metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­ammonium μ-ethyl­enedi­amine­tetra­acetato-1κ3O,N,O′:2κ3O′′,N′,O′′′-bis­­[trioxidotungstate(VI)] tetra­hydrate

crossmark logo

aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
*Correspondence e-mail: lamine.yaffa@ucad.edu.sn

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 25 August 2021; accepted 21 September 2021; online 28 September 2021)

The title compound, (NH4)4[W2(C10H12N2O8)O6]·4H2O, was obtained from a mixture of tungstic acid, ammonia and ethyl­enedi­amine­tetra­acetic acid (H4edta) in a 2:4:1 ratio. The anion of the complex contains two WO3 units and one bridging edta4− ligand. Each central metal atom is tridentately coordinated by nitro­gen and two carboxyl­ate groups of the edta4− ligand, together with the three oxido ligands, producing a distorted octa­hedral coordination environment around each tungsten atom. The center of the carbon–carbon bond of the ethyl­ene bridge represents a crystallographic inversion center. The crystal structure consists of a three-dimensional supra­molecular framework built up by the dinuclear cations, the ammonium counter-ions and the solvent water mol­ecules via hydrogen bonds of the N—H⋯O and O—H⋯O type.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Research on inorganic–organic framework materials is one of the fastest growing areas in materials chemistry because of their unique hybrid nature, which enables the combination of properties from both inorganic and organic materials (Cheetham & Rao, 2007[Cheetham, A. K. & Rao, C. N. R. (2007). Science, 318, 58-59.]). As organic ligands, polycarboxyl­ates are multidentate chelating agents that are widespread in nature and industry because of their ability to coordinate with various transition metals in different ratios (Nicolau & Guy, 1995[Nicolaou, K. C. & Guy, R. K. (1995). Angew. Chem. Int. Ed. Engl. 34, 2079-2090.]; Langer, 2000[Langer, R. (2000). Acc. Chem. Res. 33, 94-101.]).

As a part of this field, molybdenum polycarboxyl­ate complexes have thus been thoroughly investigated over the past three decades (Lee & Holm, 2004[Lee, S. C. & Holm, R. H. (2004). Chem. Rev. 104, 1135-1158.]). Some well-characterized mono-, bi- and polynuclear molybdenum and tungsten complexes have been reported, for example Mo2(O2CCH2OH)4, M2[MoO3(C2O4)] (M = Na, K, Rb, Cs), Na2[MO2(C6H6O7)2]·3H2O (M = Mo, W) (Cotton et al., 2002[Cotton, F. A., Barnard, T. S., Daniels, L. M. & Murillo, C. A. (2002). Inorg. Chem. Commun. 5, 527-532.]; Cindríc et al., 2000[Cindrić, M., Strukan, N., Vrdoljak, V., Devčić, M., Veksli, Z. & Kamenar, B. (2000). Inorg. Chim. Acta, 304, 260-267.]; Zhou et al., 1999[Zhou, Z. H., Wan, H. L. & Tsai, K. R. (1999). J. Chem. Soc. Dalton Trans. pp. 4289-4290.]). Structural analyses of WVI–edta complexes are rare in the literature. Together with the structure of Na2K2[Mo2O6(edta)]·10H2O, the structure of Na4[W2O6(edta)]·8H2O has been published (Lin et al., 2006[Lin, H. B., Chen, C. Y., Liao, X. L., Lin, T. R. & Zhou, Z. H. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 411-414.]).

Nevertheless, tungsten has been reported to incorporate into several enzymes (Johnson et al., 1996[Johnson, M. K., Rees, D. C. & Adams, M. W. W. (1996). Chem. Rev. 96, 2817-2840.]). In fact, tungsten could be a useful probe for the active site of molybdenum enzymes. As a consequence, more effort has been put into tungsten chemistry by inorganic and bioinorganic chemists (Bagno & Bonchio, 2000[Bagno, A. & Bonchio, M. (2000). Chem. Phys. Lett. 317, 123-128.]; Enemark et al., 2004[Enemark, J. H., Cooney, J. J. A., Wang, J. J. & Holm, R. H. (2004). Chem. Rev. 104, 1175-1200.]; Sung & Holm, 2001[Sung, K. M. & Holm, R. H. (2001). Inorg. Chem. 40, 4518-4525.]; Zhou et al., 2004[Zhou, Z.-H., Hou, S. Y., Cao, Z.-X., Wan, H. L. & Ng, S. W. (2004). J. Inorg. Biochem. 98, 1037-1044.]).

In this study, the reaction of H4edta with tungstic acid has been investigated and a new binuclear 2:1 W–edta complex, (NH4)4[W2(C10H12N2O8)O6]·4H2O, was isolated and structurally characterized.

As shown in Fig. 1[link], the dinuclear anion of the title compound shows one edta4− ligand bonded to two tungstate WO3 units. Each W atom is six-coordinate in a distorted octa­hedral environment built up by the tridentate facial coordination of one N and two O atoms of the edta4− ligand as well as by three oxido ligands. The edta4− ligand itself therefore acts as a bridge between the two WO3 units, with the central carbon–carbon bond also representing a crystallographic center of inversion. The anion is accompanied by four ammonium cations and four solvent water mol­ecules.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

The three terminal oxido ligands bonded to the metal, i.e. W=Ot (Ot = O3, O6, O8) show bond lengths in a range 1.753 (2) to 1.759 (2) Å. The resulting Ot—W—Ot bond angles [105.05 (9), 105.14 (9), 103.12 (10)°] are considerably larger than 90° expected for a regular octa­hedron. Bond distances of the oxygen atoms of edta4− to W are 2.135 (2) and 2.159 (2) Å, respectively and therefore significantly longer than the W=Ot bonds.

In the crystal structure, the complex anion, ammonium cations and solvent water mol­ecules inter­act through medium–strong classical hydrogen bonds (Table 1[link]). Two neighboring complexes are connected via hydrogen bonds of the N—H⋯Ow—H⋯O, N—H⋯O and Ow—H⋯O types. These inter­actions lead to the supra­molacular structure shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 0.87 1.88 2.743 (3) 171
O2—H2B⋯O5i 0.87 1.90 2.763 (3) 170
O1—H1A⋯O7 0.87 2.72 3.468 (3) 145
O1—H1A⋯O4 0.87 2.06 2.900 (3) 161
O1—H1B⋯O2ii 0.87 2.49 3.177 (3) 137
N10—H10A⋯O6 0.95 (4) 1.78 (4) 2.727 (3) 175 (3)
N10—H10B⋯O4iii 0.81 (4) 2.20 (4) 2.996 (3) 168 (3)
N10—H10C⋯O7iv 0.90 (4) 2.01 (4) 2.876 (3) 160 (3)
N10—H10D⋯O8v 0.87 (4) 1.87 (4) 2.736 (3) 175 (4)
N11—H11A⋯O8 0.87 (5) 2.13 (5) 2.947 (3) 156 (4)
N11—H11B⋯O3vi 0.84 (5) 2.31 (5) 3.109 (3) 160 (4)
N11—H11C⋯O1vi 0.83 (4) 2.25 (4) 2.979 (4) 147 (4)
N11—H11D⋯O2vii 0.92 (4) 1.93 (4) 2.846 (4) 173 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, y, z]; (iii) [-x+1, -y+2, -z]; (iv) [-x, -y+2, -z]; (v) [-x+1, -y+1, -z]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x, y-1, z].
[Figure 2]
Figure 2
Supra­molecular arrangement of the title compound established by classical hydrogen-bonding inter­actions (dashed lines).

Synthesis and crystallization

Tungstic acid (4 mmol, 0.999 g) and ammonia solution (8 mmol, 1.001 g) were mixed in 30 ml of water to solubilize the WVI source. To this mixture was slowly added ethyl­enediammine-tetra­acetic acid (H4edta) (2 mmol, 0.584 g) under vigorous stirring. The solution was then stirred for two h at room temperature. The colorless solution thus obtained was left at room temperature for slow evaporation of water. After two weeks, colorless crystals (yield 11.6% based on W) were obtained from the solution.

The FT–infrared spectra of the title compound shows well-resolved absorption bands for the carboxyl­ate of the coord­inating edta4− at 1651 cm−1 and 1402 cm−1, which are attributed to the anti­symmetric and symmetric stretching vibrations ν(COO–). The bands at 926, 857 and 666 cm−1 can be attributed to symmetric and asymmetric W=Ot stretching vibrations (Lin et al., 2006[Lin, H. B., Chen, C. Y., Liao, X. L., Lin, T. R. & Zhou, Z. H. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 411-414.]; Li et al., 2007[Li, D.-M., Cui, L.-F., Xing, Y.-H., Xu, J.-Q., Yu, J.-H., Wang, T., Jia, H. & Hu, N. (2007). J. Mol. Struct. 832, 138-145.]). The range of 3500–2800 cm−1 shows many bands ascribed to O—H stretching of water mol­ecules, as well as N—H stretching vibrations of ammonium cations (Yaffa et al., 2020[Yaffa, L., Kama, A. B., Sall, M. L., Diop, C. A. K., Sidibé, M., Giorgi, M., Diop, M. & Gautier, R. (2020). Polyhedron, 191, 1-6.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (NH4)4[W2(C10H12N2O8)O6]·4H2O
Mr 896.15
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 6.8017 (5), 7.7194 (5), 23.9807 (19)
β (°) 95.345 (3)
V3) 1253.63 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 9.26
Crystal size (mm) 0.18 × 0.18 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.444, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 55419, 2890, 2703
Rint 0.053
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.034, 1.07
No. of reflections 2890
No. of parameters 201
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.71, −0.85
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tetraammonium µ-ethylenediaminetetraacetato-1κ3O,N,O':2κ3O'',N',O'''-bis[trioxidotungstate(VI)] tetrahydrate top
Crystal data top
(NH4)4[W2(C10H12N2O8)O6]·4H2OF(000) = 860
Mr = 896.15Dx = 2.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.8017 (5) ÅCell parameters from 9817 reflections
b = 7.7194 (5) Åθ = 2.8–27.6°
c = 23.9807 (19) ŵ = 9.26 mm1
β = 95.345 (3)°T = 150 K
V = 1253.63 (16) Å3Block, colourless
Z = 20.18 × 0.18 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2703 reflections with I > 2σ(I)
φ and ω scansRint = 0.053
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.6°, θmin = 2.8°
Tmin = 0.444, Tmax = 0.746h = 88
55419 measured reflectionsk = 1010
2890 independent reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.014H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0138P)2 + 1.4846P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
2890 reflectionsΔρmax = 0.71 e Å3
201 parametersΔρmin = 0.85 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms bonded to carbon and oxygen were placed in idealized positions and refined using a riding model with isotropic displacement parameters calculated as Uiso(H) = 1.2Ueq(C) for ethylene and methylene hydrogen atoms and Uiso(H) = 1.5Ueq(O) for solvent water molecules. Hydrogen atoms of the ammonium cations were located in the difference-Fourier map and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.40177 (2)0.69956 (2)0.10889 (2)0.01546 (4)
O60.4717 (3)0.7513 (3)0.04235 (8)0.0290 (4)
O30.5793 (3)0.7989 (2)0.15614 (9)0.0270 (4)
O90.2095 (3)0.6721 (2)0.17381 (8)0.0237 (4)
N40.0791 (3)0.6278 (2)0.06743 (8)0.0143 (4)
O80.4519 (3)0.4764 (2)0.11461 (8)0.0276 (4)
O50.0230 (3)0.5116 (3)0.20717 (8)0.0351 (5)
C70.0056 (4)0.5133 (3)0.10897 (10)0.0192 (5)
H7A0.03660.39240.10330.023*
H7B0.15150.51730.10310.023*
C110.0609 (4)0.5690 (3)0.16809 (11)0.0200 (5)
C120.0980 (4)0.5353 (3)0.01373 (11)0.0190 (5)
H12A0.19150.43780.02080.023*
H12B0.15460.61570.01270.023*
O70.0275 (3)1.0904 (2)0.07169 (9)0.0280 (4)
O40.2366 (3)0.9388 (2)0.10315 (9)0.0253 (4)
C10.0597 (4)0.9519 (3)0.07921 (11)0.0183 (5)
C80.0402 (4)0.7886 (3)0.05795 (12)0.0219 (5)
H8A0.16390.77480.07620.026*
H8B0.07690.80120.01720.026*
N100.4415 (4)0.8304 (3)0.06894 (11)0.0225 (5)
O20.7912 (3)1.0837 (3)0.19478 (9)0.0357 (5)
H2A0.71480.99660.18470.054*
H2B0.85841.04920.22540.054*
O10.2481 (3)1.1729 (3)0.19796 (10)0.0367 (5)
H1A0.22431.11960.16610.055*
H1B0.13221.20360.20700.055*
N110.5898 (4)0.3808 (4)0.23069 (12)0.0262 (5)
H10A0.456 (5)0.808 (4)0.0300 (16)0.032 (9)*
H10B0.521 (5)0.904 (5)0.0757 (14)0.034 (9)*
H10C0.316 (6)0.864 (5)0.0785 (16)0.045 (10)*
H10D0.471 (6)0.735 (5)0.0853 (17)0.046 (11)*
H11A0.515 (6)0.409 (6)0.2004 (19)0.060 (13)*
H11B0.517 (7)0.355 (6)0.256 (2)0.069 (14)*
H11C0.662 (6)0.466 (6)0.2389 (17)0.054 (12)*
H11D0.663 (6)0.288 (5)0.2208 (17)0.047 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01185 (5)0.01695 (6)0.01687 (6)0.00047 (3)0.00242 (4)0.00027 (4)
O60.0201 (10)0.0457 (11)0.0211 (10)0.0102 (9)0.0011 (8)0.0012 (9)
O30.0216 (10)0.0330 (11)0.0253 (10)0.0030 (8)0.0044 (8)0.0031 (8)
O90.0244 (10)0.0285 (10)0.0182 (9)0.0082 (8)0.0019 (8)0.0016 (7)
N40.0136 (9)0.0125 (9)0.0161 (10)0.0008 (7)0.0026 (8)0.0005 (8)
O80.0255 (10)0.0208 (9)0.0344 (11)0.0069 (8)0.0087 (8)0.0021 (8)
O50.0297 (11)0.0522 (13)0.0233 (10)0.0139 (10)0.0015 (8)0.0115 (10)
C70.0173 (12)0.0174 (12)0.0225 (13)0.0051 (9)0.0006 (10)0.0026 (10)
C110.0174 (12)0.0193 (12)0.0227 (13)0.0011 (9)0.0011 (10)0.0044 (10)
C120.0165 (12)0.0215 (12)0.0186 (12)0.0022 (9)0.0010 (10)0.0051 (10)
O70.0256 (10)0.0166 (9)0.0411 (12)0.0055 (8)0.0012 (8)0.0011 (8)
O40.0190 (9)0.0153 (9)0.0396 (12)0.0016 (7)0.0083 (8)0.0005 (8)
C10.0169 (12)0.0176 (12)0.0202 (13)0.0004 (9)0.0013 (9)0.0015 (9)
C80.0177 (12)0.0142 (12)0.0320 (15)0.0019 (9)0.0070 (11)0.0018 (10)
N100.0215 (12)0.0178 (11)0.0279 (14)0.0025 (9)0.0010 (10)0.0034 (10)
O20.0462 (13)0.0282 (11)0.0316 (12)0.0025 (10)0.0022 (10)0.0008 (9)
O10.0333 (12)0.0386 (12)0.0377 (13)0.0046 (10)0.0013 (10)0.0024 (10)
N110.0272 (13)0.0256 (13)0.0254 (13)0.0032 (11)0.0000 (11)0.0033 (11)
Geometric parameters (Å, º) top
W1—O61.7529 (19)O7—C11.228 (3)
W1—O31.7534 (19)O4—C11.288 (3)
W1—O92.1350 (19)C1—C81.499 (3)
W1—N42.3884 (19)C8—H8A0.9900
W1—O81.7590 (19)C8—H8B0.9900
W1—O42.1590 (17)N10—H10A0.95 (4)
O9—C111.284 (3)N10—H10B0.81 (4)
N4—C71.487 (3)N10—H10C0.90 (4)
N4—C121.488 (3)N10—H10D0.87 (4)
N4—C81.489 (3)O2—H2A0.8701
O5—C111.225 (3)O2—H2B0.8698
C7—H7A0.9900O1—H1A0.8701
C7—H7B0.9900O1—H1B0.8698
C7—C111.510 (4)N11—H11A0.87 (5)
C12—C12i1.531 (5)N11—H11B0.84 (5)
C12—H12A0.9900N11—H11C0.83 (4)
C12—H12B0.9900N11—H11D0.92 (4)
O6—W1—O3105.05 (9)N4—C12—C12i113.7 (3)
O6—W1—O9157.36 (9)N4—C12—H12A108.8
O6—W1—N489.46 (8)N4—C12—H12B108.8
O6—W1—O8103.12 (10)C12i—C12—H12A108.8
O6—W1—O486.03 (9)C12i—C12—H12B108.8
O3—W1—O990.22 (8)H12A—C12—H12B107.7
O3—W1—N4157.08 (8)C1—O4—W1123.67 (15)
O3—W1—O8105.14 (9)O7—C1—O4123.5 (2)
O3—W1—O489.42 (8)O7—C1—C8119.0 (2)
O9—W1—N471.28 (7)O4—C1—C8117.4 (2)
O9—W1—O477.36 (8)N4—C8—C1115.2 (2)
O8—W1—O988.46 (8)N4—C8—H8A108.5
O8—W1—N488.23 (8)N4—C8—H8B108.5
O8—W1—O4159.79 (8)C1—C8—H8A108.5
O4—W1—N473.71 (7)C1—C8—H8B108.5
C11—O9—W1120.89 (17)H8A—C8—H8B107.5
C7—N4—W1104.91 (14)H10A—N10—H10B108 (3)
C7—N4—C12111.36 (19)H10A—N10—H10C108 (3)
C7—N4—C8110.97 (19)H10A—N10—H10D106 (3)
C12—N4—W1108.76 (14)H10B—N10—H10C112 (3)
C12—N4—C8110.94 (19)H10B—N10—H10D108 (4)
C8—N4—W1109.70 (14)H10C—N10—H10D113 (4)
N4—C7—H7A109.4H2A—O2—H2B104.5
N4—C7—H7B109.4H1A—O1—H1B104.5
N4—C7—C11111.03 (19)H11A—N11—H11B109 (4)
H7A—C7—H7B108.0H11A—N11—H11C106 (4)
C11—C7—H7A109.4H11A—N11—H11D106 (4)
C11—C7—H7B109.4H11B—N11—H11C113 (4)
O9—C11—C7116.1 (2)H11B—N11—H11D112 (4)
O5—C11—O9124.1 (3)H11C—N11—H11D111 (4)
O5—C11—C7119.7 (2)
W1—O9—C11—O5159.8 (2)C7—N4—C12—C12i58.5 (3)
W1—O9—C11—C718.0 (3)C7—N4—C8—C1111.6 (2)
W1—N4—C7—C1135.7 (2)C12—N4—C7—C11153.2 (2)
W1—N4—C12—C12i173.6 (2)C12—N4—C8—C1124.0 (2)
W1—N4—C8—C13.8 (3)O7—C1—C8—N4178.2 (2)
W1—O4—C1—O7173.4 (2)O4—C1—C8—N40.2 (4)
W1—O4—C1—C84.4 (3)C8—N4—C7—C1182.7 (2)
N4—C7—C11—O916.0 (3)C8—N4—C12—C12i65.6 (3)
N4—C7—C11—O5166.0 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O7ii0.992.483.384 (3)152
C12—H12B···O7iii0.992.773.548 (3)136
C8—H8A···O6iv0.992.543.319 (3)135
C8—H8B···O7iii0.992.463.319 (4)145
O2—H2A···O30.871.882.743 (3)171
O2—H2B···O5v0.871.902.763 (3)170
O1—H1A···O70.872.723.468 (3)145
O1—H1A···O40.872.062.900 (3)161
O1—H1B···O2iv0.872.493.177 (3)137
N10—H10A···O60.95 (4)1.78 (4)2.727 (3)175 (3)
N10—H10B···O4vi0.81 (4)2.20 (4)2.996 (3)168 (3)
N10—H10C···O7iii0.90 (4)2.01 (4)2.876 (3)160 (3)
N10—H10D···O8vii0.87 (4)1.87 (4)2.736 (3)175 (4)
N11—H11A···O80.87 (5)2.13 (5)2.947 (3)156 (4)
N11—H11B···O3viii0.84 (5)2.31 (5)3.109 (3)160 (4)
N11—H11C···O1viii0.83 (4)2.25 (4)2.979 (4)147 (4)
N11—H11D···O2ii0.92 (4)1.93 (4)2.846 (4)173 (4)
Symmetry codes: (ii) x, y1, z; (iii) x, y+2, z; (iv) x1, y, z; (v) x+1, y+1/2, z+1/2; (vi) x+1, y+2, z; (vii) x+1, y+1, z; (viii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Institute of Inorganic Chemistry I, Ulm University and the Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Albert-Einstein-Allee 11, 89081 Ulm, Germany, for financial support and instrumentation use.

References

First citationBagno, A. & Bonchio, M. (2000). Chem. Phys. Lett. 317, 123–128.  CrossRef CAS Google Scholar
First citationBruker (2016). Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K. & Rao, C. N. R. (2007). Science, 318, 58–59.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCindrić, M., Strukan, N., Vrdoljak, V., Devčić, M., Veksli, Z. & Kamenar, B. (2000). Inorg. Chim. Acta, 304, 260–267.  Web of Science CSD CrossRef CAS Google Scholar
First citationCotton, F. A., Barnard, T. S., Daniels, L. M. & Murillo, C. A. (2002). Inorg. Chem. Commun. 5, 527–532.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnemark, J. H., Cooney, J. J. A., Wang, J. J. & Holm, R. H. (2004). Chem. Rev. 104, 1175–1200.  CrossRef PubMed CAS Google Scholar
First citationJohnson, M. K., Rees, D. C. & Adams, M. W. W. (1996). Chem. Rev. 96, 2817–2840.  CrossRef PubMed CAS Google Scholar
First citationLanger, R. (2000). Acc. Chem. Res. 33, 94–101.  CrossRef PubMed CAS Google Scholar
First citationLee, S. C. & Holm, R. H. (2004). Chem. Rev. 104, 1135–1158.  CrossRef PubMed CAS Google Scholar
First citationLi, D.-M., Cui, L.-F., Xing, Y.-H., Xu, J.-Q., Yu, J.-H., Wang, T., Jia, H. & Hu, N. (2007). J. Mol. Struct. 832, 138–145.  CSD CrossRef CAS Google Scholar
First citationLin, H. B., Chen, C. Y., Liao, X. L., Lin, T. R. & Zhou, Z. H. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 411–414.  CSD CrossRef CAS Google Scholar
First citationNicolaou, K. C. & Guy, R. K. (1995). Angew. Chem. Int. Ed. Engl. 34, 2079–2090.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSung, K. M. & Holm, R. H. (2001). Inorg. Chem. 40, 4518–4525.  CSD CrossRef PubMed CAS Google Scholar
First citationYaffa, L., Kama, A. B., Sall, M. L., Diop, C. A. K., Sidibé, M., Giorgi, M., Diop, M. & Gautier, R. (2020). Polyhedron, 191, 1–6.  CSD CrossRef Google Scholar
First citationZhou, Z.-H., Hou, S. Y., Cao, Z.-X., Wan, H. L. & Ng, S. W. (2004). J. Inorg. Biochem. 98, 1037–1044.  CSD CrossRef PubMed CAS Google Scholar
First citationZhou, Z. H., Wan, H. L. & Tsai, K. R. (1999). J. Chem. Soc. Dalton Trans. pp. 4289–4290.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds