organic compounds
(3E)-4-[(Naphthalen-1-yl)amino]pent-3-en-2-one hemihydrate
aLaboratoire de Chimie Minérale et Analytique (LA.CHI.MI.A), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDepartement de Chimie, Université de Namur ASBL, Rue de Bruxelles 61-5000 Namur, Belgium, and cDepartement of Chemical and Pharmaceutical Sciences, via Giorgieri, 34127-Trieste, Italy
*Correspondence e-mail: aboubacar.diop@ucad.edu.sn, aboubacar.diop@ucad.edu.sn
The title compound, C15H15NO·0.5H2O, was prepared from α-naphthylamine and 2,4-pentanedione in a 1:1 ratio. An intramolecular N—H⋯O hydrogen bond in the N-naphthylpent-3-en-2-one molecule involving the amine and carbonyl groups strengthens the structure. The water molecule interacts with two symmetry-related N-naphthylpent-3-en-2-one molecules viaby O—H⋯O hydrogen bonds.
Keywords: crystal structure; naphthalene; aminopentanone; N-naphthylpent-3-en-2-one; hydrogen bonding.
CCDC reference: 2111316
Structure description
Enaminones, which consist of an amino group linked by a carbon–carbon double bond to a carbonyl group, is an area of considerable opportunity (Montanile, 2003). In fact, enaminones are used in the synthesis of different heterocycles and biologically active analogues and also in the development of pharmaceuticals because of their role as organic intermediates (Esmaiel et al., 2018). It should be noted that the biological activity of enaminone compounds is attributed to the presence of the active N—C=C—C=O group within a ring system (Kale, 2016). Much work has been undertaken to explore new routes for the synthesis of enaminones. Azzoro et al. (1981) reported a simple method using and 1,3-diketones. Eddington et al. (2000) reported on the synthesis and anticonvulsant evaluations of some enaminones. In another method, β-chloro vinyl ketone was reacted with to synthesize these compounds (Pohland & Benson, 1966). Other methods of preparation include reactions between formamide dimethyl acetate and (Abdulla & Brinkmeyer, 1979), acid chlorides with terminal and triethylamine (Karpov & Müller, 2003), primary and β-dicarbonyl compounds catalysed by copper nanoparticles (Kidwai et al., 2009). Lue & Greenhill (1996) functionalized enaminones by introducing different substituents on the nitrogen, α- and β-carbon atoms to the carbonyl group. These derivatives are used extensively for preserving natural products and analogues. Enaminones are also considered to be good chelating ligands for transition metals in coordination chemistry (Esmaiel et al., 2018). The anions produced from enaminone offer potential isoelectronic alternatives to cyclopentadienyl-based anions and therefore their transition-metal complexes can act as possible alternative catalysts for olefinic polymerization (Pešková et al., 2006). Imada et al. (1996) transformed β-amino to enaminones using palladium while Tan et al. (2008) reported enaminone applications of rhodium compounds containing bidentate ligand systems.
In the title compound (Fig. 1), the dihedral angle formed by the mean planes through the naphthalene ring system and the aminopentanone group is 69.66 (9)°. This angle is determined by crystal-packing requirements. The molecular conformation is stabilized by an intramolecular N—H⋯O hydrogen bond. The water molecule, located on a crystallographic twofold axis, is linked to two symmetry-related N-naphthylpent-3-en-2-one molecules via O—H⋯O hydrogen bonds (Fig. 2 and Table 1). In addition, In addition, there are π–π interactions [centroid-to-centroid distance of 3.7975 (10) Å] between the naphthalene ring systems of symmetry-related molecules, generating chains of molecules running in the [100] direction.
|
Synthesis and crystallization
A mixture of α-naphthylamine (0,143 g; 1 mmol) and 2,4-pentanedione (0,100 g; 1 mmol) in ethanol solvent was stirred for about 4 h and then filtered. Slow evaporation of the solution at room temperature was carried out, leading to grey crystals suitable for a single-crystal X-ray diffraction study (yield 63%).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2111316
https://doi.org/10.1107/S2414314621009895/xu4045sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621009895/xu4045Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314621009895/xu4045Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b).C15H15NO·0.5H2O | F(000) = 1000 |
Mr = 234.29 | Dx = 1.209 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 17.1405 (8) Å | Cell parameters from 2470 reflections |
b = 8.3052 (4) Å | θ = 2.9–30.5° |
c = 18.5156 (8) Å | µ = 0.08 mm−1 |
β = 102.347 (4)° | T = 295 K |
V = 2574.8 (2) Å3 | Block, colourless |
Z = 8 | 0.88 × 0.48 × 0.27 mm |
Oxford Diffraction Xcalibur, Ruby, Gemini Ultra diffractometer | 2637 independent reflections |
Graphite monochromator | 2045 reflections with I > 2σ(I) |
Detector resolution: 10.3712 pixels mm-1 | Rint = 0.013 |
ω scans | θmax = 26.4°, θmin = 2.3° |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2018) | h = −21→13 |
Tmin = 0.952, Tmax = 0.981 | k = −10→10 |
6527 measured reflections | l = −21→23 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: dual |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0578P)2 + 0.6014P] where P = (Fo2 + 2Fc2)/3 |
2637 reflections | (Δ/σ)max = 0.002 |
168 parameters | Δρmax = 0.13 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.35246 (7) | 0.84680 (13) | 0.60203 (6) | 0.0697 (3) | |
N1 | 0.41810 (7) | 0.55405 (15) | 0.62641 (6) | 0.0554 (3) | |
H1 | 0.4037 (10) | 0.641 (2) | 0.5971 (9) | 0.067* | |
C1 | 0.54448 (8) | 0.47503 (16) | 0.59592 (7) | 0.0487 (3) | |
C2 | 0.57433 (9) | 0.63404 (19) | 0.60622 (8) | 0.0613 (4) | |
H2 | 0.542714 | 0.714959 | 0.619655 | 0.074* | |
C3 | 0.64878 (11) | 0.6695 (3) | 0.59665 (10) | 0.0820 (5) | |
H3 | 0.667331 | 0.774862 | 0.602925 | 0.098* | |
C4 | 0.69744 (11) | 0.5507 (3) | 0.57766 (10) | 0.0914 (6) | |
H4 | 0.748515 | 0.576743 | 0.571849 | 0.110* | |
C5 | 0.67113 (10) | 0.3970 (3) | 0.56749 (9) | 0.0787 (5) | |
H5 | 0.704585 | 0.318524 | 0.554932 | 0.094* | |
C6 | 0.59393 (9) | 0.35372 (18) | 0.57560 (7) | 0.0581 (4) | |
C7 | 0.56410 (11) | 0.1952 (2) | 0.56424 (9) | 0.0716 (5) | |
H7 | 0.596165 | 0.114794 | 0.551045 | 0.086* | |
C8 | 0.48942 (12) | 0.15854 (19) | 0.57231 (10) | 0.0747 (5) | |
H8 | 0.470690 | 0.053490 | 0.564663 | 0.090* | |
C9 | 0.44020 (10) | 0.27831 (19) | 0.59215 (8) | 0.0654 (4) | |
H9 | 0.388734 | 0.252280 | 0.596803 | 0.079* | |
C10 | 0.46696 (8) | 0.43196 (16) | 0.60462 (7) | 0.0511 (3) | |
C11 | 0.40408 (8) | 0.57179 (17) | 0.69445 (7) | 0.0545 (3) | |
C12 | 0.42920 (14) | 0.4398 (2) | 0.74914 (10) | 0.0870 (6) | |
H12A | 0.395859 | 0.347308 | 0.734921 | 0.131* | |
H12B | 0.424079 | 0.475343 | 0.797244 | 0.131* | |
H12C | 0.483825 | 0.411805 | 0.750444 | 0.131* | |
C13 | 0.36721 (9) | 0.70740 (18) | 0.71367 (8) | 0.0583 (4) | |
H13 | 0.357332 | 0.711308 | 0.761114 | 0.070* | |
C14 | 0.34324 (8) | 0.84062 (17) | 0.66740 (8) | 0.0566 (4) | |
C15 | 0.30550 (13) | 0.9813 (2) | 0.69784 (11) | 0.0864 (5) | |
H15A | 0.297561 | 1.067498 | 0.662469 | 0.130* | 0.5 |
H15B | 0.339877 | 1.017109 | 0.742911 | 0.130* | 0.5 |
H15C | 0.254936 | 0.949261 | 0.707604 | 0.130* | 0.5 |
H15D | 0.297355 | 0.955081 | 0.746187 | 0.130* | 0.5 |
H15E | 0.255039 | 1.005469 | 0.665745 | 0.130* | 0.5 |
H15F | 0.339980 | 1.073318 | 0.701052 | 0.130* | 0.5 |
O2 | 0.250000 | 1.0550 (2) | 0.500000 | 0.1027 (7) | |
H2A | 0.2805 (17) | 0.990 (3) | 0.5285 (16) | 0.151 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0799 (8) | 0.0721 (7) | 0.0613 (7) | 0.0141 (5) | 0.0242 (5) | 0.0081 (5) |
N1 | 0.0566 (7) | 0.0623 (7) | 0.0506 (7) | 0.0104 (5) | 0.0184 (5) | 0.0042 (5) |
C1 | 0.0496 (7) | 0.0604 (8) | 0.0356 (6) | 0.0035 (6) | 0.0080 (5) | −0.0002 (6) |
C2 | 0.0641 (9) | 0.0675 (9) | 0.0528 (8) | −0.0044 (7) | 0.0141 (7) | −0.0035 (7) |
C3 | 0.0744 (12) | 0.0982 (13) | 0.0744 (11) | −0.0283 (10) | 0.0180 (9) | −0.0020 (9) |
C4 | 0.0535 (10) | 0.148 (2) | 0.0751 (12) | −0.0135 (11) | 0.0187 (8) | −0.0011 (12) |
C5 | 0.0573 (10) | 0.1225 (16) | 0.0582 (9) | 0.0216 (10) | 0.0164 (7) | 0.0010 (10) |
C6 | 0.0596 (8) | 0.0751 (10) | 0.0395 (7) | 0.0158 (7) | 0.0108 (6) | 0.0001 (6) |
C7 | 0.0924 (13) | 0.0661 (10) | 0.0562 (9) | 0.0226 (9) | 0.0157 (8) | −0.0059 (7) |
C8 | 0.1019 (14) | 0.0539 (9) | 0.0677 (10) | −0.0024 (8) | 0.0170 (9) | −0.0089 (7) |
C9 | 0.0687 (10) | 0.0653 (9) | 0.0634 (9) | −0.0095 (7) | 0.0166 (7) | −0.0046 (7) |
C10 | 0.0530 (8) | 0.0566 (8) | 0.0443 (7) | 0.0043 (6) | 0.0121 (6) | −0.0005 (6) |
C11 | 0.0550 (8) | 0.0613 (8) | 0.0484 (7) | −0.0003 (6) | 0.0137 (6) | −0.0007 (6) |
C12 | 0.1277 (16) | 0.0789 (11) | 0.0574 (10) | 0.0258 (11) | 0.0262 (10) | 0.0092 (9) |
C13 | 0.0631 (9) | 0.0657 (9) | 0.0493 (8) | 0.0026 (7) | 0.0195 (6) | −0.0032 (7) |
C14 | 0.0510 (8) | 0.0618 (8) | 0.0584 (9) | −0.0019 (6) | 0.0151 (6) | −0.0055 (7) |
C15 | 0.1069 (15) | 0.0715 (10) | 0.0870 (12) | 0.0205 (10) | 0.0350 (11) | −0.0041 (9) |
O2 | 0.1283 (19) | 0.0622 (11) | 0.1037 (16) | 0.000 | −0.0062 (13) | 0.000 |
O1—C14 | 1.2548 (17) | C8—H8 | 0.9300 |
N1—C11 | 1.3403 (17) | C9—C10 | 1.359 (2) |
N1—C10 | 1.4271 (17) | C9—H9 | 0.9300 |
N1—H1 | 0.904 (17) | C11—C13 | 1.375 (2) |
C1—C2 | 1.414 (2) | C11—C12 | 1.492 (2) |
C1—C10 | 1.4180 (18) | C12—H12A | 0.9600 |
C1—C6 | 1.4183 (18) | C12—H12B | 0.9600 |
C2—C3 | 1.358 (2) | C12—H12C | 0.9600 |
C2—H2 | 0.9300 | C13—C14 | 1.406 (2) |
C3—C4 | 1.385 (3) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | C14—C15 | 1.503 (2) |
C4—C5 | 1.354 (3) | C15—H15A | 0.9600 |
C4—H4 | 0.9300 | C15—H15B | 0.9600 |
C5—C6 | 1.410 (2) | C15—H15C | 0.9600 |
C5—H5 | 0.9300 | C15—H15D | 0.9600 |
C6—C7 | 1.412 (2) | C15—H15E | 0.9600 |
C7—C8 | 1.355 (2) | C15—H15F | 0.9600 |
C7—H7 | 0.9300 | O2—H2A | 0.85 (3) |
C8—C9 | 1.403 (2) | O2—H2Ai | 0.85 (3) |
C11—N1—C10 | 125.30 (12) | C13—C11—C12 | 120.54 (13) |
C11—N1—H1 | 113.3 (10) | C11—C12—H12A | 109.5 |
C10—N1—H1 | 119.8 (10) | C11—C12—H12B | 109.5 |
C2—C1—C10 | 122.75 (12) | H12A—C12—H12B | 109.5 |
C2—C1—C6 | 118.65 (13) | C11—C12—H12C | 109.5 |
C10—C1—C6 | 118.60 (13) | H12A—C12—H12C | 109.5 |
C3—C2—C1 | 120.52 (15) | H12B—C12—H12C | 109.5 |
C3—C2—H2 | 119.7 | C11—C13—C14 | 125.27 (13) |
C1—C2—H2 | 119.7 | C11—C13—H13 | 117.4 |
C2—C3—C4 | 120.85 (18) | C14—C13—H13 | 117.4 |
C2—C3—H3 | 119.6 | O1—C14—C13 | 122.64 (13) |
C4—C3—H3 | 119.6 | O1—C14—C15 | 118.90 (14) |
C5—C4—C3 | 120.41 (16) | C13—C14—C15 | 118.46 (13) |
C5—C4—H4 | 119.8 | C14—C15—H15A | 109.5 |
C3—C4—H4 | 119.8 | C14—C15—H15B | 109.5 |
C4—C5—C6 | 121.21 (17) | H15A—C15—H15B | 109.5 |
C4—C5—H5 | 119.4 | C14—C15—H15C | 109.5 |
C6—C5—H5 | 119.4 | H15A—C15—H15C | 109.5 |
C5—C6—C7 | 122.70 (15) | H15B—C15—H15C | 109.5 |
C5—C6—C1 | 118.35 (15) | C14—C15—H15D | 109.5 |
C7—C6—C1 | 118.95 (14) | H15A—C15—H15D | 141.1 |
C8—C7—C6 | 120.91 (14) | H15B—C15—H15D | 56.3 |
C8—C7—H7 | 119.5 | H15C—C15—H15D | 56.3 |
C6—C7—H7 | 119.5 | C14—C15—H15E | 109.5 |
C7—C8—C9 | 120.32 (15) | H15A—C15—H15E | 56.3 |
C7—C8—H8 | 119.8 | H15B—C15—H15E | 141.1 |
C9—C8—H8 | 119.8 | H15C—C15—H15E | 56.3 |
C10—C9—C8 | 120.68 (15) | H15D—C15—H15E | 109.5 |
C10—C9—H9 | 119.7 | C14—C15—H15F | 109.5 |
C8—C9—H9 | 119.7 | H15A—C15—H15F | 56.3 |
C9—C10—C1 | 120.52 (13) | H15B—C15—H15F | 56.3 |
C9—C10—N1 | 121.20 (13) | H15C—C15—H15F | 141.1 |
C1—C10—N1 | 118.27 (12) | H15D—C15—H15F | 109.5 |
N1—C11—C13 | 121.20 (13) | H15E—C15—H15F | 109.5 |
N1—C11—C12 | 118.26 (13) | H2A—O2—H2Ai | 101 (4) |
C10—C1—C2—C3 | −179.47 (14) | C8—C9—C10—C1 | 1.7 (2) |
C6—C1—C2—C3 | 0.1 (2) | C8—C9—C10—N1 | −178.61 (14) |
C1—C2—C3—C4 | −0.9 (3) | C2—C1—C10—C9 | 178.20 (13) |
C2—C3—C4—C5 | 0.7 (3) | C6—C1—C10—C9 | −1.40 (19) |
C3—C4—C5—C6 | 0.2 (3) | C2—C1—C10—N1 | −1.53 (19) |
C4—C5—C6—C7 | 178.95 (16) | C6—C1—C10—N1 | 178.86 (11) |
C4—C5—C6—C1 | −1.0 (2) | C11—N1—C10—C9 | 76.91 (19) |
C2—C1—C6—C5 | 0.79 (19) | C11—N1—C10—C1 | −103.36 (16) |
C10—C1—C6—C5 | −179.59 (12) | C10—N1—C11—C13 | 169.20 (13) |
C2—C1—C6—C7 | −179.15 (13) | C10—N1—C11—C12 | −11.1 (2) |
C10—C1—C6—C7 | 0.47 (19) | N1—C11—C13—C14 | −2.3 (2) |
C5—C6—C7—C8 | −179.74 (15) | C12—C11—C13—C14 | 178.05 (16) |
C1—C6—C7—C8 | 0.2 (2) | C11—C13—C14—O1 | 1.2 (2) |
C6—C7—C8—C9 | 0.0 (3) | C11—C13—C14—C15 | −178.45 (16) |
C7—C8—C9—C10 | −1.0 (3) |
Symmetry code: (i) −x+1/2, y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.905 (17) | 1.933 (17) | 2.6765 (17) | 138.2 (15) |
O2—H2A···O1 | 0.85 (3) | 2.02 (3) | 2.8678 (15) | 176 (3) |
Acknowledgements
The authors thank the crystallographic service of the Chemistry Department of Namur University (Belgium) for the data collection.
References
Abdulla, R. & Brinkmeyer, R. S. (1979). Tetrahedron, 35, 1675–1735. CrossRef CAS Google Scholar
Azzoro, M., Geribaldi, S. & Videau, B. (1981). Organic Chemistry Portable, 11, 880–881. Google Scholar
Eddington, N., Cox, D., Roberts, R., Stables, J., Powell, C. & Scott, K. (2000). Curr. Med. Chem. 7, 417–436. CrossRef PubMed CAS Google Scholar
Esmaiel, E., Mohamad, Z. & Peter, T. C. (2018). ACS Appl. Mater. Interfaces, 44, 1–13. Google Scholar
Imada, Y., Mitsue, Y., Ike, K., Washizuka, K. & Murahashi, S. (1996). Bull. Chem. Soc. Jpn, 69, 2079–2090. CrossRef CAS Google Scholar
Kale, A. A. (2016). Int. J. Sci. Eng. Res. 7,873–880. Google Scholar
Karpov, A. & Müller, T. (2003). Organic Chemistry Portal, 18, 2815–2826. Google Scholar
Kidwai, M., Bhardwaj, S., Mishra, N., Bansal, V., Kumar, A. & Mozumdar, S. (2009). Catal. Commun. 10, 1514–1517. CrossRef CAS Google Scholar
Lue, P. & Greenhill, J. (1996). Adv. Heterocycl. Chem. 67, 207–343. CrossRef CAS Google Scholar
Montanile, C. (2003). J. Braz. Chem. Soc. 14(6), 945–969. Google Scholar
Pešková, M., Šimůnek, P., Bertolasi, V., Macháček, V. & Lyčka, A. (2006). Organometallics, 25, 2025–2030. Google Scholar
Pohland, A. & Benson, W. (1966). Chem. Rev. 66, 161–197. CrossRef CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N. T. (2008). Lab Chip, 8, 885–891. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.