inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Crystal structure of the Al20Mn5.37Ni1.31 phase in the Al–Mn–Ni system

crossmark logo

aState Key Laboratory of Metastable Materials, Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
*Correspondence e-mail: chzfan@ysu.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 August 2021; accepted 21 September 2021; online 24 September 2021)

The inter­metallic phase with composition Al20Mn5.37Ni1.31 (icosa­aluminium penta­manganese nickel) was synthesized by high-temperature sinter­ing of a mixture with initial chemical composition Al60Mn7Ni3. Al20Mn5.37Ni1.31 adopts the Co2Al5 structure type in space-group type P63/mmc, replacing the Co atoms with the transition-metal atoms Mn and Ni. Structure analysis revealed that one of the two transition-metal sites is partially occupied by Ni [refined occupancy 0.342 (2)] and the other is co-occupied by Mn and Ni with a ratio of 0.895 (14):0.105 (14). The present refined chemical composition is supported by complementary energy-dispersive X-ray fluorescence (EDX) analysis and is in agreement with the previously determined Al–Mn–Ni phase diagram [Balanetskyy et al. (2011[Balanetskyy, S., Meisterernst, G., Grushko, B. & Feuerbacher, M. (2011). J. Alloys Compd, 509, 3795-3805.]). J. Alloys Compd, 509, 3795–3805].

3D view (loading...)
[Scheme 3D1]

Structure description

Phases in the ternary Al–Mn–Ni alloy system are structurally complex, also including quasicrystals (QC). For example, an aperiodic diffraction pattern was observed for the alloy with composition Al60Mn11Ni4, exhibiting tenfold rotation symmetry and characterized as a quasi-crystalline phase (Tendeloo et al., 1988[Tendeloo, G. V., Landuyt, J. V., Amelinckx, S. & Ranganathan, S. (1988). J. Microsc. 149, 1-19.]). As a result of their applications in industry, relevant stable and metastable phases in the Al–Mn–Ni system have been investigated thoroughly (Balanetskyy et al., 2011[Balanetskyy, S., Meisterernst, G., Grushko, B. & Feuerbacher, M. (2011). J. Alloys Compd, 509, 3795-3805.]). Three thermodynamically stable ternary inter­metallics have been reported, among them the φ phase adopting the Co2Al5 structure type [P63/mmc, Z = 4, a = 7.6632 (16), c = 7.8296 (15) Å; Balanetskyy et al., 2011[Balanetskyy, S., Meisterernst, G., Grushko, B. & Feuerbacher, M. (2011). J. Alloys Compd, 509, 3795-3805.]]. However, a detailed crystal-structure analysis of the φ phase has not been indicated, although its homogeneity chemical composition regions at 1223, 1123, 1023, 973, 918 and 893 K were determined (see Table S1 of the supporting information). It should be noted that such Co2Al5-type phases have also been found in other systems e.g. in the binary Al–Mn system the phase Al10Mn3 with unit-cell parameters a = 7.543, c = 7.898 Å (Taylor, 1959[Taylor, M. A. (1959). Acta Cryst. 12, 393-396.]), or the deca­aluminium trinickel iron phase Al10Ni3Fe0.83 that was recently obtained in our group by high-pressure sinter­ing (HPS) of a stoichiometric mixture with nominal composition Al71Ni24Fe5 (Wang et al., 2018[Wang, S., Liu, C. & Fan, C. (2018). IUCrData, 3, x180237.]). In the present study, the crystal-structure refinement of a phase with composition Al20Mn5.37Ni1.31 based on single-crystal X-ray diffraction data is reported, in accordance with the SEM/EDX results (see Tables S2 and S3 along with Fig. S1 compiled in the supporting information). This phase is located within the diagram region of the φ phase determined previously (see Table S1 of the supporting information).

With respect to the Co2Al5 structure type (Newkirk et al., 1961[Newkirk, J. B., Black, P. J. & Damjanovic, A. (1961). Acta Cryst. 14, 532-533.]), in the crystal structure of the Al20Mn5.37Ni1.31 phase the Co atoms are replaced by the transition metals Mn and Ni (Fig. 1[link]). The asymmetric unit of Al20Mn5.37Ni1.31 comprises five metal sites, three fully occupied by Al atoms at Wyckoff positions 2 a (Al1), 6 h (Al2) and 12 k (Al3), one partially occupied Ni2 site [occupancy 0.342 (2)] at 2 d and one co-occupied (Mn1/Ni1) site [occupancy ratio 0.895 (14): 0.105 (14)] at 6 h. The environment of the co-occupied (Mn1/Ni1) site is shown in Fig. 2[link], where twelve vertices include ten Al atoms (Al1, Al2, Al3) and two symmetry-related (Mn1/Ni1) sites. In the crystal structure, the distorted icosa­hedra centered at Al1 and (Mn1/Ni1) and the polyhedron centered at Al2 are fused with each other, as shown in Fig. 3[link].

[Figure 1]
Figure 1
The crystal structure of Al20Mn5.37Ni1.31 with two (Mn1/Ni1) sites and two Al1 atoms displayed with their coordination environments as polyhedra.
[Figure 2]
Figure 2
The environment of the (Mn1/Ni1) site. Displacement ellipsoids are given at the 90% probability level. [Symmetry codes: (i) −x + y, −x + 1, z; (ii) −y + 1, x − y + 1, z; (iii) −x, −y, z + [{1\over 2}]; (iv) x, y, −z + [{3\over 2}]; (v) x, y, z − 1; (vi) y, −x + y, z − [{1\over 2}]; (vii) y, −x + y, −z + 1; (viii) x − y, x, −z + 1; (ix) x − y, x, z − [{1\over 2}]; (x) −x + y, −x, z; (xi) −y, x − y, z.]
[Figure 3]
Figure 3
The fusion of five polyhedra centered at one (Mn1/Ni1), two Al1 and two Al2 sites.

Synthesis and crystallization

The high-purity elements Al (indicated purity 99.8%; 2.700 g), Mn (indicated purity 99.96%; 0.6417 g) and Ni (indicated purity 99.9%; 0.2935 g) were mixed in the molar ratio 60:7:3 and ground in an agate mortar. The blended powders were placed into a cemented carbide grinding mound of 9.6 mm diameter and pressed at 4 MPa for about 5 min. The obtained cylindrical block was crushed and a sample with a weight of 50.32 mg was selected and subsequently loaded into a Netzsch STA449C simultaneous thermal analysis apparatus. The sample was heated up to 1373 K for 10 min with a heating rate of 20 K min−1. Finally, the sample was slowly cooled to room temperature by turning off the furnace power. Suitable pieces of single-crystal grains were selected from the products for single-crystal X-ray diffraction experiments.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. For better comparison with the Co2Al5 structure type, the labelling scheme and atomic coordinates were adapted from Co2Al5 (Newkirk et al., 1961[Newkirk, J. B., Black, P. J. & Damjanovic, A. (1961). Acta Cryst. 14, 532-533.]). One of the five metal sites is partially occupied by Ni atoms (Ni2) and one site is co-occupied by Mn and Ni atoms (Mn1/Ni1); all Al atoms show full occupancy. Atoms sharing the same site were constrained to have the same coordinates and anisotropic displacement parameters. The maximum and minimum residual electron densities in the final difference map are located 1.32 Å from the (Mn1/Ni1) site and 0.01 Å from the same site, respectively.

Table 1
Experimental details

Crystal data
Chemical formula Al20Mn5.37Ni1.31
Mr 911.74
Crystal system, space group Hexagonal, P63/mmc
Temperature (K) 296
a, c (Å) 7.6009 (3), 7.8187 (5)
V3) 391.20 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 6.85
Crystal size (mm) 0.14 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.588, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 14281, 260, 246
Rint 0.048
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.033, 1.20
No. of reflections 260
No. of parameters 21
Δρmax, Δρmin (e Å−3) 0.35, −0.46
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2017[Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2017); software used to prepare material for publication: publCIF (Westrip, 2010).

Icosaaluminium pentamanganese nickel top
Crystal data top
Al20Mn5.37Ni1.31Dx = 3.870 Mg m3
Mr = 911.74Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 5904 reflections
a = 7.6009 (3) Åθ = 3.1–30.5°
c = 7.8187 (5) ŵ = 6.85 mm1
V = 391.20 (4) Å3T = 296 K
Z = 1Fragment, metallic
F(000) = 4310.14 × 0.07 × 0.05 mm
Data collection top
Bruker D8 Venture Photon 100 CMOS
diffractometer
246 reflections with I > 2σ(I)
φ and ω scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.5°, θmin = 3.1°
Tmin = 0.588, Tmax = 0.746h = 1010
14281 measured reflectionsk = 1010
260 independent reflectionsl = 1111
Refinement top
Refinement on F221 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0158P)2 + 0.1412P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max < 0.001
S = 1.20Δρmax = 0.35 e Å3
260 reflectionsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.12191 (3)0.24382 (5)0.2500000.00549 (12)0.895 (14)
Ni10.12191 (3)0.24382 (5)0.2500000.00549 (12)0.105 (14)
Al10.0000000.0000000.0000000.0062 (3)
Al20.45923 (6)0.91845 (12)0.2500000.00770 (19)
Al30.19943 (4)0.39887 (8)0.93807 (7)0.00821 (16)
Ni20.6666670.3333330.2500000.0046 (4)0.342 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.00704 (15)0.00404 (17)0.00438 (18)0.00202 (9)0.0000.000
Ni10.00704 (15)0.00404 (17)0.00438 (18)0.00202 (9)0.0000.000
Al10.0067 (3)0.0067 (3)0.0053 (5)0.00333 (17)0.0000.000
Al20.0056 (3)0.0091 (4)0.0095 (3)0.00454 (19)0.0000.000
Al30.0079 (2)0.0095 (3)0.0077 (3)0.00477 (13)0.00001 (10)0.00003 (19)
Ni20.0050 (5)0.0050 (5)0.0036 (7)0.0025 (3)0.0000.000
Geometric parameters (Å, º) top
Mn1—Al2i2.4251 (3)Al1—Al3vi2.6698 (5)
Mn1—Al2ii2.4251 (3)Al2—Ni2xiv2.7310 (8)
Mn1—Al12.5292 (2)Al2—Al3xv2.8132 (6)
Mn1—Al1iii2.5292 (2)Al2—Al3xvi2.8132 (6)
Mn1—Al3iv2.6438 (6)Al2—Al3xvii2.8132 (6)
Mn1—Al3v2.6438 (6)Al2—Al3xviii2.8132 (6)
Mn1—Al3vi2.7236 (5)Al2—Al2i2.8707 (14)
Mn1—Al3vii2.7236 (5)Al2—Al2ii2.8707 (14)
Mn1—Al3viii2.7236 (5)Al2—Al3xix2.9801 (5)
Mn1—Al3ix2.7236 (5)Al2—Al3xx2.9801 (5)
Mn1—Mn1x2.7799 (6)Al2—Al3xxi2.9801 (5)
Mn1—Mn1xi2.7799 (6)Al3—Ni2xxii2.2956 (5)
Al1—Al3ix2.6698 (5)Al3—Al3xxiii2.7985 (6)
Al1—Al3xii2.6698 (5)Al3—Al3xxiv2.7985 (6)
Al1—Al3v2.6698 (5)Al3—Al3iv2.9409 (10)
Al1—Al3xiii2.6698 (5)
Al2i—Mn1—Al2ii72.58 (4)Al3xv—Al2—Al2i107.340 (16)
Al2i—Mn1—Al1120.763 (8)Al3xvi—Al2—Al2i107.340 (16)
Al2ii—Mn1—Al1120.763 (8)Al3xvii—Al2—Al2i147.217 (13)
Al2i—Mn1—Al1iii120.763 (9)Al3xviii—Al2—Al2i147.217 (13)
Al2ii—Mn1—Al1iii120.763 (8)Mn1ii—Al2—Al2ii113.710 (19)
Al1—Mn1—Al1iii101.222 (13)Mn1i—Al2—Al2ii53.710 (19)
Al2i—Mn1—Al3iv71.871 (12)Ni2xiv—Al2—Al2ii150.0
Al2ii—Mn1—Al3iv71.871 (12)Al3xv—Al2—Al2ii147.217 (13)
Al1—Mn1—Al3iv163.319 (18)Al3xvi—Al2—Al2ii147.217 (13)
Al1iii—Mn1—Al3iv62.097 (12)Al3xvii—Al2—Al2ii107.340 (16)
Al2i—Mn1—Al3v71.871 (12)Al3xviii—Al2—Al2ii107.340 (16)
Al2ii—Mn1—Al3v71.871 (12)Al2i—Al2—Al2ii60.0
Al1—Mn1—Al3v62.097 (12)Mn1ii—Al2—Al3xix57.471 (11)
Al1iii—Mn1—Al3v163.319 (18)Mn1i—Al2—Al3xix118.729 (14)
Al3iv—Mn1—Al3v134.58 (3)Ni2xiv—Al2—Al3xix105.093 (16)
Al2i—Mn1—Al3vi65.942 (17)Al3xv—Al2—Al3xix108.722 (19)
Al2ii—Mn1—Al3vi125.493 (18)Al3xvi—Al2—Al3xix57.684 (15)
Al1—Mn1—Al3vi60.965 (11)Al3xvii—Al2—Al3xix151.28 (3)
Al1iii—Mn1—Al3vi110.438 (11)Al3xviii—Al2—Al3xix91.228 (9)
Al3iv—Mn1—Al3vi122.648 (12)Al2i—Al2—Al3xix61.207 (14)
Al3v—Mn1—Al3vi62.829 (9)Al2ii—Al2—Al3xix91.756 (15)
Al2i—Mn1—Al3vii65.942 (17)Mn1ii—Al2—Al3xx57.471 (11)
Al2ii—Mn1—Al3vii125.493 (18)Mn1i—Al2—Al3xx118.729 (14)
Al1—Mn1—Al3vii110.438 (11)Ni2xiv—Al2—Al3xx105.093 (16)
Al1iii—Mn1—Al3vii60.965 (11)Al3xv—Al2—Al3xx57.684 (15)
Al3iv—Mn1—Al3vii62.829 (9)Al3xvi—Al2—Al3xx108.722 (19)
Al3v—Mn1—Al3vii122.648 (12)Al3xvii—Al2—Al3xx91.228 (9)
Al3vi—Mn1—Al3vii65.35 (2)Al3xviii—Al2—Al3xx151.28 (3)
Al2i—Mn1—Al3viii125.493 (18)Al2i—Al2—Al3xx61.207 (14)
Al2ii—Mn1—Al3viii65.942 (17)Al2ii—Al2—Al3xx91.756 (15)
Al1—Mn1—Al3viii110.438 (11)Al3xix—Al2—Al3xx109.848 (19)
Al1iii—Mn1—Al3viii60.965 (11)Mn1ii—Al2—Al3xxi118.729 (14)
Al3iv—Mn1—Al3viii62.829 (9)Mn1i—Al2—Al3xxi57.471 (10)
Al3v—Mn1—Al3viii122.648 (12)Ni2xiv—Al2—Al3xxi105.094 (16)
Al3vi—Mn1—Al3viii167.68 (2)Al3xv—Al2—Al3xxi91.227 (9)
Al3vii—Mn1—Al3viii113.20 (2)Al3xvi—Al2—Al3xxi151.28 (3)
Al2i—Mn1—Al3ix125.493 (18)Al3xvii—Al2—Al3xxi57.684 (15)
Al2ii—Mn1—Al3ix65.942 (17)Al3xviii—Al2—Al3xxi108.722 (19)
Al1—Mn1—Al3ix60.965 (11)Al2i—Al2—Al3xxi91.756 (15)
Al1iii—Mn1—Al3ix110.438 (11)Al2ii—Al2—Al3xxi61.207 (14)
Al3iv—Mn1—Al3ix122.647 (12)Al3xix—Al2—Al3xxi149.81 (3)
Al3v—Mn1—Al3ix62.829 (9)Al3xx—Al2—Al3xxi61.63 (2)
Al3vi—Mn1—Al3ix113.20 (2)Ni2xxii—Al3—Mn1xxviii152.54 (3)
Al3vii—Mn1—Al3ix167.68 (2)Ni2xxii—Al3—Al1xxviii150.62 (2)
Al3viii—Mn1—Al3ix65.35 (2)Mn1xxviii—Al3—Al1xxviii56.843 (13)
Al2i—Mn1—Mn1x113.710 (19)Ni2xxii—Al3—Mn1vi99.682 (17)
Al2ii—Mn1—Mn1x173.710 (19)Mn1xxviii—Al3—Mn1vi103.866 (18)
Al1—Mn1—Mn1x56.663 (5)Al1xxviii—Al3—Mn1vi55.920 (12)
Al1iii—Mn1—Mn1x56.663 (5)Ni2xxii—Al3—Mn1ix99.682 (17)
Al3iv—Mn1—Mn1x109.531 (12)Mn1xxviii—Al3—Mn1ix103.866 (18)
Al3v—Mn1—Mn1x109.531 (12)Al1xxviii—Al3—Mn1ix55.920 (12)
Al3vi—Mn1—Mn1x59.314 (9)Mn1vi—Al3—Mn1ix61.373 (18)
Al3vii—Mn1—Mn1x59.314 (9)Ni2xxii—Al3—Al3xxiii125.585 (12)
Al3viii—Mn1—Mn1x108.937 (11)Mn1xxviii—Al3—Al3xxiii59.979 (17)
Al3ix—Mn1—Mn1x108.937 (11)Al1xxviii—Al3—Al3xxiii58.393 (3)
Al2i—Mn1—Mn1xi173.710 (19)Mn1vi—Al3—Al3xxiii57.191 (12)
Al2ii—Mn1—Mn1xi113.710 (19)Mn1ix—Al3—Al3xxiii106.707 (14)
Al1—Mn1—Mn1xi56.663 (5)Ni2xxii—Al3—Al3xxiv125.584 (12)
Al1iii—Mn1—Mn1xi56.663 (5)Mn1xxviii—Al3—Al3xxiv59.979 (17)
Al3iv—Mn1—Mn1xi109.531 (12)Al1xxviii—Al3—Al3xxiv58.393 (3)
Al3v—Mn1—Mn1xi109.531 (12)Mn1vi—Al3—Al3xxiv106.707 (14)
Al3vi—Mn1—Mn1xi108.937 (11)Mn1ix—Al3—Al3xxiv57.191 (12)
Al3vii—Mn1—Mn1xi108.937 (11)Al3xxiii—Al3—Al3xxiv108.69 (2)
Al3viii—Mn1—Mn1xi59.314 (9)Ni2xxii—Al3—Al2xxix63.687 (16)
Al3ix—Mn1—Mn1xi59.314 (9)Mn1xxviii—Al3—Al2xxix122.461 (14)
Mn1x—Mn1—Mn1xi60.0Al1xxviii—Al3—Al2xxix103.515 (17)
Mn1—Al1—Mn1xxv180.0Mn1vi—Al3—Al2xxix51.923 (12)
Mn1—Al1—Mn1xxvi113.326 (11)Mn1ix—Al3—Al2xxix103.968 (17)
Mn1xxv—Al1—Mn1xxvi66.674 (10)Al3xxiii—Al3—Al2xxix64.154 (18)
Mn1—Al1—Mn1xi66.674 (10)Al3xxiv—Al3—Al2xxix158.47 (2)
Mn1xxv—Al1—Mn1xi113.326 (10)Ni2xxii—Al3—Al2xxx63.685 (16)
Mn1xxvi—Al1—Mn1xi180.0Mn1xxviii—Al3—Al2xxx122.460 (14)
Mn1—Al1—Mn1x66.674 (11)Al1xxviii—Al3—Al2xxx103.515 (17)
Mn1xxv—Al1—Mn1x113.326 (11)Mn1vi—Al3—Al2xxx103.968 (17)
Mn1xxvi—Al1—Mn1x113.326 (10)Mn1ix—Al3—Al2xxx51.923 (12)
Mn1xi—Al1—Mn1x66.674 (10)Al3xxiii—Al3—Al2xxx158.47 (2)
Mn1—Al1—Mn1xxvii113.326 (11)Al3xxiv—Al3—Al2xxx64.154 (18)
Mn1xxv—Al1—Mn1xxvii66.674 (11)Al2xxix—Al3—Al2xxx114.43 (3)
Mn1xxvi—Al1—Mn1xxvii66.674 (10)Ni2xxii—Al3—Al3iv50.167 (13)
Mn1xi—Al1—Mn1xxvii113.326 (10)Mn1xxviii—Al3—Al3iv157.292 (14)
Mn1x—Al1—Mn1xxvii180.000 (15)Al1xxviii—Al3—Al3iv100.449 (11)
Mn1—Al1—Al3ix63.116 (9)Mn1vi—Al3—Al3iv57.323 (10)
Mn1xxv—Al1—Al3ix116.885 (9)Mn1ix—Al3—Al3iv57.323 (10)
Mn1xxvi—Al1—Al3ix116.884 (9)Al3xxiii—Al3—Al3iv110.25 (2)
Mn1xi—Al1—Al3ix63.116 (9)Al3xxiv—Al3—Al3iv110.25 (2)
Mn1x—Al1—Al3ix118.940 (13)Al2xxix—Al3—Al3iv58.486 (11)
Mn1xxvii—Al1—Al3ix61.060 (13)Al2xxx—Al3—Al3iv58.486 (11)
Mn1—Al1—Al3xii116.884 (9)Ni2xxii—Al3—Al2xxxi106.471 (18)
Mn1xxv—Al1—Al3xii63.115 (9)Mn1xxviii—Al3—Al2xxxi50.658 (11)
Mn1xxvi—Al1—Al3xii63.116 (9)Al1xxviii—Al3—Al2xxxi99.196 (16)
Mn1xi—Al1—Al3xii116.884 (9)Mn1vi—Al3—Al2xxxi153.83 (2)
Mn1x—Al1—Al3xii61.060 (13)Mn1ix—Al3—Al2xxxi113.945 (17)
Mn1xxvii—Al1—Al3xii118.940 (13)Al3xxiii—Al3—Al2xxxi104.78 (3)
Al3ix—Al1—Al3xii180.0Al3xxiv—Al3—Al2xxxi58.16 (2)
Mn1—Al1—Al3v61.060 (13)Al2xxix—Al3—Al2xxxi142.04 (2)
Mn1xxv—Al1—Al3v118.940 (13)Al2xxx—Al3—Al2xxxi88.772 (9)
Mn1xxvi—Al1—Al3v63.115 (9)Al3iv—Al3—Al2xxxi144.924 (10)
Mn1xi—Al1—Al3v116.885 (9)Ni2xxii—Al3—Al2xxxii106.471 (18)
Mn1x—Al1—Al3v116.884 (9)Mn1xxviii—Al3—Al2xxxii50.658 (11)
Mn1xxvii—Al1—Al3v63.116 (9)Al1xxviii—Al3—Al2xxxii99.196 (16)
Al3ix—Al1—Al3v63.214 (7)Mn1vi—Al3—Al2xxxii113.945 (17)
Al3xii—Al1—Al3v116.786 (7)Mn1ix—Al3—Al2xxxii153.83 (2)
Mn1—Al1—Al3xiii118.940 (13)Al3xxiii—Al3—Al2xxxii58.16 (2)
Mn1xxv—Al1—Al3xiii61.060 (13)Al3xxiv—Al3—Al2xxxii104.78 (3)
Mn1xxvi—Al1—Al3xiii116.885 (9)Al2xxix—Al3—Al2xxxii88.772 (9)
Mn1xi—Al1—Al3xiii63.115 (9)Al2xxx—Al3—Al2xxxii142.04 (2)
Mn1x—Al1—Al3xiii63.116 (9)Al3iv—Al3—Al2xxxii144.924 (10)
Mn1xxvii—Al1—Al3xiii116.884 (9)Al2xxxi—Al3—Al2xxxii57.59 (3)
Al3ix—Al1—Al3xiii116.786 (7)Al3xxxiii—Ni2—Al3xxx79.67 (3)
Al3xii—Al1—Al3xiii63.214 (7)Al3xxxiii—Ni2—Al3ix134.842 (9)
Al3v—Al1—Al3xiii180.000 (14)Al3xxx—Ni2—Al3ix83.37 (2)
Mn1—Al1—Al3vi63.116 (9)Al3xxxiii—Ni2—Al3xxxiv83.37 (2)
Mn1xxv—Al1—Al3vi116.884 (9)Al3xxx—Ni2—Al3xxxiv134.842 (9)
Mn1xxvi—Al1—Al3vi61.060 (13)Al3ix—Ni2—Al3xxxiv134.842 (9)
Mn1xi—Al1—Al3vi118.940 (13)Al3xxxiii—Ni2—Al3viii83.37 (2)
Mn1x—Al1—Al3vi63.115 (9)Al3xxx—Ni2—Al3viii134.842 (9)
Mn1xxvii—Al1—Al3vi116.885 (9)Al3ix—Ni2—Al3viii79.67 (3)
Al3ix—Al1—Al3vi116.786 (7)Al3xxxiv—Ni2—Al3viii83.37 (2)
Al3xii—Al1—Al3vi63.214 (7)Al3xxxiii—Ni2—Al3xxii134.842 (9)
Al3v—Al1—Al3vi63.214 (7)Al3xxx—Ni2—Al3xxii83.37 (2)
Al3xiii—Al1—Al3vi116.786 (7)Al3ix—Ni2—Al3xxii83.37 (2)
Mn1ii—Al2—Mn1i167.42 (4)Al3xxxiv—Ni2—Al3xxii79.67 (3)
Mn1ii—Al2—Ni2xiv96.289 (19)Al3viii—Ni2—Al3xxii134.842 (9)
Mn1i—Al2—Ni2xiv96.290 (19)Al3xxxiii—Ni2—Al2xxxv67.421 (5)
Mn1ii—Al2—Al3xv62.135 (13)Al3xxx—Ni2—Al2xxxv67.421 (5)
Mn1i—Al2—Al3xv127.69 (2)Al3ix—Ni2—Al2xxxv67.421 (5)
Ni2xiv—Al2—Al3xv48.892 (16)Al3xxxiv—Ni2—Al2xxxv140.167 (13)
Mn1ii—Al2—Al3xvi62.135 (13)Al3viii—Ni2—Al2xxxv67.421 (5)
Mn1i—Al2—Al3xvi127.69 (2)Al3xxii—Ni2—Al2xxxv140.167 (13)
Ni2xiv—Al2—Al3xvi48.892 (16)Al3xxxiii—Ni2—Al2xxxvi67.421 (5)
Al3xv—Al2—Al3xvi63.03 (2)Al3xxx—Ni2—Al2xxxvi67.421 (5)
Mn1ii—Al2—Al3xvii127.69 (2)Al3ix—Ni2—Al2xxxvi140.167 (13)
Mn1i—Al2—Al3xvii62.135 (13)Al3xxxiv—Ni2—Al2xxxvi67.421 (5)
Ni2xiv—Al2—Al3xvii48.893 (16)Al3viii—Ni2—Al2xxxvi140.167 (14)
Al3xv—Al2—Al3xvii65.73 (3)Al3xxii—Ni2—Al2xxxvi67.421 (5)
Al3xvi—Al2—Al3xvii97.79 (3)Al2xxxv—Ni2—Al2xxxvi120.0
Mn1ii—Al2—Al3xviii127.69 (2)Al3xxxiii—Ni2—Al2ii140.167 (13)
Mn1i—Al2—Al3xviii62.135 (13)Al3xxx—Ni2—Al2ii140.167 (13)
Ni2xiv—Al2—Al3xviii48.893 (16)Al3ix—Ni2—Al2ii67.421 (5)
Al3xv—Al2—Al3xviii97.79 (3)Al3xxxiv—Ni2—Al2ii67.421 (5)
Al3xvi—Al2—Al3xviii65.73 (3)Al3viii—Ni2—Al2ii67.421 (5)
Al3xvii—Al2—Al3xviii63.03 (2)Al3xxii—Ni2—Al2ii67.421 (5)
Mn1ii—Al2—Al2i53.710 (19)Al2xxxv—Ni2—Al2ii120.0
Mn1i—Al2—Al2i113.711 (19)Al2xxxvi—Ni2—Al2ii120.0
Ni2xiv—Al2—Al2i150.0
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) x, y, z+1/2; (iv) x, y, z+3/2; (v) x, y, z1; (vi) xy, x, z+1; (vii) xy, x, z1/2; (viii) y, x+y, z1/2; (ix) y, x+y, z+1; (x) y, xy, z; (xi) x+y, x, z; (xii) y, xy, z1; (xiii) x, y, z+1; (xiv) x, y+1, z; (xv) y, x+y+1, z1/2; (xvi) y, x+y+1, z+1; (xvii) xy+1, x+1, z1/2; (xviii) xy+1, x+1, z+1; (xix) x+y, x+1, z1; (xx) x+y, x+1, z+3/2; (xxi) y+1, xy+1, z+3/2; (xxii) x+1, y+1, z+1; (xxiii) xy, x, z+2; (xxiv) y, x+y, z+2; (xxv) x, y, z; (xxvi) xy, x, z; (xxvii) y, x+y, z; (xxviii) x, y, z+1; (xxix) y1, x+y, z+1; (xxx) xy+1, x, z+1; (xxxi) x+y, x+1, z+1; (xxxii) y+1, xy+1, z+1; (xxxiii) xy+1, x, z1/2; (xxxiv) x+1, y+1, z1/2; (xxxv) x, y1, z; (xxxvi) y+2, xy+1, z.
 

Acknowledgements

We are indebted to the referee for insightful remarks.

Funding information

Funding for this research was provided by: Research Foundation of Education Bureau of Hebei Province (grant No. ZD2018069); The National Natural Science Foundation of China (grant No. 51771165).

References

First citationBalanetskyy, S., Meisterernst, G., Grushko, B. & Feuerbacher, M. (2011). J. Alloys Compd, 509, 3795–3805.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNewkirk, J. B., Black, P. J. & Damjanovic, A. (1961). Acta Cryst. 14, 532–533.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaylor, M. A. (1959). Acta Cryst. 12, 393–396.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationTendeloo, G. V., Landuyt, J. V., Amelinckx, S. & Ranganathan, S. (1988). J. Microsc. 149, 1–19.  CrossRef Google Scholar
First citationWang, S., Liu, C. & Fan, C. (2018). IUCrData, 3, x180237.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds