inorganic compounds
Barium bis[tetrafluoridobromate(III)]
aPhilipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
*Correspondence e-mail: f.kraus@uni-marburg.de
Single crystals of barium bis[tetrafluoridobromate(III)], Ba[BrF4]2, were obtained in the form of tiny blocks. Crystal-structure of Ba[BrF4]2 from single-crystal X-ray diffraction data confirmed the previous model obtained on the basis of powder data [Ivlev et al. (2014). Eur. J. Inorg. Chem. pp. 6261–6267], but with all atoms refined with anisotropic displacement parameters. The consists of two symmetry-independent barium cations that are each coordinated by twelve fluorine atoms, forming edge-sharing polyhedra, and an almost square-planar [BrF4]− anion. The compound crystallizes in the Ba[AuF4]2 structure type.
Keywords: crystal structure; barium; tetrafluoridobromate(III); re-refinement.
CCDC reference: 2096684
Structure description
The first synthesis of Ba[BrF4]2 was performed by Sharpe & Emeléus (1948) by treating anhydrous barium chloride or barium fluoride with bromine trifluoride. The product was, however, only characterized by means of a quantitative elemental analysis. The thermal properties of Ba[BrF4]2 were later studied by Kiselev and co-workers, who investigated the thermal decomposition of Ba[BrF4]2 to yield barium fluoride (Kiselev et al., 1987). To the best of our knowledge, our report on the of Ba[BrF4]2 determined from X-ray and neutron powder diffraction data at 300 K was the first structural investigation of the title compound (Ivlev et al., 2014). We showed that Ba[BrF4]2 crystallizes in the I and adopts the Ba[AuF4]2 structure type. Here we present our results on the re-refinement of the of Ba[BrF4]2 from single-crystal X-ray diffraction data at 100 K.
As expected, the unit-cell parameters of the single-crystal study at 100 K (Table 1) are smaller than those determined during the powder study at 300 K, a = 9.65081 (11), c = 8.03453 (13) Å, V = 748.32 (2) Å3 (Ivlev et al., 2014). The contains two symmetry-independent Ba2+ cations on special Wyckoff positions 2a (site symmetry ..) and 2d (..), respectively. Each Ba site is coordinated by twelve F atoms forming edge-sharing polyhedra. The Ba⋯F distances lie in the range of 2.680 (14)–3.324 (16) Å [powder data at RT yielded the range of 2.696 (3)–3.376 (3) Å]. The bromine atom occupies the general 8g and is coordinated by four fluorine atoms also located on general positions in an almost square-planar shape. The resulting Br—F bond lengths are 1.829 (13), 1.861 (12), 1.934 (13), and 1.935 (13) Å, which is comparable with our previous model on basis of powder data [cf.: 1.800 (4), 1.856 (4), 1.902 (4), 1.935 (2) Å]. The two longer Br—F bond lengths correspond to the F atoms coordinating two barium cations each. The two other fluorine atoms coordinate only to one barium cation each and thus have shorter Br—F bond lengths. The F—Br—F cis-angles are 84.9 (6), 89.6 (6), 92.6 (6) and 92.9 (6)°, which corresponds with the previously published results: 85.14 (16), 90.02 (13), 91.80 (15), 93.04 (18)°. Fig. 1 shows the closest contacts between one [BrF4]− anion and its surrounding Ba2+ cations, and Fig. 2 shows the packing of the cations and anions in the crystal structure.
Synthesis and crystallization
Tiny crystals of barium tetrafluoridobromate(III) were obtained by direct reaction of bromine trifluoride with barium fluoride in a closed Teflon vessel. In contrast to Rb[BrF4] (Malin et al., 2019) and Cs[BrF4] (Malin et al., 2020), it was not possible to improve the crystal quality by melting and recrystallization since Ba[BrF4]2 decomposes before reaching its melting point.
Refinement
Crystal data, data collection and structure . Because of very small size of the crystals, we had to employ a diffractometer with a Cu source to improve the reflection intensities at the cost of a more complicated absorption correction.
details are summarized in Table 1Structural data
CCDC reference: 2096684
https://doi.org/10.1107/S2414314621007355/wm4148sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621007355/wm4148Isup2.hkl
pdf file with requested changes and comments. DOI: https://doi.org/10.1107/S2414314621007355/wm4148sup3.pdf
Data collection: X-AREA (Stoe, 2020); cell
X-AREA (Stoe, 2020); data reduction: X-AREA (Stoe, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).Ba2+·2BrF4− | Dx = 4.042 Mg m−3 |
Mr = 449.16 | Cu Kα radiation, λ = 1.54186 Å |
Tetragonal, I4 | Cell parameters from 2706 reflections |
a = 9.5823 (6) Å | θ = 6.5–79.3° |
c = 8.0380 (11) Å | µ = 55.60 mm−1 |
V = 738.05 (14) Å3 | T = 100 K |
Z = 4 | Block, colorless |
F(000) = 792 | 0.02 × 0.02 × 0.01 mm |
Stoe Stadivari diffractometer | 746 independent reflections |
Radiation source: GeniX 3D HF Cu | 688 reflections with I > 2σ(I) |
Graded multilayer mirror monochromator | Rint = 0.038 |
Detector resolution: 5.81 pixels mm-1 | θmax = 79.1°, θmin = 6.5° |
rotation method, ω scans | h = −11→12 |
Absorption correction: multi-scan [X-AREA (Stoe, 2020) based on Koziskova et al., (2016)] | k = −10→6 |
Tmin = 0.068, Tmax = 0.362 | l = −10→9 |
2012 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.091P)2 + 5.3796P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.049 | (Δ/σ)max < 0.001 |
wR(F2) = 0.127 | Δρmax = 1.84 e Å−3 |
S = 1.08 | Δρmin = −1.05 e Å−3 |
746 reflections | Absolute structure: Flack x determined using 266 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
50 parameters | Absolute structure parameter: −0.012 (17) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.500000 | 0.500000 | 0.500000 | 0.0243 (6) | |
Br1 | 0.77576 (19) | 0.84257 (18) | 0.6325 (2) | 0.0238 (5) | |
F1 | 0.7435 (16) | 0.6574 (14) | 0.5444 (17) | 0.041 (3) | |
Ba2 | 0.500000 | 1.000000 | 0.250000 | 0.0293 (6) | |
F2 | 0.6192 (14) | 0.9136 (15) | 0.5334 (19) | 0.041 (3) | |
F3 | 0.8236 (13) | 1.0143 (13) | 0.7242 (17) | 0.036 (3) | |
F4 | 0.9413 (13) | 0.7748 (13) | 0.744 (2) | 0.040 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0219 (7) | 0.0219 (7) | 0.0291 (12) | 0.000 | 0.000 | 0.000 |
Br1 | 0.0251 (10) | 0.0197 (9) | 0.0267 (9) | −0.0021 (7) | −0.0004 (8) | 0.0000 (7) |
F1 | 0.050 (8) | 0.030 (7) | 0.043 (7) | −0.013 (6) | 0.008 (6) | −0.008 (5) |
Ba2 | 0.0257 (8) | 0.0257 (8) | 0.0364 (13) | 0.000 | 0.000 | 0.000 |
F2 | 0.033 (7) | 0.042 (7) | 0.048 (8) | 0.004 (6) | −0.009 (6) | −0.004 (6) |
F3 | 0.042 (7) | 0.027 (6) | 0.038 (8) | −0.001 (5) | −0.006 (6) | −0.003 (5) |
F4 | 0.034 (7) | 0.029 (6) | 0.057 (8) | 0.003 (6) | −0.017 (7) | −0.006 (6) |
Ba1—F3i | 2.791 (13) | Br1—F2 | 1.829 (13) |
Ba1—F3ii | 2.791 (13) | Br1—F3 | 1.861 (12) |
Ba1—F3iii | 2.791 (13) | Br1—F4 | 1.934 (13) |
Ba1—F3iv | 2.791 (13) | Br1—F1 | 1.935 (13) |
Ba1—F1v | 2.801 (14) | Ba2—F2viii | 2.680 (14) |
Ba1—F1vi | 2.801 (14) | Ba2—F2ix | 2.680 (14) |
Ba1—F1vii | 2.801 (14) | Ba2—F2x | 2.680 (14) |
Ba1—F1 | 2.801 (14) | Ba2—F2 | 2.680 (14) |
Ba1—F4ii | 3.034 (14) | Ba2—F4xi | 2.693 (12) |
Ba1—F4iv | 3.034 (14) | Ba2—F4vii | 2.693 (12) |
Ba1—F4iii | 3.034 (14) | Ba2—F4iii | 2.693 (12) |
Ba1—F4i | 3.034 (14) | Ba2—F4xii | 2.693 (12) |
F3i—Ba1—F3ii | 129.1 (3) | F4ii—Ba1—F4iii | 94.6 (6) |
F3i—Ba1—F3iii | 129.1 (3) | F4iv—Ba1—F4iii | 117.4 (3) |
F3ii—Ba1—F3iii | 74.9 (6) | F3i—Ba1—F4i | 52.0 (4) |
F3i—Ba1—F3iv | 74.9 (6) | F3ii—Ba1—F4i | 95.7 (4) |
F3ii—Ba1—F3iv | 129.1 (3) | F3iii—Ba1—F4i | 168.1 (4) |
F3iii—Ba1—F3iv | 129.1 (3) | F3iv—Ba1—F4i | 62.5 (4) |
F3i—Ba1—F1v | 105.4 (4) | F1v—Ba1—F4i | 54.6 (4) |
F3ii—Ba1—F1v | 67.9 (4) | F1vi—Ba1—F4i | 128.6 (4) |
F3iii—Ba1—F1v | 125.4 (4) | F1vii—Ba1—F4i | 63.2 (4) |
F3iv—Ba1—F1v | 62.1 (4) | F1—Ba1—F4i | 114.0 (4) |
F3i—Ba1—F1vi | 125.4 (4) | F4ii—Ba1—F4i | 117.4 (3) |
F3ii—Ba1—F1vi | 105.4 (4) | F4iv—Ba1—F4i | 94.6 (6) |
F3iii—Ba1—F1vi | 62.1 (4) | F4iii—Ba1—F4i | 117.4 (3) |
F3iv—Ba1—F1vi | 67.9 (4) | F2—Br1—F3 | 92.6 (6) |
F1v—Ba1—F1vi | 90.93 (7) | F2—Br1—F4 | 177.3 (6) |
F3i—Ba1—F1vii | 67.9 (4) | F3—Br1—F4 | 84.9 (6) |
F3ii—Ba1—F1vii | 62.1 (4) | F2—Br1—F1 | 92.9 (6) |
F3iii—Ba1—F1vii | 105.4 (4) | F3—Br1—F1 | 174.4 (6) |
F3iv—Ba1—F1vii | 125.4 (4) | F4—Br1—F1 | 89.6 (6) |
F1v—Ba1—F1vii | 90.93 (7) | Br1—F1—Ba1 | 132.3 (7) |
F1vi—Ba1—F1vii | 165.4 (5) | F2viii—Ba2—F2ix | 136.3 (4) |
F3i—Ba1—F1 | 62.1 (4) | F2viii—Ba2—F2x | 63.5 (6) |
F3ii—Ba1—F1 | 125.4 (4) | F2ix—Ba2—F2x | 136.3 (4) |
F3iii—Ba1—F1 | 67.9 (4) | F2viii—Ba2—F2 | 136.3 (4) |
F3iv—Ba1—F1 | 105.4 (4) | F2ix—Ba2—F2 | 63.5 (6) |
F1v—Ba1—F1 | 165.4 (5) | F2x—Ba2—F2 | 136.3 (4) |
F1vi—Ba1—F1 | 90.93 (7) | F2viii—Ba2—F4xi | 114.0 (5) |
F1vii—Ba1—F1 | 90.93 (7) | F2ix—Ba2—F4xi | 109.7 (5) |
F3i—Ba1—F4ii | 168.1 (4) | F2x—Ba2—F4xi | 67.9 (5) |
F3ii—Ba1—F4ii | 52.0 (4) | F2—Ba2—F4xi | 68.4 (5) |
F3iii—Ba1—F4ii | 62.5 (4) | F2viii—Ba2—F4vii | 67.9 (5) |
F3iv—Ba1—F4ii | 95.7 (4) | F2ix—Ba2—F4vii | 68.4 (5) |
F1v—Ba1—F4ii | 63.2 (4) | F2x—Ba2—F4vii | 114.0 (5) |
F1vi—Ba1—F4ii | 54.6 (4) | F2—Ba2—F4vii | 109.7 (5) |
F1vii—Ba1—F4ii | 114.0 (4) | F4xi—Ba2—F4vii | 178.0 (7) |
F1—Ba1—F4ii | 128.6 (4) | F2viii—Ba2—F4iii | 68.4 (5) |
F3i—Ba1—F4iv | 62.5 (4) | F2ix—Ba2—F4iii | 114.0 (5) |
F3ii—Ba1—F4iv | 168.1 (4) | F2x—Ba2—F4iii | 109.7 (5) |
F3iii—Ba1—F4iv | 95.7 (4) | F2—Ba2—F4iii | 67.9 (5) |
F3iv—Ba1—F4iv | 52.0 (4) | F4xi—Ba2—F4iii | 90.018 (16) |
F1v—Ba1—F4iv | 114.0 (4) | F4vii—Ba2—F4iii | 90.018 (15) |
F1vi—Ba1—F4iv | 63.2 (4) | F2viii—Ba2—F4xii | 109.7 (5) |
F1vii—Ba1—F4iv | 128.6 (4) | F2ix—Ba2—F4xii | 67.9 (5) |
F1—Ba1—F4iv | 54.6 (4) | F2x—Ba2—F4xii | 68.4 (5) |
F4ii—Ba1—F4iv | 117.4 (3) | F2—Ba2—F4xii | 114.0 (5) |
F3i—Ba1—F4iii | 95.7 (4) | F4xi—Ba2—F4xii | 90.018 (15) |
F3ii—Ba1—F4iii | 62.5 (4) | F4vii—Ba2—F4xii | 90.018 (15) |
F3iii—Ba1—F4iii | 52.0 (4) | F4iii—Ba2—F4xii | 178.0 (7) |
F3iv—Ba1—F4iii | 168.1 (4) | Br1—F2—Ba2 | 146.6 (8) |
F1v—Ba1—F4iii | 128.6 (4) | Br1—F3—Ba1xiii | 114.9 (6) |
F1vi—Ba1—F4iii | 114.0 (4) | Br1—F4—Ba2xiv | 120.5 (6) |
F1vii—Ba1—F4iii | 54.6 (4) | Br1—F4—Ba1xiii | 103.2 (5) |
F1—Ba1—F4iii | 63.2 (4) | Ba2xiv—F4—Ba1xiii | 130.1 (5) |
F3—Br1—F2—Ba2 | 103.8 (13) | F2—Br1—F3—Ba1xiii | 158.2 (7) |
F1—Br1—F2—Ba2 | −75.4 (13) | F4—Br1—F3—Ba1xiii | −20.9 (7) |
Symmetry codes: (i) y−1/2, −x+3/2, −z+3/2; (ii) x−1/2, y−1/2, z−1/2; (iii) −x+3/2, −y+3/2, z−1/2; (iv) −y+3/2, x−1/2, −z+3/2; (v) −x+1, −y+1, z; (vi) y, −x+1, −z+1; (vii) −y+1, x, −z+1; (viii) y−1/2, −x+3/2, −z+1/2; (ix) −x+1, −y+2, z; (x) −y+3/2, x+1/2, −z+1/2; (xi) y, −x+2, −z+1; (xii) x−1/2, y+1/2, z−1/2; (xiii) x+1/2, y+1/2, z+1/2; (xiv) x+1/2, y−1/2, z+1/2. |
Funding information
We thank the Deutsche Forschungsgemeinschaft for generous funding.
References
Brandenburg, K. (2020). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Ivlev, S., Sobolev, V., Hoelzel, M., Karttunen, A. J., Müller, T., Gerin, I., Ostvald, R. & Kraus, F. (2014). Eur. J. Inorg. Chem. pp. 6261–6267. Web of Science CrossRef ICSD Google Scholar
Kiselev, N. I., Lapshin, O. N., Sadikova, A. T., Sukhoverkhov, V. F. & Churbanov, M. F. (1987). Visok. Veschestva, 3, 178–182. Google Scholar
Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136–140. Web of Science CrossRef CAS Google Scholar
Malin, A. V., Ivlev, S. I., Ostvald, R. V. & Kraus, F. (2019). IUCrData, 4, x191595. Google Scholar
Malin, A. V., Ivlev, S. I., Ostvald, R. V. & Kraus, F. (2020). IUCrData, 5, x200114. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sharpe, A. G. & Emeléus, H. J. (1948). J. Chem. Soc. pp. 2135–2138. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe (2020). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.