organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-[(E)-({2,4-dimeth­­oxy-6-[2-(4-meth­­oxy­phen­yl)ethen­yl]benzyl­­idene}amino)­­oxy]acetate

crossmark logo

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dddklab@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 September 2021; accepted 13 September 2021; online 17 September 2021)

In the title compound, C22H25NO6, the C=C double bond linking the benzene rings adopts an E configuration and the dihedral angle between the rings is 47.1 (2)°. The oxime unit contains a C=N double bond, which also has an E configuration. In the crystal, pairs of C—H⋯N hydrogen bonds generate inversion dimers and weak C—H⋯O inter­actions link the dimers into chains propagating along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A recent review has demonstrated that chemically modified resveratrol derivatives have diverse biological activities (Li et al., 2019[Li, Q. -S., Li, Y., Deora, G. S. & Ruan, B. F. (2019). Mini Rev. Med. Chem. 19, 809-825.]). Oxime esters are one of the most important pharmacophores in a large number of bioactive compounds (Vessally et al., 2016[Vessally, E., Saeidian, H., Hosseinian, A., Edjlali, L. & Bekhradnia, A. A. (2016). Curr. Org. Chem. 21, 249-271.]). As part of our studies in this area, O-methyl­ated resveralol aldehyde (Ge et al., 2013[Ge, X.-L., Guan, Q.-X., Deng, S.-S. & Ruan, B.-F. (2013). Acta Cryst. E69, o629.]) was treated with hydroxyl­amine to give the corresponding oxime analogue, which was reacted with ethyl bromo­acetate to provide the title resveratrol-oxime ester compound.

The mol­ecular structure of the title compound, C22H25NO6, is shown in Fig. 1[link]. The benzene rings (C1–C6 and C10–C15) are connected by the C8=C9 double bond, which has an E-configuration [torsion angle of 173.69 (12)° for C3—C8—C9—C10]. The dihedral angle formed by benzene rings is 47.1 (2)°. The C17=N1 imine double bond in the oxime unit also adopts an E configuration, which is defined by a torsion angle of 178.3 (1)° for C4—C17—N1—O3. There are three meth­oxy groups attached to carbon atoms C1, C5 and C13 in the benzene rings: those at the meta positions (C1, C5) are essentially co-planar with their attached benzene rings [C6—C1—O1—C7 = −0.2 (2)° and C6—C5—O6—C22 = 3.9 (2)°] whereas the meth­oxy group at the para position (C13) is slightly twisted from the corresponding ring plane [C12—C13—O2—C16 = 8.9 (2)°]. In the crystal, pairs of C22—H22⋯N1 hydrogen bonds generate inversion dimers (Table 1[link], Fig. 2[link]) and the C14—H14⋯O5 hydrogen bond links the dimers into chains propagating along the b-axis direction (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22C⋯N1i 0.98 2.61 3.5633 (19) 166
C14—H14⋯O5ii 0.95 2.55 3.4834 (16) 166
Symmetry codes: (i) [-x+1, -y, -z+2]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
A view of the inversion dimer formed by a pair of C—H⋯N hydrogen bonds (dashed lines) in the crystal structure of the title compound, generating an R22(14) loop. For clarity, only those H atoms involved in hydrogen bonding are shown.
[Figure 3]
Figure 3
Part of the crystal structure showing C—H⋯O hydrogen bonds as orange dashed lines. For clarity, only those H atoms involved in hydrogen bonding are shown.

Synthesis and crystallization

A mixture of E-2,4-dimeth­oxy-6-(4-meth­oxy­styr­yl)benz­aldehyde (298 mg, 1 mmol; Ge et al., 2013[Ge, X.-L., Guan, Q.-X., Deng, S.-S. & Ruan, B.-F. (2013). Acta Cryst. E69, o629.]) and hydroxyl­amine hydro­chloride (69 mg, 1 mmol) in 15 ml of ethanol–water (1:1) was refluxed for 4 h. After completion of reaction, the mixture was cooled to room temperature to give the corresponding oxime derivative (86%, m.p. = 150–152°C), which was used for the next reaction. To a mixture of the oxime derivative (156 mg, 0.5 mmol) and potassium carbonate (276 mg, 2 mmol) in 10 ml of DMF, 1.2 equivalents of ethyl bromo­acetate (100 mg, 0.6 mmol) were added and heated for 5 h at 60°C. After completion of the reaction, the reaction mixture was poured into crushed ice–water to form a precipitate. The resulting solid was separated by filtration and was washed with ethyl acetate. Recrystallization of the solid from ethyl acetate solution gave colourless blocks of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H25NO6
Mr 399.43
Crystal system, space group Monoclinic, P21/n
Temperature (K) 193
a, b, c (Å) 11.3656 (9), 7.0636 (5), 26.035 (2)
β (°) 100.148 (3)
V3) 2057.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.36 × 0.19 × 0.10
 
Data collection
Diffractometer PHOTON 100 CMOS
No. of measured, independent and observed [I > 2σ(I)] reflections 72604, 5157, 4367
Rint 0.052
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.06
No. of reflections 5157
No. of parameters 266
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Ethyl 2-[(E)-({2,4-dimethoxy-6-[2-(4-methoxyphenyl)ethenyl]\ benzylidene}amino)oxy]acetate top
Crystal data top
C22H25NO6F(000) = 848
Mr = 399.43Dx = 1.290 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9916 reflections
a = 11.3656 (9) Åθ = 2.4–28.2°
b = 7.0636 (5) ŵ = 0.09 mm1
c = 26.035 (2) ÅT = 193 K
β = 100.148 (3)°Block, colourless
V = 2057.4 (3) Å30.36 × 0.19 × 0.10 mm
Z = 4
Data collection top
PHOTON 100 CMOS
diffractometer
4367 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 28.4°, θmin = 2.1°
φ and ω scansh = 1515
72604 measured reflectionsk = 99
5157 independent reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.781P]
where P = (Fo2 + 2Fc2)/3
5157 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24155 (11)0.2768 (2)0.96981 (5)0.0339 (3)
C20.27638 (11)0.2914 (2)0.92163 (5)0.0330 (3)
H20.21750.30460.89110.040*
C30.39681 (11)0.28708 (17)0.91753 (5)0.0289 (2)
C40.48435 (11)0.26856 (17)0.96321 (5)0.0277 (2)
C50.44554 (11)0.25016 (17)1.01146 (5)0.0292 (3)
C60.32511 (12)0.25393 (19)1.01513 (5)0.0331 (3)
H60.30050.24111.04800.040*
O10.12111 (9)0.28900 (18)0.96906 (4)0.0448 (3)
C70.08045 (14)0.2768 (3)1.01766 (7)0.0531 (4)
H7A0.10010.15171.03310.080*
H7B0.00630.29541.01200.080*
H7C0.11960.37481.04130.080*
C80.42894 (11)0.31089 (18)0.86556 (5)0.0300 (3)
H80.50160.37410.86330.036*
C90.36217 (12)0.24905 (18)0.82140 (5)0.0318 (3)
H90.29420.17490.82470.038*
C100.38336 (11)0.28418 (17)0.76843 (5)0.0286 (2)
C110.31500 (12)0.18938 (19)0.72667 (5)0.0345 (3)
H110.25840.09800.73350.041*
C120.32681 (12)0.2241 (2)0.67544 (5)0.0349 (3)
H120.28000.15550.64780.042*
C130.40742 (11)0.35951 (19)0.66487 (5)0.0316 (3)
C140.47781 (12)0.4548 (2)0.70595 (5)0.0353 (3)
H140.53410.54650.69890.042*
C150.46637 (11)0.41688 (19)0.75671 (5)0.0326 (3)
H150.51580.48200.78430.039*
O20.42356 (9)0.40901 (17)0.61580 (4)0.0428 (3)
C160.34007 (14)0.3337 (2)0.57350 (5)0.0425 (3)
H16A0.34870.19580.57260.064*
H16B0.35540.38770.54060.064*
H16C0.25870.36580.57810.064*
C170.61356 (11)0.27478 (18)0.96420 (5)0.0303 (3)
H170.66430.31040.99570.036*
N10.66105 (10)0.23457 (17)0.92473 (5)0.0345 (3)
O30.78758 (8)0.25945 (16)0.93779 (4)0.0390 (2)
C180.83580 (12)0.2301 (2)0.89191 (5)0.0375 (3)
H18A0.80350.11060.87520.045*
H18B0.92360.21640.90140.045*
C190.80732 (11)0.3908 (2)0.85321 (5)0.0339 (3)
O40.75832 (12)0.53568 (17)0.86054 (4)0.0531 (3)
O50.84641 (9)0.34797 (14)0.80913 (4)0.0372 (2)
C200.83492 (14)0.4957 (2)0.76952 (6)0.0411 (3)
H20A0.87640.61190.78420.049*
H20B0.74960.52630.75740.049*
C210.88974 (16)0.4244 (2)0.72495 (6)0.0469 (4)
H21A0.97240.38520.73790.070*
H21B0.88900.52530.69910.070*
H21C0.84370.31590.70870.070*
O60.53333 (8)0.22915 (15)1.05405 (4)0.0364 (2)
C220.49803 (13)0.1985 (2)1.10347 (5)0.0378 (3)
H22A0.44970.30571.11160.057*
H22B0.56930.18681.13060.057*
H22C0.45080.08191.10210.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0266 (6)0.0382 (7)0.0379 (7)0.0006 (5)0.0081 (5)0.0013 (5)
C20.0281 (6)0.0381 (7)0.0321 (6)0.0002 (5)0.0032 (5)0.0024 (5)
C30.0298 (6)0.0278 (6)0.0294 (6)0.0010 (4)0.0064 (5)0.0012 (4)
C40.0272 (6)0.0263 (5)0.0301 (6)0.0011 (4)0.0064 (5)0.0013 (4)
C50.0289 (6)0.0291 (6)0.0292 (6)0.0016 (5)0.0043 (5)0.0006 (4)
C60.0322 (6)0.0374 (7)0.0311 (6)0.0022 (5)0.0094 (5)0.0001 (5)
O10.0264 (5)0.0684 (7)0.0408 (6)0.0001 (5)0.0090 (4)0.0012 (5)
C70.0330 (7)0.0821 (13)0.0477 (9)0.0010 (7)0.0162 (6)0.0021 (8)
C80.0271 (6)0.0304 (6)0.0326 (6)0.0004 (5)0.0061 (5)0.0048 (5)
C90.0303 (6)0.0316 (6)0.0341 (6)0.0029 (5)0.0074 (5)0.0039 (5)
C100.0268 (6)0.0281 (6)0.0309 (6)0.0015 (4)0.0045 (5)0.0018 (5)
C110.0333 (6)0.0345 (6)0.0358 (7)0.0100 (5)0.0061 (5)0.0003 (5)
C120.0334 (6)0.0379 (7)0.0321 (6)0.0081 (5)0.0022 (5)0.0044 (5)
C130.0273 (6)0.0373 (7)0.0304 (6)0.0002 (5)0.0057 (5)0.0016 (5)
C140.0312 (6)0.0397 (7)0.0350 (6)0.0109 (5)0.0054 (5)0.0017 (5)
C150.0297 (6)0.0348 (6)0.0322 (6)0.0067 (5)0.0019 (5)0.0017 (5)
O20.0401 (5)0.0590 (7)0.0291 (5)0.0104 (5)0.0056 (4)0.0025 (4)
C160.0421 (8)0.0555 (9)0.0295 (6)0.0012 (7)0.0051 (5)0.0033 (6)
C170.0284 (6)0.0322 (6)0.0300 (6)0.0013 (5)0.0047 (5)0.0033 (5)
N10.0249 (5)0.0428 (6)0.0359 (6)0.0018 (4)0.0051 (4)0.0024 (5)
O30.0242 (4)0.0627 (7)0.0298 (5)0.0004 (4)0.0043 (4)0.0036 (4)
C180.0289 (6)0.0509 (8)0.0338 (7)0.0070 (6)0.0088 (5)0.0046 (6)
C190.0295 (6)0.0409 (7)0.0321 (6)0.0007 (5)0.0077 (5)0.0026 (5)
O40.0706 (8)0.0481 (6)0.0457 (6)0.0193 (6)0.0240 (6)0.0018 (5)
O50.0441 (5)0.0364 (5)0.0340 (5)0.0062 (4)0.0152 (4)0.0023 (4)
C200.0522 (8)0.0357 (7)0.0373 (7)0.0025 (6)0.0135 (6)0.0047 (6)
C210.0599 (10)0.0449 (8)0.0402 (7)0.0093 (7)0.0206 (7)0.0001 (6)
O60.0310 (5)0.0507 (6)0.0272 (4)0.0017 (4)0.0044 (4)0.0043 (4)
C220.0400 (7)0.0465 (8)0.0268 (6)0.0043 (6)0.0055 (5)0.0001 (5)
Geometric parameters (Å, º) top
C1—O11.3683 (16)C14—C151.3768 (18)
C1—C21.3842 (18)C14—H140.9500
C1—C61.3876 (19)C15—H150.9500
C2—C31.3919 (17)O2—C161.4242 (17)
C2—H20.9500C16—H16A0.9800
C3—C41.4158 (17)C16—H16B0.9800
C3—C81.4719 (17)C16—H16C0.9800
C4—C51.4089 (17)C17—N11.2742 (17)
C4—C171.4649 (17)C17—H170.9500
C5—O61.3628 (15)N1—O31.4291 (14)
C5—C61.3890 (18)O3—C181.4144 (16)
C6—H60.9500C18—C191.515 (2)
O1—C71.4242 (18)C18—H18A0.9900
C7—H7A0.9800C18—H18B0.9900
C7—H7B0.9800C19—O41.1962 (17)
C7—H7C0.9800C19—O51.3362 (15)
C8—C91.3345 (18)O5—C201.4565 (17)
C8—H80.9500C20—C211.498 (2)
C9—C101.4623 (17)C20—H20A0.9900
C9—H90.9500C20—H20B0.9900
C10—C111.3917 (18)C21—H21A0.9800
C10—C151.4012 (17)C21—H21B0.9800
C11—C121.3857 (18)C21—H21C0.9800
C11—H110.9500O6—C221.4302 (15)
C12—C131.3853 (18)C22—H22A0.9800
C12—H120.9500C22—H22B0.9800
C13—O21.3676 (15)C22—H22C0.9800
C13—C141.3913 (18)
O1—C1—C2115.30 (12)C13—C14—H14119.8
O1—C1—C6123.55 (12)C14—C15—C10121.36 (12)
C2—C1—C6121.14 (12)C14—C15—H15119.3
C1—C2—C3120.65 (12)C10—C15—H15119.3
C1—C2—H2119.7C13—O2—C16116.50 (11)
C3—C2—H2119.7O2—C16—H16A109.5
C2—C3—C4119.52 (11)O2—C16—H16B109.5
C2—C3—C8118.33 (11)H16A—C16—H16B109.5
C4—C3—C8122.09 (11)O2—C16—H16C109.5
C5—C4—C3118.25 (11)H16A—C16—H16C109.5
C5—C4—C17117.23 (11)H16B—C16—H16C109.5
C3—C4—C17124.47 (11)N1—C17—C4123.02 (12)
O6—C5—C6122.35 (11)N1—C17—H17118.5
O6—C5—C4115.86 (11)C4—C17—H17118.5
C6—C5—C4121.79 (12)C17—N1—O3109.39 (11)
C1—C6—C5118.61 (12)C18—O3—N1107.72 (10)
C1—C6—H6120.7O3—C18—C19112.50 (11)
C5—C6—H6120.7O3—C18—H18A109.1
C1—O1—C7117.64 (12)C19—C18—H18A109.1
O1—C7—H7A109.5O3—C18—H18B109.1
O1—C7—H7B109.5C19—C18—H18B109.1
H7A—C7—H7B109.5H18A—C18—H18B107.8
O1—C7—H7C109.5O4—C19—O5124.44 (13)
H7A—C7—H7C109.5O4—C19—C18125.86 (12)
H7B—C7—H7C109.5O5—C19—C18109.70 (11)
C9—C8—C3123.98 (12)C19—O5—C20116.35 (11)
C9—C8—H8118.0O5—C20—C21108.06 (12)
C3—C8—H8118.0O5—C20—H20A110.1
C8—C9—C10126.42 (12)C21—C20—H20A110.1
C8—C9—H9116.8O5—C20—H20B110.1
C10—C9—H9116.8C21—C20—H20B110.1
C11—C10—C15117.15 (12)H20A—C20—H20B108.4
C11—C10—C9119.55 (11)C20—C21—H21A109.5
C15—C10—C9123.24 (11)C20—C21—H21B109.5
C12—C11—C10122.11 (12)H21A—C21—H21B109.5
C12—C11—H11118.9C20—C21—H21C109.5
C10—C11—H11118.9H21A—C21—H21C109.5
C13—C12—C11119.53 (12)H21B—C21—H21C109.5
C13—C12—H12120.2C5—O6—C22117.86 (10)
C11—C12—H12120.2O6—C22—H22A109.5
O2—C13—C12124.35 (12)O6—C22—H22B109.5
O2—C13—C14116.15 (11)H22A—C22—H22B109.5
C12—C13—C14119.49 (12)O6—C22—H22C109.5
C15—C14—C13120.32 (12)H22A—C22—H22C109.5
C15—C14—H14119.8H22B—C22—H22C109.5
O1—C1—C2—C3177.99 (12)C9—C10—C11—C12176.62 (13)
C6—C1—C2—C31.2 (2)C10—C11—C12—C131.2 (2)
C1—C2—C3—C40.4 (2)C11—C12—C13—O2177.91 (13)
C1—C2—C3—C8177.58 (12)C11—C12—C13—C141.9 (2)
C2—C3—C4—C51.62 (18)O2—C13—C14—C15178.88 (12)
C8—C3—C4—C5178.74 (11)C12—C13—C14—C150.9 (2)
C2—C3—C4—C17175.79 (12)C13—C14—C15—C100.8 (2)
C8—C3—C4—C171.32 (19)C11—C10—C15—C141.4 (2)
C3—C4—C5—O6178.79 (11)C9—C10—C15—C14175.53 (13)
C17—C4—C5—O63.61 (17)C12—C13—O2—C168.9 (2)
C3—C4—C5—C61.41 (18)C14—C13—O2—C16170.87 (13)
C17—C4—C5—C6176.20 (12)C5—C4—C17—N1158.35 (13)
O1—C1—C6—C5177.70 (13)C3—C4—C17—N124.2 (2)
C2—C1—C6—C51.4 (2)C4—C17—N1—O3178.31 (11)
O6—C5—C6—C1179.69 (12)C17—N1—O3—C18174.86 (11)
C4—C5—C6—C10.1 (2)N1—O3—C18—C1972.08 (14)
C2—C1—O1—C7179.36 (14)O3—C18—C19—O45.7 (2)
C6—C1—O1—C70.2 (2)O3—C18—C19—O5174.87 (11)
C2—C3—C8—C933.37 (19)O4—C19—O5—C204.5 (2)
C4—C3—C8—C9149.49 (13)C18—C19—O5—C20174.88 (12)
C3—C8—C9—C10173.69 (12)C19—O5—C20—C21176.76 (12)
C8—C9—C10—C11171.46 (13)C6—C5—O6—C223.90 (18)
C8—C9—C10—C1511.6 (2)C4—C5—O6—C22176.29 (11)
C15—C10—C11—C120.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22C···N1i0.982.613.5633 (19)166
C14—H14···O5ii0.952.553.4834 (16)166
Symmetry codes: (i) x+1, y, z+2; (ii) x+3/2, y+1/2, z+3/2.
 

Funding information

This work was supported by a Dongduk Women's University grant.

References

First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationGe, X.-L., Guan, Q.-X., Deng, S.-S. & Ruan, B.-F. (2013). Acta Cryst. E69, o629.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Q. -S., Li, Y., Deora, G. S. & Ruan, B. F. (2019). Mini Rev. Med. Chem. 19, 809–825.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVessally, E., Saeidian, H., Hosseinian, A., Edjlali, L. & Bekhradnia, A. A. (2016). Curr. Org. Chem. 21, 249–271.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds