883 (15)0.0240 (3)
C110.31061 (19)0.41400 (18)0.61747 (16)0.0283 (3)
C120.1694 (2)0.4589 (2)0.6176 (2)0.0384 (4)
H120.0845270.4121810.5291150.046*
C130.1595 (2)0.5750 (2)0.7532 (2)0.0386 (4)
H130.0651210.6090070.7588760.046*
C140.2855 (2)0.6435 (2)0.88216 (19)0.0362 (4)
H140.2750170.7245590.9730580.043*
C150.4247 (2)0.59789 (19)0.88273 (18)0.0330 (3)
H150.5093830.6444820.9712980.040*
C160.43388 (18)0.48016 (17)0.74661 (16)0.0264 (3)
H10.299 (3)0.241 (3)0.406 (3)0.076 (8)*
H20.644 (2)0.422 (2)0.763 (2)0.041 (5)*
H30.812 (3)0.170 (3)0.723 (3)0.065 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0365 (2)0.01955 (15)0.03055 (19)0.00738 (13)0.00309 (14)0.01391 (13)
O10.0337 (6)0.0260 (5)0.0248 (5)0.0086 (4)0.0031 (4)0.0128 (4)
O20.0404 (6)0.0222 (5)0.0279 (6)0.0001 (4)0.0093 (4)0.0094 (4)
O30.0398 (6)0.0352 (6)0.0259 (5)0.0201 (5)0.0016 (4)0.0128 (5)
N10.0285 (6)0.0326 (6)0.0233 (6)0.0135 (5)0.0001 (5)0.0083 (5)
N20.0262 (6)0.0227 (5)0.0233 (6)0.0085 (5)0.0008 (5)0.0078 (5)
C10.0220 (6)0.0210 (6)0.0222 (6)0.0094 (5)0.0053 (5)0.0106 (5)
C20.0252 (6)0.0166 (6)0.0238 (6)0.0073 (5)0.0047 (5)0.0103 (5)
C30.0225 (6)0.0191 (6)0.0228 (6)0.0066 (5)0.0034 (5)0.0088 (5)
C40.0267 (7)0.0201 (6)0.0255 (7)0.0072 (5)0.0057 (5)0.0101 (5)
C50.0278 (7)0.0233 (6)0.0261 (7)0.0076 (5)0.0050 (5)0.0123 (5)
C60.0327 (8)0.0328 (8)0.0378 (8)0.0170 (6)0.0107 (6)0.0179 (7)
C70.0404 (9)0.0329 (8)0.0387 (9)0.0167 (7)0.0202 (7)0.0151 (7)
C80.0443 (9)0.0342 (8)0.0264 (8)0.0119 (7)0.0110 (7)0.0106 (6)
C90.0322 (8)0.0313 (7)0.0273 (7)0.0102 (6)0.0039 (6)0.0137 (6)
C100.0256 (7)0.0215 (6)0.0238 (7)0.0063 (5)0.0019 (5)0.0112 (5)
C110.0321 (8)0.0264 (7)0.0286 (7)0.0132 (6)0.0073 (6)0.0123 (6)
C120.0353 (8)0.0438 (9)0.0406 (9)0.0198 (7)0.0058 (7)0.0199 (8)
C130.0389 (9)0.0401 (9)0.0498 (10)0.0230 (7)0.0190 (8)0.0243 (8)
C140.0462 (9)0.0297 (7)0.0392 (9)0.0176 (7)0.0202 (7)0.0163 (7)
C150.0407 (9)0.0257 (7)0.0302 (8)0.0110 (6)0.0090 (6)0.0105 (6)
C160.0284 (7)0.0225 (6)0.0289 (7)0.0085 (5)0.0064 (5)0.0122 (6)
Geometric parameters (Å, º) top
Cl1—C21.7333 (13)C6—C71.375 (2)
O1—C11.2562 (15)C6—H60.9500
O2—C31.2392 (16)C7—C81.390 (2)
O3—C51.3477 (18)C7—H70.9500
O3—H30.95 (2)C8—C91.370 (2)
N1—C101.3368 (18)C8—H80.9500
N1—C111.3851 (19)C9—H90.9500
N1—H10.91 (3)C11—C161.386 (2)
N2—C101.3359 (18)C11—C121.393 (2)
N2—C161.3860 (19)C12—C131.379 (2)
N2—H20.88 (2)C12—H120.9500
C1—C21.3872 (18)C13—C141.396 (3)
C1—C3i1.5351 (18)C13—H130.9500
C2—C31.4088 (18)C14—C151.379 (2)
C4—C91.399 (2)C14—H140.9500
C4—C51.4079 (19)C15—C161.387 (2)
C4—C101.452 (2)C15—H150.9500
C5—C61.390 (2)
C5—O3—H3107.6 (14)C9—C8—C7119.56 (15)
C10—N1—C11108.93 (12)C9—C8—H8120.2
C10—N1—H1125.9 (17)C7—C8—H8120.2
C11—N1—H1125.2 (17)C8—C9—C4120.82 (14)
C10—N2—C16109.44 (12)C8—C9—H9119.6
C10—N2—H2123.2 (13)C4—C9—H9119.6
C16—N2—H2127.3 (13)N2—C10—N1108.68 (13)
O1—C1—C2125.88 (12)N2—C10—C4126.61 (13)
O1—C1—C3i115.72 (11)N1—C10—C4124.71 (13)
C2—C1—C3i118.39 (11)N1—C11—C16106.88 (13)
C1—C2—C3123.02 (11)N1—C11—C12131.05 (15)
C1—C2—Cl1118.52 (10)C16—C11—C12122.06 (15)
C3—C2—Cl1118.46 (10)C13—C12—C11116.36 (15)
O2—C3—C2124.66 (12)C13—C12—H12121.8
O2—C3—C1i116.80 (11)C11—C12—H12121.8
C2—C3—C1i118.54 (11)C12—C13—C14121.24 (15)
C9—C4—C5119.33 (13)C12—C13—H13119.4
C9—C4—C10119.64 (13)C14—C13—H13119.4
C5—C4—C10121.00 (13)C15—C14—C13122.52 (15)
O3—C5—C6122.30 (13)C15—C14—H14118.7
O3—C5—C4118.68 (13)C13—C14—H14118.7
C6—C5—C4119.02 (13)C14—C15—C16116.18 (15)
C7—C6—C5120.51 (14)C14—C15—H15121.9
C7—C6—H6119.7C16—C15—H15121.9
C5—C6—H6119.7N2—C16—C11106.04 (12)
C6—C7—C8120.71 (15)N2—C16—C15132.34 (14)
C6—C7—H7119.6C11—C16—C15121.61 (14)
C8—C7—H7119.6
O1—C1—C2—C3177.85 (13)C11—N1—C10—N20.01 (17)
C3i—C1—C2—C32.5 (2)C11—N1—C10—C4179.39 (13)
O1—C1—C2—Cl12.1 (2)C9—C4—C10—N2164.99 (14)
C3i—C1—C2—Cl1177.54 (9)C5—C4—C10—N217.0 (2)
C1—C2—C3—O2177.30 (14)C9—C4—C10—N115.7 (2)
Cl1—C2—C3—O22.7 (2)C5—C4—C10—N1162.30 (14)
C1—C2—C3—C1i2.5 (2)C10—N1—C11—C160.99 (17)
Cl1—C2—C3—C1i177.54 (9)C10—N1—C11—C12178.19 (16)
C9—C4—C5—O3178.22 (13)N1—C11—C12—C13179.91 (16)
C10—C4—C5—O33.7 (2)C16—C11—C12—C130.8 (2)
C9—C4—C5—C62.4 (2)C11—C12—C13—C140.4 (3)
C10—C4—C5—C6175.59 (13)C12—C13—C14—C151.1 (3)
O3—C5—C6—C7179.73 (14)C13—C14—C15—C160.5 (2)
C4—C5—C6—C71.0 (2)C10—N2—C16—C111.60 (16)
C5—C6—C7—C81.0 (2)C10—N2—C16—C15179.40 (15)
C6—C7—C8—C91.4 (3)N1—C11—C16—N21.55 (16)
C7—C8—C9—C40.1 (2)C12—C11—C16—N2177.72 (14)
C5—C4—C9—C82.1 (2)N1—C11—C16—C15179.32 (13)
C10—C4—C9—C8176.01 (14)C12—C11—C16—C151.4 (2)
C16—N2—C10—N11.01 (16)C14—C15—C16—N2178.19 (15)
C16—N2—C10—C4179.62 (13)C14—C15—C16—C110.7 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.91 (3)2.01 (3)2.7635 (18)139 (3)
N1—H1···O1i0.91 (3)2.16 (3)2.9336 (18)142 (3)
N2—H2···O30.878 (18)2.138 (19)2.6704 (19)118.4 (15)
N2—H2···Cl1ii0.878 (18)2.823 (18)3.5907 (14)146.9 (16)
O3—H3···O1iii0.94 (3)1.73 (3)2.6524 (18)165 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2017a). Acta Cryst. E73, 1546–1550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2017b). Acta Cryst. E73, 1840–1844.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2018). Acta Cryst. E74, 1727–1730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds