inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

The structure of the aluminium-abundant γ-brass-type Al8.6Mn4.4

crossmark logo

aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
*Correspondence e-mail: chzfan@ysu.edu.cn

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 30 July 2021; accepted 22 September 2021; online 24 September 2021)

An aluminium-abundant Al8Mn5/γ-brass-type inter­metallic with formula Al8.6Mn4.4, which is isotypic with γ-Al8Cr5 and γ-Al8V5, was discovered by high-temperature sinter­ing of an Al/Mn mixture with initial composition Al2Mn. Structure analysis revealed that one special position (Wyckoff site 18h in space group R[\overline{3}]m) is shared by Al and Mn, with refined site occupancy factors of 0.7 and 0.3, respectively. The present low-temperature Al8Mn5-type phase crystallizes in the centrosymmetric space group R[\overline{3}]m (No. 166), rather than R3m (No. 160) as previously reported for the same inter­metallic characterized by TEM measurements [Zeng et al. (2018[Zeng, G., Xian, J. W. & Gourlay, C. M. (2018). Acta Mater. 153, 364-376.]). Acta Mater. 153, 364–376].

3D view (loading...)
[Scheme 3D1]

Structure description

The γ-brasses are common phases with rhombohedral symmetry, and have been observed in many systems, including the Al–Cr, Al–Mn, Al–Cu, Ga–Cr, Ga–Mn and Ga–Fe mixtures (Bradley & Lu, 1937[Bradley, A. J. & Lu, S. S. (1937). Z. Kristallogr. 96, 20-37.]; Meissner et al., 1965[Meissner, H. G., Schubert, K. & Anantharaman, T. R. (1965). Proc. Indian Acad. Sci. Chem. Sci. 340-367.]; Westman, 1965[Westman, S. (1965). Acta Chem. Scand. 19, 2369-2372.]). However, it has long been known that the structure model of the γ-Al8Mn5 phase has some conflicts. For example, the Al8Mn5 phase was first reported with a hexa­gonal unit cell (a = 12.713 Å, c = 15.839 Å) and was believed to be associated with Al8Cr5 (Schubert et al., 1960[Schubert, K., Bhan, S., Burkhardt, W., Gohle, R., Meissner, H. G., Pötzschke, M. & Stolz, E. (1960). Naturwissenschaften, 47, 303.]). Subsequently, this structure was checked with the unit-cell parameters a = 12.630 Å and c = 7.933 Å by powder diffraction patterns (Schonover & Mohanty, 1969[Schonover, R. W. & Mohanty, G. P. (1969). Mater. Sci. Eng, 4, 243-245.]). In another study, the low-temperature phase Al8Mn5 was analysed and considered as a hexa­gonal structure with unit-cell parameters a = 7.20 Å and c = 22.95 Å. In the me­antime, a high-temperature Al8Mn5 phase was reported (Koch et al., 1960[Koch, A. J. J., Hokkeling, P., Steeg, M. G. V. D. & de Vos, K. J. (1960). J. Appl. Phys. 31, S75-S77.]). Further studies were reported on the transformation from the high-temperature Al–Mn phase to the low-temperature Al8Mn5 phase, and on the measured metal concentrations, ranging from Mn48Al52 to Mn37Al63, with unit-cell parameters in the range a = 12.598–12.671 Å, and c = 7.911–7.942 Å, by powder diffraction patterns (Ellner, 1990[Ellner, M. (1990). Metall. Mater. Trans. A, 21, 1669-1672.]). They reached the conclusion that the axial ratio c/a decreases while the molar fraction of aluminium increases. Very recently, the D810–Al8Mn5 phase has been found to nucleate on B2–Al(Mn, Fe) particles in AZ91 magnesium alloys (Zeng et al., 2018[Zeng, G., Xian, J. W. & Gourlay, C. M. (2018). Acta Mater. 153, 364-376.]). The D810–Al8Mn5 structure model closely resembles that described in the present work; however, its composition includes not only Al and Mn, but also other elements such as Fe and Mg.

Although the Al8Mn5 inter­metallic phase has been reported many times over many years, the atomic coordinates have not so far been determined accurately by single-crystal X-ray diffraction. In the present work, the crystal structure of the low-temperature γ-Al8Mn5-type phase with the refined chemical composition Al8.6Mn4.4 was determined by single-crystal X-ray diffraction measurements for the first time. Inter­metallic Al8.6Mn4.4 is a aluminium-rich phase compared to Mn37Al63, and its axial ratio, c/a = 0.624 is then slightly reduced (Mn37Al63: c/a = 0.626), in agreement with the results reported by Ellner (1990[Ellner, M. (1990). Metall. Mater. Trans. A, 21, 1669-1672.]).

Fig. 1[link] shows the overall atomic distribution of Al8.6Mn4.4 in the unit cell. For simplicity, four distorted icosa­hedra are illustrated here, and the environment of the Mn02 atoms is shown in Fig. 2[link]. The twelve vertices include six Al atoms (Al05) and six co-occupied Al/Mn sites (Al03/Mn03), where the refined site occupancies converged to 0.7 for Al03 and 0.3 for Mn03. In addition, the icosa­hedron centred at Al04 is shown in Fig. 3[link]; it is constituted of six Mn atoms (Mn01) and six co-occupied Al/Mn sites (Al03/Mn03). In summary, these two icosa­hedra are packed together and form the main building blocks of Al8.6Mn4.4.

[Figure 1]
Figure 1
The crystal structure of Al8.6Mn4.4 with two Mn02 atoms and two Al04 atoms displayed with their coordination environments as polyhedra.
[Figure 2]
Figure 2
The environment of the Mn02 atom. Displacement ellipsoids are given at the 90% probability level. Symmetry codes: (v) −x + 4/3, −y + [{2\over 3}], −z + [{5\over 3}]; (vi) y + [{1\over 3}], −x + y + [{2\over 3}], −z + [{5\over 3}]; (vii) x − y + [{1\over 3}], x − [{1\over 3}], −z + [{5\over 3}]; (viii) −y + 1, xy, z; (ix) −x + y + 1, −x + 1, z; (x) −x + y + [{1\over 3}], −x + [{2\over 3}], z + [{2\over 3}]; (xi) −y + [{4\over 3}], x − y + [{2\over 3}], z + [{2\over 3}]; (xii) x − y + 1, x, −z + 1; (xiii) y, −x + y, −z + 1; (xiv) −x + 1, −y + 1, −z + 1.
[Figure 3]
Figure 3
The environment of the Al04 atom. Displacement ellipsoids are given at the 90% probability level. Symmetry codes: (ii) x − y + [{1\over 3}], x − [{1\over 3}], −z + [{2\over 3}]; (iii) y + [{1\over 3}], −x + y + [{2\over 3}], −z + [{2\over 3}]; (viii) −y + 1, x − y, z; (ix) −x + y + 1, −x + 1, z; (xviii) −x + [{4\over 3}], −y + [{2\over 3}], −z + [{2\over 3}].

Synthesis and crystallization

The high-purity elements Al (indicated purity 99.8%; 1.080 g) and Mn (indicated purity 99.96%; 1.100 g) were mixed in the stoichiometric ratio 2:1 and ground in an agate mortar. The blended powders were placed into a cemented carbide grinding mound of 9.6 mm diameter and pressed at 4 MPa for about 5 min. The obtained cylindrical block was crushed and a specimen weighing 50.55 mg was selected and subsequently loaded into the crucible of a Netzsch STA 449 C simultaneous thermal analysis instrument. The sample was heated up to 1250°C for 10 min with a heating rate of 20°C min−1, and then slowly cooled to 700°C with a cooling rate of 10°C min−1. Finally, the sample was cooled down to room temperature by switching off the furnace. Suitable pieces of single-crystal grains were selected from the educts for single-crystal X-ray diffraction experiments. Details of the EDS analysis are given in the supporting information.

Refinement

Table 1[link] shows the details of data collection and structural refinement. Only one site is co-occupied by Al and Mn atoms (Al03/Mn03). Site occupancies were refined to 0.7 for Al03 and 0.3 for Mn03, and then fixed in the following least-squares cycles. Atoms sharing the same site were constrained to have the same coordinates and displacement parameters. The maximum and minimum residual electron densities in the last difference map are located 0.97 Å from atom Mn01 and 0.85 Å from atom Al05, respectively.

Table 1
Experimental details

Crystal data
Chemical formula Al8.6Mn4.4
Mr 473.76
Crystal system, space group Trigonal, R[\overline{3}]m:H
Temperature (K) 296
a, c (Å) 12.6751 (13), 7.9137 (9)
V3) 1101.1 (3)
Z 6
Radiation type Mo Kα
μ (mm−1) 8.32
Crystal size (mm) 0.09 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.494, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7162, 323, 298
Rint 0.078
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.19
No. of reflections 323
No. of parameters 29
Δρmax, Δρmin (e Å−3) 0.98, −1.23
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2017[Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: APEX3 (Bruker, 2015); data reduction: APEX3 and SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2017); software used to prepare material for publication: publCIF (Westrip, 2010).

Octaluminium pentamanganese top
Crystal data top
Al8.6Mn4.4Dx = 4.287 Mg m3
Mr = 473.76Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3m:HCell parameters from 3882 reflections
a = 12.6751 (13) Åθ = 3.2–30.4°
c = 7.9137 (9) ŵ = 8.32 mm1
V = 1101.1 (3) Å3T = 296 K
Z = 6Graininess, silver
F(000) = 13310.09 × 0.06 × 0.04 mm
Data collection top
Bruker D8 Venture Photon 100 CMOS
diffractometer
298 reflections with I > 2σ(I)
φ and ω scansRint = 0.078
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 27.5°, θmin = 3.2°
Tmin = 0.494, Tmax = 0.746h = 1616
7162 measured reflectionsk = 1516
323 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0472P)2 + 72.2358P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max < 0.001
S = 1.19Δρmax = 0.98 e Å3
323 reflectionsΔρmin = 1.23 e Å3
29 parametersExtinction correction: SHELXL-2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0015 (3)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn010.54960 (7)0.45040 (7)0.26408 (19)0.0082 (5)
Mn020.6666670.3333330.8333330.0082 (8)
Al030.59276 (11)0.40724 (11)0.5828 (3)0.0082 (6)0.7
Mn030.59276 (11)0.40724 (11)0.5828 (3)0.0082 (6)0.3
Al040.6666670.3333330.3333330.0090 (15)
Al050.45078 (13)0.54922 (13)0.0926 (4)0.0101 (7)
Al060.3333330.2900 (3)0.1666670.0151 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn010.0079 (6)0.0079 (6)0.0085 (8)0.0038 (6)0.0004 (3)0.0004 (3)
Mn020.0086 (11)0.0086 (11)0.0072 (17)0.0043 (6)0.0000.000
Al030.0090 (9)0.0090 (9)0.0046 (10)0.0031 (9)0.0011 (4)0.0011 (4)
Mn030.0090 (9)0.0090 (9)0.0046 (10)0.0031 (9)0.0011 (4)0.0011 (4)
Al040.011 (2)0.011 (2)0.006 (3)0.0053 (11)0.0000.000
Al050.0127 (12)0.0127 (12)0.0096 (14)0.0098 (13)0.0005 (5)0.0005 (5)
Al060.0121 (15)0.0156 (12)0.0163 (16)0.0060 (8)0.0051 (12)0.0026 (6)
Geometric parameters (Å, º) top
Mn01—Al052.559 (3)Mn02—Al05xii2.644 (3)
Mn01—Al062.5824 (10)Mn02—Al05xiii2.644 (3)
Mn01—Al06i2.5825 (10)Mn02—Al05xiv2.644 (3)
Mn01—Al042.6278 (15)Al03—Al042.556 (2)
Mn01—Al03ii2.6650 (17)Al03—Al06iii2.650 (3)
Mn01—Al03iii2.6650 (17)Al03—Al06iv2.650 (3)
Mn01—Al06iii2.667 (2)Al03—Al05xi2.655 (3)
Mn01—Al06iv2.667 (2)Al03—Al05x2.655 (3)
Mn01—Al032.695 (3)Al03—Al05xiv2.741 (4)
Mn01—Mn01iii2.7941 (18)Al03—Al03ix2.810 (4)
Mn01—Mn01ii2.7941 (18)Al03—Al03viii2.810 (4)
Mn02—Al03v2.562 (2)Al05—Al05xv2.611 (6)
Mn02—Al03vi2.562 (2)Al05—Al05i2.832 (4)
Mn02—Al03vii2.562 (2)Al05—Al05xvi2.832 (4)
Mn02—Al03viii2.562 (2)Al05—Al06i2.909 (3)
Mn02—Al03ix2.562 (2)Al05—Al062.909 (3)
Mn02—Al032.562 (2)Al06—Al06iv2.804 (2)
Mn02—Al05x2.644 (3)Al06—Al06xvii2.804 (2)
Mn02—Al05xi2.644 (3)
Al05—Mn01—Al0668.92 (8)Mn02—Al03—Al03viii56.73 (4)
Al05—Mn01—Al06i68.92 (8)Al06iii—Al03—Al03viii163.86 (5)
Al06—Mn01—Al06i135.16 (12)Al06iv—Al03—Al03viii111.76 (7)
Al05—Mn01—Al04160.01 (9)Al05xi—Al03—Al03viii108.17 (7)
Al06—Mn01—Al04107.13 (8)Al05x—Al03—Al03viii58.04 (6)
Al06i—Mn01—Al04107.13 (8)Mn01ii—Al03—Al03viii58.18 (5)
Al05—Mn01—Al03ii106.00 (8)Mn01iii—Al03—Al03viii107.93 (5)
Al06—Mn01—Al03ii60.63 (8)Mn01—Al03—Al03viii107.73 (5)
Al06i—Mn01—Al03ii118.97 (8)Al05xiv—Al03—Al03viii107.58 (7)
Al04—Mn01—Al03ii57.74 (5)Al03ix—Al03—Al03viii60.0
Al05—Mn01—Al03iii106.00 (8)Al03xviii—Al04—Al03ii66.71 (8)
Al06—Mn01—Al03iii118.97 (8)Al03xviii—Al04—Al03ix113.29 (8)
Al06i—Mn01—Al03iii60.63 (8)Al03ii—Al04—Al03ix180.0
Al04—Mn01—Al03iii57.74 (5)Al03xviii—Al04—Al03iii66.71 (8)
Al03ii—Mn01—Al03iii63.64 (11)Al03ii—Al04—Al03iii66.71 (8)
Al05—Mn01—Al06iii91.44 (7)Al03ix—Al04—Al03iii113.29 (8)
Al06—Mn01—Al06iii130.82 (5)Al03xviii—Al04—Al03viii113.29 (8)
Al06i—Mn01—Al06iii64.55 (7)Al03ii—Al04—Al03viii113.29 (8)
Al04—Mn01—Al06iii104.67 (5)Al03ix—Al04—Al03viii66.71 (8)
Al03ii—Mn01—Al06iii162.37 (7)Al03iii—Al04—Al03viii180.00 (10)
Al03iii—Mn01—Al06iii109.58 (7)Al03xviii—Al04—Al03180.0
Al05—Mn01—Al06iv91.43 (7)Al03ii—Al04—Al03113.29 (8)
Al06—Mn01—Al06iv64.55 (7)Al03ix—Al04—Al0366.71 (8)
Al06i—Mn01—Al06iv130.82 (5)Al03iii—Al04—Al03113.29 (8)
Al04—Mn01—Al06iv104.67 (5)Al03viii—Al04—Al0366.71 (8)
Al03ii—Mn01—Al06iv109.58 (7)Al03xviii—Al04—Mn01iii118.14 (3)
Al03iii—Mn01—Al06iv162.37 (7)Al03ii—Al04—Mn01iii118.14 (3)
Al06iii—Mn01—Al06iv71.75 (12)Al03ix—Al04—Mn01iii61.86 (3)
Al05—Mn01—Al03142.61 (10)Al03iii—Al04—Mn01iii62.63 (6)
Al06—Mn01—Al03111.28 (5)Al03viii—Al04—Mn01iii117.37 (6)
Al06i—Mn01—Al03111.28 (5)Al03—Al04—Mn01iii61.86 (3)
Al04—Mn01—Al0357.37 (6)Al03xviii—Al04—Mn01ii118.14 (3)
Al03ii—Mn01—Al03105.61 (8)Al03ii—Al04—Mn01ii62.63 (6)
Al03iii—Mn01—Al03105.61 (8)Al03ix—Al04—Mn01ii117.37 (6)
Al06iii—Mn01—Al0359.22 (5)Al03iii—Al04—Mn01ii118.14 (3)
Al06iv—Mn01—Al0359.23 (5)Al03viii—Al04—Mn01ii61.86 (3)
Al05—Mn01—Mn01iii126.73 (2)Al03—Al04—Mn01ii61.86 (3)
Al06—Mn01—Mn01iii164.30 (8)Mn01iii—Al04—Mn01ii115.77 (2)
Al06i—Mn01—Mn01iii59.33 (7)Al03xviii—Al04—Mn01viii61.86 (3)
Al04—Mn01—Mn01iii57.883 (11)Al03ii—Al04—Mn01viii61.86 (3)
Al03ii—Mn01—Mn01iii109.05 (6)Al03ix—Al04—Mn01viii118.14 (3)
Al03iii—Mn01—Mn01iii59.10 (5)Al03iii—Al04—Mn01viii117.37 (6)
Al06iii—Mn01—Mn01iii56.38 (6)Al03viii—Al04—Mn01viii62.63 (6)
Al06iv—Mn01—Mn01iii112.33 (9)Al03—Al04—Mn01viii118.14 (3)
Al03—Mn01—Mn01iii58.06 (5)Mn01iii—Al04—Mn01viii180.0
Al05—Mn01—Mn01ii126.73 (2)Mn01ii—Al04—Mn01viii64.23 (2)
Al06—Mn01—Mn01ii59.33 (7)Al03xviii—Al04—Mn01ix61.86 (3)
Al06i—Mn01—Mn01ii164.30 (8)Al03ii—Al04—Mn01ix117.37 (6)
Al04—Mn01—Mn01ii57.883 (11)Al03ix—Al04—Mn01ix62.63 (6)
Al03ii—Mn01—Mn01ii59.10 (5)Al03iii—Al04—Mn01ix61.86 (3)
Al03iii—Mn01—Mn01ii109.05 (6)Al03viii—Al04—Mn01ix118.14 (3)
Al06iii—Mn01—Mn01ii112.33 (9)Al03—Al04—Mn01ix118.14 (3)
Al06iv—Mn01—Mn01ii56.38 (6)Mn01iii—Al04—Mn01ix64.23 (2)
Al03—Mn01—Mn01ii58.06 (5)Mn01ii—Al04—Mn01ix180.0
Mn01iii—Mn01—Mn01ii105.61 (6)Mn01viii—Al04—Mn01ix115.77 (2)
Al03v—Mn02—Al03vi66.53 (8)Al03xviii—Al04—Mn01117.37 (6)
Al03v—Mn02—Al03vii66.53 (8)Al03ii—Al04—Mn0161.86 (3)
Al03vi—Mn02—Al03vii66.53 (8)Al03ix—Al04—Mn01118.14 (3)
Al03v—Mn02—Al03viii113.47 (8)Al03iii—Al04—Mn0161.86 (3)
Al03vi—Mn02—Al03viii180.0Al03viii—Al04—Mn01118.14 (3)
Al03vii—Mn02—Al03viii113.47 (9)Al03—Al04—Mn0162.63 (6)
Al03v—Mn02—Al03ix113.47 (8)Mn01iii—Al04—Mn0164.23 (2)
Al03vi—Mn02—Al03ix113.47 (9)Mn01ii—Al04—Mn0164.23 (2)
Al03vii—Mn02—Al03ix180.0Mn01viii—Al04—Mn01115.77 (2)
Al03viii—Mn02—Al03ix66.53 (8)Mn01ix—Al04—Mn01115.77 (2)
Al03v—Mn02—Al03180.0Mn01—Al05—Al05xv66.17 (13)
Al03vi—Mn02—Al03113.47 (8)Mn01—Al05—Mn02xix135.17 (13)
Al03vii—Mn02—Al03113.47 (8)Al05xv—Al05—Mn02xix158.7 (2)
Al03viii—Mn02—Al0366.53 (8)Mn01—Al05—Al03xx147.49 (7)
Al03ix—Mn02—Al0366.53 (8)Al05xv—Al05—Al03xx104.81 (15)
Al03v—Mn02—Al05x118.71 (5)Mn02xix—Al05—Al03xx57.82 (7)
Al03vi—Mn02—Al05x118.71 (5)Mn01—Al05—Al03xxi147.49 (7)
Al03vii—Mn02—Al05x63.51 (9)Al05xv—Al05—Al03xxi104.81 (15)
Al03viii—Mn02—Al05x61.29 (5)Mn02xix—Al05—Al03xxi57.82 (7)
Al03ix—Mn02—Al05x116.49 (9)Al03xx—Al05—Al03xxi63.92 (12)
Al03—Mn02—Al05x61.29 (5)Mn01—Al05—Al03xiv78.39 (10)
Al03v—Mn02—Al05xi118.71 (5)Al05xv—Al05—Al03xiv144.6 (2)
Al03vi—Mn02—Al05xi63.51 (9)Mn02xix—Al05—Al03xiv56.78 (8)
Al03vii—Mn02—Al05xi118.71 (5)Al03xx—Al05—Al03xiv105.11 (11)
Al03viii—Mn02—Al05xi116.49 (9)Al03xxi—Al05—Al03xiv105.11 (11)
Al03ix—Mn02—Al05xi61.29 (5)Mn01—Al05—Mn01xv122.19 (11)
Al03—Mn02—Al05xi61.29 (5)Al05xv—Al05—Mn01xv56.02 (12)
Al05x—Mn02—Al05xi115.24 (5)Mn02xix—Al05—Mn01xv102.64 (10)
Al03v—Mn02—Al05xii61.29 (5)Al03xx—Al05—Mn01xv58.13 (7)
Al03vi—Mn02—Al05xii61.29 (5)Al03xxi—Al05—Mn01xv58.13 (7)
Al03vii—Mn02—Al05xii116.49 (9)Al03xiv—Al05—Mn01xv159.42 (13)
Al03viii—Mn02—Al05xii118.71 (5)Mn01—Al05—Al05i99.58 (11)
Al03ix—Mn02—Al05xii63.51 (9)Al05xv—Al05—Al05i127.52 (4)
Al03—Mn02—Al05xii118.71 (5)Mn02xix—Al05—Al05i57.62 (2)
Al05x—Mn02—Al05xii180.0Al03xx—Al05—Al05i109.39 (8)
Al05xi—Mn02—Al05xii64.76 (5)Al03xxi—Al05—Al05i59.82 (8)
Al03v—Mn02—Al05xiii61.29 (5)Al03xiv—Al05—Al05i56.87 (10)
Al03vi—Mn02—Al05xiii116.49 (9)Mn01xv—Al05—Al05i114.36 (13)
Al03vii—Mn02—Al05xiii61.29 (5)Mn01—Al05—Al05xvi99.58 (11)
Al03viii—Mn02—Al05xiii63.50 (9)Al05xv—Al05—Al05xvi127.52 (4)
Al03ix—Mn02—Al05xiii118.71 (5)Mn02xix—Al05—Al05xvi57.62 (2)
Al03—Mn02—Al05xiii118.71 (5)Al03xx—Al05—Al05xvi59.82 (8)
Al05x—Mn02—Al05xiii64.76 (5)Al03xxi—Al05—Al05xvi109.39 (8)
Al05xi—Mn02—Al05xiii180.0Al03xiv—Al05—Al05xvi56.87 (10)
Al05xii—Mn02—Al05xiii115.23 (5)Mn01xv—Al05—Al05xvi114.36 (13)
Al03v—Mn02—Al05xiv116.49 (9)Al05i—Al05—Al05xvi104.07 (14)
Al03vi—Mn02—Al05xiv61.29 (5)Mn01—Al05—Al06i55.92 (5)
Al03vii—Mn02—Al05xiv61.29 (5)Al05xv—Al05—Al06i70.76 (8)
Al03viii—Mn02—Al05xiv118.71 (5)Mn02xix—Al05—Al06i118.49 (7)
Al03ix—Mn02—Al05xiv118.71 (5)Al03xx—Al05—Al06i153.69 (11)
Al03—Mn02—Al05xiv63.51 (9)Al03xxi—Al05—Al06i91.59 (6)
Al05x—Mn02—Al05xiv64.77 (5)Al03xiv—Al05—Al06i89.87 (8)
Al05xi—Mn02—Al05xiv64.77 (5)Mn01xv—Al05—Al06i101.71 (7)
Al05xii—Mn02—Al05xiv115.23 (5)Al05i—Al05—Al06i60.87 (6)
Al05xiii—Mn02—Al05xiv115.23 (5)Al05xvi—Al05—Al06i143.81 (17)
Al04—Al03—Mn02101.29 (8)Mn01—Al05—Al0655.92 (5)
Al04—Al03—Al06iii107.27 (7)Al05xv—Al05—Al0670.75 (8)
Mn02—Al03—Al06iii132.71 (7)Mn02xix—Al05—Al06118.49 (7)
Al04—Al03—Al06iv107.27 (7)Al03xx—Al05—Al0691.59 (6)
Mn02—Al03—Al06iv132.71 (7)Al03xxi—Al05—Al06153.69 (11)
Al06iii—Al03—Al06iv72.31 (13)Al03xiv—Al05—Al0689.87 (8)
Al04—Al03—Al05xi109.07 (7)Mn01xv—Al05—Al06101.71 (7)
Mn02—Al03—Al05xi60.89 (7)Al05i—Al05—Al06143.81 (17)
Al06iii—Al03—Al05xi74.36 (8)Al05xvi—Al05—Al0660.87 (6)
Al06iv—Al03—Al05xi136.29 (11)Al06i—Al05—Al06110.28 (11)
Al04—Al03—Al05x109.07 (7)Mn01xvi—Al06—Mn01150.27 (16)
Mn02—Al03—Al05x60.89 (7)Mn01xvi—Al06—Al03xvii61.23 (5)
Al06iii—Al03—Al05x136.30 (11)Mn01—Al06—Al03xvii141.63 (9)
Al06iv—Al03—Al05x74.36 (8)Mn01xvi—Al06—Al03ii141.63 (9)
Al05xi—Al03—Al05x114.53 (15)Mn01—Al06—Al03ii61.23 (5)
Al04—Al03—Mn01ii60.40 (5)Al03xvii—Al06—Al03ii107.69 (13)
Mn02—Al03—Mn01ii109.51 (6)Mn01xvi—Al06—Mn01xvii64.29 (6)
Al06iii—Al03—Mn01ii117.24 (9)Mn01—Al06—Mn01xvii137.27 (7)
Al06iv—Al03—Mn01ii58.15 (5)Al03xvii—Al06—Mn01xvii60.90 (8)
Al05xi—Al03—Mn01ii165.50 (11)Al03ii—Al06—Mn01xvii78.16 (9)
Al05x—Al03—Mn01ii64.09 (7)Mn01xvi—Al06—Mn01ii137.27 (7)
Al04—Al03—Mn01iii60.40 (5)Mn01—Al06—Mn01ii64.29 (6)
Mn02—Al03—Mn01iii109.51 (6)Al03xvii—Al06—Mn01ii78.16 (9)
Al06iii—Al03—Mn01iii58.14 (5)Al03ii—Al06—Mn01ii60.90 (8)
Al06iv—Al03—Mn01iii117.23 (9)Mn01xvii—Al06—Mn01ii108.25 (12)
Al05xi—Al03—Mn01iii64.09 (7)Mn01xvi—Al06—Al06iv111.18 (4)
Al05x—Al03—Mn01iii165.50 (11)Mn01—Al06—Al06iv59.19 (9)
Mn01ii—Al03—Mn01iii113.26 (10)Al03xvii—Al06—Al06iv94.07 (10)
Al04—Al03—Mn0160.00 (6)Al03ii—Al06—Al06iv106.01 (5)
Mn02—Al03—Mn01161.29 (11)Mn01xvii—Al06—Al06iv154.14 (16)
Al06iii—Al03—Mn0159.88 (6)Mn01ii—Al06—Al06iv56.26 (3)
Al06iv—Al03—Mn0159.88 (6)Mn01xvi—Al06—Al06xvii59.19 (9)
Al05xi—Al03—Mn01122.45 (7)Mn01—Al06—Al06xvii111.18 (4)
Al05x—Al03—Mn01122.45 (7)Al03xvii—Al06—Al06xvii106.00 (5)
Mn01ii—Al03—Mn0162.84 (5)Al03ii—Al06—Al06xvii94.07 (10)
Mn01iii—Al03—Mn0162.84 (5)Mn01xvii—Al06—Al06xvii56.25 (3)
Al04—Al03—Al05xiv161.01 (12)Mn01ii—Al06—Al06xvii154.14 (16)
Mn02—Al03—Al05xiv59.72 (8)Al06iv—Al06—Al06xvii145.82 (19)
Al06iii—Al03—Al05xiv87.92 (8)Mn01xvi—Al06—Al0597.07 (11)
Al06iv—Al03—Al05xiv87.92 (8)Mn01—Al06—Al0555.16 (8)
Al05xi—Al03—Al05xiv63.31 (7)Al03xvii—Al06—Al05154.93 (11)
Al05x—Al03—Al05xiv63.31 (7)Al03ii—Al06—Al0597.17 (6)
Mn01ii—Al03—Al05xiv123.08 (5)Mn01xvii—Al06—Al05123.49 (8)
Mn01iii—Al03—Al05xiv123.08 (5)Mn01ii—Al06—Al05118.16 (7)
Mn01—Al03—Al05xiv139.00 (12)Al06iv—Al06—Al0581.81 (14)
Al04—Al03—Al03ix56.65 (4)Al06xvii—Al06—Al0568.22 (8)
Mn02—Al03—Al03ix56.73 (4)Mn01xvi—Al06—Al05xvi55.15 (8)
Al06iii—Al03—Al03ix111.75 (7)Mn01—Al06—Al05xvi97.07 (11)
Al06iv—Al03—Al03ix163.86 (5)Al03xvii—Al06—Al05xvi97.18 (6)
Al05xi—Al03—Al03ix58.04 (6)Al03ii—Al06—Al05xvi154.93 (11)
Al05x—Al03—Al03ix108.17 (7)Mn01xvii—Al06—Al05xvi118.16 (7)
Mn01ii—Al03—Al03ix107.93 (5)Mn01ii—Al06—Al05xvi123.49 (8)
Mn01iii—Al03—Al03ix58.18 (5)Al06iv—Al06—Al05xvi68.22 (8)
Mn01—Al03—Al03ix107.73 (5)Al06xvii—Al06—Al05xvi81.82 (14)
Al05xiv—Al03—Al03ix107.58 (7)Al05—Al06—Al05xvi58.26 (12)
Al04—Al03—Al03viii56.65 (4)
Symmetry codes: (i) xy+2/3, x+1/3, z+1/3; (ii) xy+1/3, x1/3, z+2/3; (iii) y+1/3, x+y+2/3, z+2/3; (iv) y+2/3, xy+1/3, z+1/3; (v) x+4/3, y+2/3, z+5/3; (vi) y+1/3, x+y+2/3, z+5/3; (vii) xy+1/3, x1/3, z+5/3; (viii) y+1, xy, z; (ix) x+y+1, x+1, z; (x) x+y+1/3, x+2/3, z+2/3; (xi) y+4/3, xy+2/3, z+2/3; (xii) xy+1, x, z+1; (xiii) y, x+y, z+1; (xiv) x+1, y+1, z+1; (xv) x+1, y+1, z; (xvi) y1/3, x+y+1/3, z+1/3; (xvii) x+y+1/3, x+2/3, z1/3; (xviii) x+4/3, y+2/3, z+2/3; (xix) x1/3, y+1/3, z2/3; (xx) y+2/3, xy+1/3, z2/3; (xxi) x+y+2/3, x+4/3, z2/3.
 

Acknowledgements

We acknowledge the referee for insightful remarks.

Funding information

Funding for this research was provided by: Research Foundation of Education Bureau of Hebei Province (grant No. ZD2018069); The National Natural Science Foundation of China (grant No. 51771165).

References

First citationBradley, A. J. & Lu, S. S. (1937). Z. Kristallogr. 96, 20–37.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEllner, M. (1990). Metall. Mater. Trans. A, 21, 1669–1672.  CrossRef ICSD Google Scholar
First citationKoch, A. J. J., Hokkeling, P., Steeg, M. G. V. D. & de Vos, K. J. (1960). J. Appl. Phys. 31, S75–S77.  CrossRef ICSD Google Scholar
First citationMeissner, H. G., Schubert, K. & Anantharaman, T. R. (1965). Proc. Indian Acad. Sci. Chem. Sci. 340–367.  Google Scholar
First citationSchonover, R. W. & Mohanty, G. P. (1969). Mater. Sci. Eng, 4, 243–245.  CrossRef CAS Google Scholar
First citationSchubert, K., Bhan, S., Burkhardt, W., Gohle, R., Meissner, H. G., Pötzschke, M. & Stolz, E. (1960). Naturwissenschaften, 47, 303.  CrossRef ICSD Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestman, S. (1965). Acta Chem. Scand. 19, 2369–2372.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, G., Xian, J. W. & Gourlay, C. M. (2018). Acta Mater. 153, 364–376.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds