organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(3E)-4-[(Naphthalen-1-yl)amino]­pent-3-en-2-one hemihydrate

crossmark logo

aLaboratoire de Chimie Minérale et Analytique (LA.CHI.MI.A), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDepartement de Chimie, Université de Namur ASBL, Rue de Bruxelles 61-5000 Namur, Belgium, and cDepartement of Chemical and Pharmaceutical Sciences, via Giorgieri, 34127-Trieste, Italy
*Correspondence e-mail: aboubacar.diop@ucad.edu.sn, aboubacar.diop@ucad.edu.sn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 2 September 2021; accepted 22 September 2021; online 30 September 2021)

The title compound, C15H15NO·0.5H2O, was prepared from α-naphthyl­amine and 2,4-penta­nedione in a 1:1 ratio. An intra­molecular N—H⋯O hydrogen bond in the N-naphthyl­pent-3-en-2-one mol­ecule involving the amine and carbonyl groups strengthens the structure. The water mol­ecule interacts with two symmetry-related N-naphthyl­pent-3-en-2-one mol­ecules viaby O—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Enamino­nes, which consist of an amino group linked by a carbon–carbon double bond to a carbonyl group, is an area of considerable opportunity (Montanile, 2003[Montanile, C. (2003). J. Braz. Chem. Soc. 14(6), 945-969.]). In fact, enamino­nes are used in the synthesis of different heterocycles and biologically active analogues and also in the development of pharmaceuticals because of their role as organic inter­mediates (Esmaiel et al., 2018[Esmaiel, E., Mohamad, Z. & Peter, T. C. (2018). ACS Appl. Mater. Interfaces, 44, 1-13.]). It should be noted that the biological activity of enamino­ne compounds is attributed to the presence of the active N—C=C—C=O group within a ring system (Kale, 2016[Kale, A. A. (2016). Int. J. Sci. Eng. Res. 7,873-880.]). Much work has been undertaken to explore new routes for the synthesis of enamino­nes. Azzoro et al. (1981[Azzoro, M., Geribaldi, S. & Videau, B. (1981). Organic Chemistry Portable, 11, 880-881.]) reported a simple method using amines and 1,3-diketones. Eddington et al. (2000[Eddington, N., Cox, D., Roberts, R., Stables, J., Powell, C. & Scott, K. (2000). Curr. Med. Chem. 7, 417-436.]) reported on the synthesis and anti­convulsant evaluations of some enamino­nes. In another method, β-chloro vinyl ketone was reacted with amines to synthesize these compounds (Pohland & Benson, 1966[Pohland, A. & Benson, W. (1966). Chem. Rev. 66, 161-197.]). Other methods of preparation include reactions between formamide dimethyl acetate and ketones (Abdulla & Brinkmeyer, 1979[Abdulla, R. & Brinkmeyer, R. S. (1979). Tetrahedron, 35, 1675-1735.]), acid chlorides with terminal alkynes and tri­ethyl­amine (Karpov & Müller, 2003[Karpov, A. & Müller, T. (2003). Organic Chemistry Portal, 18, 2815-2826.]), primary amines and β-dicarbonyl compounds catalysed by copper nanoparticles (Kidwai et al., 2009[Kidwai, M., Bhardwaj, S., Mishra, N., Bansal, V., Kumar, A. & Mozumdar, S. (2009). Catal. Commun. 10, 1514-1517.]). Lue & Greenhill (1996[Lue, P. & Greenhill, J. (1996). Adv. Heterocycl. Chem. 67, 207-343.]) functionalized enamino­nes by introducing different substituents on the nitro­gen, α- and β-carbon atoms to the carbonyl group. These derivatives are used extensively for preserving natural products and analogues. Enamino­nes are also considered to be good chelating ligands for transition metals in coordination chemistry (Esmaiel et al., 2018[Esmaiel, E., Mohamad, Z. & Peter, T. C. (2018). ACS Appl. Mater. Interfaces, 44, 1-13.]). The anions produced from enaminone offer potential isoelectronic alternatives to cyclo­penta­dienyl-based anions and therefore their transition-metal complexes can act as possible alternative catalysts for olefinic polymerization (Pešková et al., 2006[Pešková, M., Šimůnek, P., Bertolasi, V., Macháček, V. & Lyčka, A. (2006). Organometallics, 25, 2025-2030.]). Imada et al. (1996[Imada, Y., Mitsue, Y., Ike, K., Washizuka, K. & Murahashi, S. (1996). Bull. Chem. Soc. Jpn, 69, 2079-2090.]) transformed β-amino ketones to enamino­nes using palladium while Tan et al. (2008[Tan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N. T. (2008). Lab Chip, 8, 885-891.]) reported enaminone applications of rhodium compounds containing bidentate ligand systems.

In the title compound (Fig. 1[link]), the dihedral angle formed by the mean planes through the naphthalene ring system and the amino­penta­none group is 69.66 (9)°. This angle is determined by crystal-packing requirements. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. The water molecule, located on a crystallographic twofold axis, is linked to two symmetry-related N-naphthyl­pent-3-en-2-one mol­ecules via O—H⋯O hydrogen bonds (Fig. 2[link] and Table 1[link]). In addition, In addition, there are ππ interactions [centroid-to-centroid distance of 3.7975 (10) Å] between the naphthalene ring systems of symmetry-related molecules, generating chains of mol­ecules running in the [100] direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.905 (17) 1.933 (17) 2.6765 (17) 138.2 (15)
O2—H2A⋯O1 0.85 (3) 2.02 (3) 2.8678 (15) 176 (3)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 35% probability level. Hydrogen bonds are shown as light-blue dashed lines.
[Figure 2]
Figure 2
Crystal packing of the title compound viewed down the b axis. O—H⋯O hydrogen bonds are shown as light-green dashed lines. H atoms are omitted.

Synthesis and crystallization

A mixture of α-naphthyl­amine (0,143 g; 1 mmol) and 2,4-penta­nedione (0,100 g; 1 mmol) in ethanol solvent was stirred for about 4 h and then filtered. Slow evaporation of the solution at room temperature was carried out, leading to grey crystals suitable for a single-crystal X-ray diffraction study (yield 63%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H15NO·0.5H2O
Mr 234.29
Crystal system, space group Monoclinic, I2/a
Temperature (K) 295
a, b, c (Å) 17.1405 (8), 8.3052 (4), 18.5156 (8)
β (°) 102.347 (4)
V3) 2574.8 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.88 × 0.48 × 0.27
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Ruby, Gemini Ultra
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.952, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 6527, 2637, 2045
Rint 0.013
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.05
No. of reflections 2637
No. of parameters 168
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.13, −0.16
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b).

(3E)-4-[(Naphthalen-1-yl)amino]pent-3-en-2-one hemihydrate top
Crystal data top
C15H15NO·0.5H2OF(000) = 1000
Mr = 234.29Dx = 1.209 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 17.1405 (8) ÅCell parameters from 2470 reflections
b = 8.3052 (4) Åθ = 2.9–30.5°
c = 18.5156 (8) ŵ = 0.08 mm1
β = 102.347 (4)°T = 295 K
V = 2574.8 (2) Å3Block, colourless
Z = 80.88 × 0.48 × 0.27 mm
Data collection top
Oxford Diffraction Xcalibur, Ruby, Gemini Ultra
diffractometer
2637 independent reflections
Graphite monochromator2045 reflections with I > 2σ(I)
Detector resolution: 10.3712 pixels mm-1Rint = 0.013
ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2018)
h = 2113
Tmin = 0.952, Tmax = 0.981k = 1010
6527 measured reflectionsl = 2123
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: dual
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.6014P]
where P = (Fo2 + 2Fc2)/3
2637 reflections(Δ/σ)max = 0.002
168 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.35246 (7)0.84680 (13)0.60203 (6)0.0697 (3)
N10.41810 (7)0.55405 (15)0.62641 (6)0.0554 (3)
H10.4037 (10)0.641 (2)0.5971 (9)0.067*
C10.54448 (8)0.47503 (16)0.59592 (7)0.0487 (3)
C20.57433 (9)0.63404 (19)0.60622 (8)0.0613 (4)
H20.5427140.7149590.6196550.074*
C30.64878 (11)0.6695 (3)0.59665 (10)0.0820 (5)
H30.6673310.7748620.6029250.098*
C40.69744 (11)0.5507 (3)0.57766 (10)0.0914 (6)
H40.7485150.5767430.5718490.110*
C50.67113 (10)0.3970 (3)0.56749 (9)0.0787 (5)
H50.7045850.3185240.5549320.094*
C60.59393 (9)0.35372 (18)0.57560 (7)0.0581 (4)
C70.56410 (11)0.1952 (2)0.56424 (9)0.0716 (5)
H70.5961650.1147940.5510450.086*
C80.48942 (12)0.15854 (19)0.57231 (10)0.0747 (5)
H80.4706900.0534900.5646630.090*
C90.44020 (10)0.27831 (19)0.59215 (8)0.0654 (4)
H90.3887340.2522800.5968030.079*
C100.46696 (8)0.43196 (16)0.60462 (7)0.0511 (3)
C110.40408 (8)0.57179 (17)0.69445 (7)0.0545 (3)
C120.42920 (14)0.4398 (2)0.74914 (10)0.0870 (6)
H12A0.3958590.3473080.7349210.131*
H12B0.4240790.4753430.7972440.131*
H12C0.4838250.4118050.7504440.131*
C130.36721 (9)0.70740 (18)0.71367 (8)0.0583 (4)
H130.3573320.7113080.7611140.070*
C140.34324 (8)0.84062 (17)0.66740 (8)0.0566 (4)
C150.30550 (13)0.9813 (2)0.69784 (11)0.0864 (5)
H15A0.2975611.0674980.6624690.130*0.5
H15B0.3398771.0171090.7429110.130*0.5
H15C0.2549360.9492610.7076040.130*0.5
H15D0.2973550.9550810.7461870.130*0.5
H15E0.2550391.0054690.6657450.130*0.5
H15F0.3399801.0733180.7010520.130*0.5
O20.2500001.0550 (2)0.5000000.1027 (7)
H2A0.2805 (17)0.990 (3)0.5285 (16)0.151 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0799 (8)0.0721 (7)0.0613 (7)0.0141 (5)0.0242 (5)0.0081 (5)
N10.0566 (7)0.0623 (7)0.0506 (7)0.0104 (5)0.0184 (5)0.0042 (5)
C10.0496 (7)0.0604 (8)0.0356 (6)0.0035 (6)0.0080 (5)0.0002 (6)
C20.0641 (9)0.0675 (9)0.0528 (8)0.0044 (7)0.0141 (7)0.0035 (7)
C30.0744 (12)0.0982 (13)0.0744 (11)0.0283 (10)0.0180 (9)0.0020 (9)
C40.0535 (10)0.148 (2)0.0751 (12)0.0135 (11)0.0187 (8)0.0011 (12)
C50.0573 (10)0.1225 (16)0.0582 (9)0.0216 (10)0.0164 (7)0.0010 (10)
C60.0596 (8)0.0751 (10)0.0395 (7)0.0158 (7)0.0108 (6)0.0001 (6)
C70.0924 (13)0.0661 (10)0.0562 (9)0.0226 (9)0.0157 (8)0.0059 (7)
C80.1019 (14)0.0539 (9)0.0677 (10)0.0024 (8)0.0170 (9)0.0089 (7)
C90.0687 (10)0.0653 (9)0.0634 (9)0.0095 (7)0.0166 (7)0.0046 (7)
C100.0530 (8)0.0566 (8)0.0443 (7)0.0043 (6)0.0121 (6)0.0005 (6)
C110.0550 (8)0.0613 (8)0.0484 (7)0.0003 (6)0.0137 (6)0.0007 (6)
C120.1277 (16)0.0789 (11)0.0574 (10)0.0258 (11)0.0262 (10)0.0092 (9)
C130.0631 (9)0.0657 (9)0.0493 (8)0.0026 (7)0.0195 (6)0.0032 (7)
C140.0510 (8)0.0618 (8)0.0584 (9)0.0019 (6)0.0151 (6)0.0055 (7)
C150.1069 (15)0.0715 (10)0.0870 (12)0.0205 (10)0.0350 (11)0.0041 (9)
O20.1283 (19)0.0622 (11)0.1037 (16)0.0000.0062 (13)0.000
Geometric parameters (Å, º) top
O1—C141.2548 (17)C8—H80.9300
N1—C111.3403 (17)C9—C101.359 (2)
N1—C101.4271 (17)C9—H90.9300
N1—H10.904 (17)C11—C131.375 (2)
C1—C21.414 (2)C11—C121.492 (2)
C1—C101.4180 (18)C12—H12A0.9600
C1—C61.4183 (18)C12—H12B0.9600
C2—C31.358 (2)C12—H12C0.9600
C2—H20.9300C13—C141.406 (2)
C3—C41.385 (3)C13—H130.9300
C3—H30.9300C14—C151.503 (2)
C4—C51.354 (3)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.410 (2)C15—H15C0.9600
C5—H50.9300C15—H15D0.9600
C6—C71.412 (2)C15—H15E0.9600
C7—C81.355 (2)C15—H15F0.9600
C7—H70.9300O2—H2A0.85 (3)
C8—C91.403 (2)O2—H2Ai0.85 (3)
C11—N1—C10125.30 (12)C13—C11—C12120.54 (13)
C11—N1—H1113.3 (10)C11—C12—H12A109.5
C10—N1—H1119.8 (10)C11—C12—H12B109.5
C2—C1—C10122.75 (12)H12A—C12—H12B109.5
C2—C1—C6118.65 (13)C11—C12—H12C109.5
C10—C1—C6118.60 (13)H12A—C12—H12C109.5
C3—C2—C1120.52 (15)H12B—C12—H12C109.5
C3—C2—H2119.7C11—C13—C14125.27 (13)
C1—C2—H2119.7C11—C13—H13117.4
C2—C3—C4120.85 (18)C14—C13—H13117.4
C2—C3—H3119.6O1—C14—C13122.64 (13)
C4—C3—H3119.6O1—C14—C15118.90 (14)
C5—C4—C3120.41 (16)C13—C14—C15118.46 (13)
C5—C4—H4119.8C14—C15—H15A109.5
C3—C4—H4119.8C14—C15—H15B109.5
C4—C5—C6121.21 (17)H15A—C15—H15B109.5
C4—C5—H5119.4C14—C15—H15C109.5
C6—C5—H5119.4H15A—C15—H15C109.5
C5—C6—C7122.70 (15)H15B—C15—H15C109.5
C5—C6—C1118.35 (15)C14—C15—H15D109.5
C7—C6—C1118.95 (14)H15A—C15—H15D141.1
C8—C7—C6120.91 (14)H15B—C15—H15D56.3
C8—C7—H7119.5H15C—C15—H15D56.3
C6—C7—H7119.5C14—C15—H15E109.5
C7—C8—C9120.32 (15)H15A—C15—H15E56.3
C7—C8—H8119.8H15B—C15—H15E141.1
C9—C8—H8119.8H15C—C15—H15E56.3
C10—C9—C8120.68 (15)H15D—C15—H15E109.5
C10—C9—H9119.7C14—C15—H15F109.5
C8—C9—H9119.7H15A—C15—H15F56.3
C9—C10—C1120.52 (13)H15B—C15—H15F56.3
C9—C10—N1121.20 (13)H15C—C15—H15F141.1
C1—C10—N1118.27 (12)H15D—C15—H15F109.5
N1—C11—C13121.20 (13)H15E—C15—H15F109.5
N1—C11—C12118.26 (13)H2A—O2—H2Ai101 (4)
C10—C1—C2—C3179.47 (14)C8—C9—C10—C11.7 (2)
C6—C1—C2—C30.1 (2)C8—C9—C10—N1178.61 (14)
C1—C2—C3—C40.9 (3)C2—C1—C10—C9178.20 (13)
C2—C3—C4—C50.7 (3)C6—C1—C10—C91.40 (19)
C3—C4—C5—C60.2 (3)C2—C1—C10—N11.53 (19)
C4—C5—C6—C7178.95 (16)C6—C1—C10—N1178.86 (11)
C4—C5—C6—C11.0 (2)C11—N1—C10—C976.91 (19)
C2—C1—C6—C50.79 (19)C11—N1—C10—C1103.36 (16)
C10—C1—C6—C5179.59 (12)C10—N1—C11—C13169.20 (13)
C2—C1—C6—C7179.15 (13)C10—N1—C11—C1211.1 (2)
C10—C1—C6—C70.47 (19)N1—C11—C13—C142.3 (2)
C5—C6—C7—C8179.74 (15)C12—C11—C13—C14178.05 (16)
C1—C6—C7—C80.2 (2)C11—C13—C14—O11.2 (2)
C6—C7—C8—C90.0 (3)C11—C13—C14—C15178.45 (16)
C7—C8—C9—C101.0 (3)
Symmetry code: (i) x+1/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.905 (17)1.933 (17)2.6765 (17)138.2 (15)
O2—H2A···O10.85 (3)2.02 (3)2.8678 (15)176 (3)
 

Acknowledgements

The authors thank the crystallographic service of the Chemistry Department of Namur University (Belgium) for the data collection.

References

First citationAbdulla, R. & Brinkmeyer, R. S. (1979). Tetrahedron, 35, 1675–1735.  CrossRef CAS Google Scholar
First citationAzzoro, M., Geribaldi, S. & Videau, B. (1981). Organic Chemistry Portable, 11, 880–881.  Google Scholar
First citationEddington, N., Cox, D., Roberts, R., Stables, J., Powell, C. & Scott, K. (2000). Curr. Med. Chem. 7, 417–436.  CrossRef PubMed CAS Google Scholar
First citationEsmaiel, E., Mohamad, Z. & Peter, T. C. (2018). ACS Appl. Mater. Interfaces, 44, 1–13.  Google Scholar
First citationImada, Y., Mitsue, Y., Ike, K., Washizuka, K. & Murahashi, S. (1996). Bull. Chem. Soc. Jpn, 69, 2079–2090.  CrossRef CAS Google Scholar
First citationKale, A. A. (2016). Int. J. Sci. Eng. Res. 7,873–880.  Google Scholar
First citationKarpov, A. & Müller, T. (2003). Organic Chemistry Portal, 18, 2815–2826.  Google Scholar
First citationKidwai, M., Bhardwaj, S., Mishra, N., Bansal, V., Kumar, A. & Mozumdar, S. (2009). Catal. Commun. 10, 1514–1517.  CrossRef CAS Google Scholar
First citationLue, P. & Greenhill, J. (1996). Adv. Heterocycl. Chem. 67, 207–343.  CrossRef CAS Google Scholar
First citationMontanile, C. (2003). J. Braz. Chem. Soc. 14(6), 945–969.  Google Scholar
First citationPešková, M., Šimůnek, P., Bertolasi, V., Macháček, V. & Lyčka, A. (2006). Organometallics, 25, 2025–2030.  Google Scholar
First citationPohland, A. & Benson, W. (1966). Chem. Rev. 66, 161–197.  CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N. T. (2008). Lab Chip, 8, 885–891.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds