inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Barium bis­­[tetra­fluorido­bromate(III)]

crossmark logo

aPhilipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
*Correspondence e-mail: f.kraus@uni-marburg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 June 2021; accepted 15 July 2021; online 20 July 2021)

Single crystals of barium bis­[tetra­fluorido­bromate(III)], Ba[BrF4]2, were obtained in the form of tiny blocks. Crystal-structure refinement of Ba[BrF4]2 from single-crystal X-ray diffraction data confirmed the previous model obtained on the basis of powder data [Ivlev et al. (2014[Ivlev, S., Sobolev, V., Hoelzel, M., Karttunen, A. J., Müller, T., Gerin, I., Ostvald, R. & Kraus, F. (2014). Eur. J. Inorg. Chem. pp. 6261-6267.]). Eur. J. Inorg. Chem. pp. 6261–6267], but with all atoms refined with anisotropic displacement parameters. The crystal structure consists of two symmetry-independent barium cations that are each coordinated by twelve fluorine atoms, forming edge-sharing polyhedra, and an almost square-planar [BrF4] anion. The compound crystallizes in the Ba[AuF4]2 structure type.

3D view (loading...)
[Scheme 3D1]

Structure description

The first synthesis of Ba[BrF4]2 was performed by Sharpe & Emeléus (1948[Sharpe, A. G. & Emeléus, H. J. (1948). J. Chem. Soc. pp. 2135-2138.]) by treating anhydrous barium chloride or barium fluoride with bromine trifluoride. The product was, however, only characterized by means of a qu­anti­tative elemental analysis. The thermal properties of Ba[BrF4]2 were later studied by Kiselev and co-workers, who investigated the thermal decomposition of Ba[BrF4]2 to yield barium fluoride (Kiselev et al., 1987[Kiselev, N. I., Lapshin, O. N., Sadikova, A. T., Sukhoverkhov, V. F. & Churbanov, M. F. (1987). Visok. Veschestva, 3, 178-182.]). To the best of our knowledge, our report on the crystal structure of Ba[BrF4]2 determined from X-ray and neutron powder diffraction data at 300 K was the first structural investigation of the title compound (Ivlev et al., 2014[Ivlev, S., Sobolev, V., Hoelzel, M., Karttunen, A. J., Müller, T., Gerin, I., Ostvald, R. & Kraus, F. (2014). Eur. J. Inorg. Chem. pp. 6261-6267.]). We showed that Ba[BrF4]2 crystallizes in the space group I[\overline{4}] and adopts the Ba[AuF4]2 structure type. Here we present our results on the re-refinement of the crystal structure of Ba[BrF4]2 from single-crystal X-ray diffraction data at 100 K.

As expected, the unit-cell parameters of the single-crystal study at 100 K (Table 1[link]) are smaller than those determined during the powder study at 300 K, a = 9.65081 (11), c = 8.03453 (13) Å, V = 748.32 (2) Å3 (Ivlev et al., 2014[Ivlev, S., Sobolev, V., Hoelzel, M., Karttunen, A. J., Müller, T., Gerin, I., Ostvald, R. & Kraus, F. (2014). Eur. J. Inorg. Chem. pp. 6261-6267.]). The crystal structure contains two symmetry-independent Ba2+ cations on special Wyckoff positions 2a (site symmetry [\overline{4}]..) and 2d ([\overline{4}]..), respectively. Each Ba site is coordinated by twelve F atoms forming edge-sharing polyhedra. The Ba⋯F distances lie in the range of 2.680 (14)–3.324 (16) Å [powder data at RT yielded the range of 2.696 (3)–3.376 (3) Å]. The bromine atom occupies the general Wyckoff position 8g and is coordinated by four fluorine atoms also located on general positions in an almost square-planar shape. The resulting Br—F bond lengths are 1.829 (13), 1.861 (12), 1.934 (13), and 1.935 (13) Å, which is comparable with our previous model on basis of powder data [cf.: 1.800 (4), 1.856 (4), 1.902 (4), 1.935 (2) Å]. The two longer Br—F bond lengths correspond to the F atoms coordinating two barium cations each. The two other fluorine atoms coordinate only to one barium cation each and thus have shorter Br—F bond lengths. The F—Br—F cis-angles are 84.9 (6), 89.6 (6), 92.6 (6) and 92.9 (6)°, which corresponds with the previously published results: 85.14 (16), 90.02 (13), 91.80 (15), 93.04 (18)°. Fig. 1[link] shows the closest contacts between one [BrF4] anion and its surrounding Ba2+ cations, and Fig. 2[link] shows the packing of the cations and anions in the crystal structure.

Table 1
Experimental details

Crystal data
Chemical formula Ba[BrF4]2
Mr 449.16
Crystal system, space group Tetragonal, I[\overline{4}]
Temperature (K) 100
a, c (Å) 9.5823 (6), 8.0380 (11)
V3) 738.05 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 55.60
Crystal size (mm) 0.02 × 0.02 × 0.01
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan [X-AREA (Stoe, 2020[Stoe (2020). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]) based on Koziskova et al., (2016[Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136-140.])]
Tmin, Tmax 0.068, 0.362
No. of measured, independent and observed [I > 2σ(I)] reflections 2012, 746, 688
Rint 0.038
(sin θ/λ)max−1) 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.08
No. of reflections 746
No. of parameters 50
Δρmax, Δρmin (e Å−3) 1.84, −1.05
Absolute structure Flack x determined using 266 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.012 (17)
Computer programs: X-AREA (Stoe, 2020[Stoe (2020). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2020[Brandenburg, K. (2020). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 1]
Figure 1
The closest contacts between one [BrF4] anion and surrounding Ba2+ cations. Displacement ellipsoids are shown at the 50% probability level. [Symmetry codes: (xiii) x + [{1\over 2}], y + [{1\over 2}], z + [{1\over 2}]; (xiv) x + [{1\over 2}], y − [{1\over 2}], z + [{1\over 2}].]
[Figure 2]
Figure 2
The crystal structure of Ba[BrF4]2 in a projection along the b axis. Displacement ellipsoids are shown at the 50% probability level.

Synthesis and crystallization

Tiny crystals of barium tetra­fluorido­bromate(III) were obtained by direct reaction of bromine trifluoride with barium fluoride in a closed Teflon vessel. In contrast to Rb[BrF4] (Malin et al., 2019[Malin, A. V., Ivlev, S. I., Ostvald, R. V. & Kraus, F. (2019). IUCrData, 4, x191595.]) and Cs[BrF4] (Malin et al., 2020[Malin, A. V., Ivlev, S. I., Ostvald, R. V. & Kraus, F. (2020). IUCrData, 5, x200114.]), it was not possible to improve the crystal quality by melting and recrystallization since Ba[BrF4]2 decomposes before reaching its melting point.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Because of very small size of the crystals, we had to employ a diffractometer with a Cu source to improve the reflection intensities at the cost of a more complicated absorption correction.

Structural data


Computing details top

Data collection: X-AREA (Stoe, 2020); cell refinement: X-AREA (Stoe, 2020); data reduction: X-AREA (Stoe, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Barium bis[tetrafluoridobromate(III)] top
Crystal data top
Ba2+·2BrF4Dx = 4.042 Mg m3
Mr = 449.16Cu Kα radiation, λ = 1.54186 Å
Tetragonal, I4Cell parameters from 2706 reflections
a = 9.5823 (6) Åθ = 6.5–79.3°
c = 8.0380 (11) ŵ = 55.60 mm1
V = 738.05 (14) Å3T = 100 K
Z = 4Block, colorless
F(000) = 7920.02 × 0.02 × 0.01 mm
Data collection top
Stoe Stadivari
diffractometer
746 independent reflections
Radiation source: GeniX 3D HF Cu688 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.038
Detector resolution: 5.81 pixels mm-1θmax = 79.1°, θmin = 6.5°
rotation method, ω scansh = 1112
Absorption correction: multi-scan
[X-AREA (Stoe, 2020) based on Koziskova et al., (2016)]
k = 106
Tmin = 0.068, Tmax = 0.362l = 109
2012 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.091P)2 + 5.3796P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.049(Δ/σ)max < 0.001
wR(F2) = 0.127Δρmax = 1.84 e Å3
S = 1.08Δρmin = 1.05 e Å3
746 reflectionsAbsolute structure: Flack x determined using 266 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
50 parametersAbsolute structure parameter: 0.012 (17)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.5000000.5000000.5000000.0243 (6)
Br10.77576 (19)0.84257 (18)0.6325 (2)0.0238 (5)
F10.7435 (16)0.6574 (14)0.5444 (17)0.041 (3)
Ba20.5000001.0000000.2500000.0293 (6)
F20.6192 (14)0.9136 (15)0.5334 (19)0.041 (3)
F30.8236 (13)1.0143 (13)0.7242 (17)0.036 (3)
F40.9413 (13)0.7748 (13)0.744 (2)0.040 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0219 (7)0.0219 (7)0.0291 (12)0.0000.0000.000
Br10.0251 (10)0.0197 (9)0.0267 (9)0.0021 (7)0.0004 (8)0.0000 (7)
F10.050 (8)0.030 (7)0.043 (7)0.013 (6)0.008 (6)0.008 (5)
Ba20.0257 (8)0.0257 (8)0.0364 (13)0.0000.0000.000
F20.033 (7)0.042 (7)0.048 (8)0.004 (6)0.009 (6)0.004 (6)
F30.042 (7)0.027 (6)0.038 (8)0.001 (5)0.006 (6)0.003 (5)
F40.034 (7)0.029 (6)0.057 (8)0.003 (6)0.017 (7)0.006 (6)
Geometric parameters (Å, º) top
Ba1—F3i2.791 (13)Br1—F21.829 (13)
Ba1—F3ii2.791 (13)Br1—F31.861 (12)
Ba1—F3iii2.791 (13)Br1—F41.934 (13)
Ba1—F3iv2.791 (13)Br1—F11.935 (13)
Ba1—F1v2.801 (14)Ba2—F2viii2.680 (14)
Ba1—F1vi2.801 (14)Ba2—F2ix2.680 (14)
Ba1—F1vii2.801 (14)Ba2—F2x2.680 (14)
Ba1—F12.801 (14)Ba2—F22.680 (14)
Ba1—F4ii3.034 (14)Ba2—F4xi2.693 (12)
Ba1—F4iv3.034 (14)Ba2—F4vii2.693 (12)
Ba1—F4iii3.034 (14)Ba2—F4iii2.693 (12)
Ba1—F4i3.034 (14)Ba2—F4xii2.693 (12)
F3i—Ba1—F3ii129.1 (3)F4ii—Ba1—F4iii94.6 (6)
F3i—Ba1—F3iii129.1 (3)F4iv—Ba1—F4iii117.4 (3)
F3ii—Ba1—F3iii74.9 (6)F3i—Ba1—F4i52.0 (4)
F3i—Ba1—F3iv74.9 (6)F3ii—Ba1—F4i95.7 (4)
F3ii—Ba1—F3iv129.1 (3)F3iii—Ba1—F4i168.1 (4)
F3iii—Ba1—F3iv129.1 (3)F3iv—Ba1—F4i62.5 (4)
F3i—Ba1—F1v105.4 (4)F1v—Ba1—F4i54.6 (4)
F3ii—Ba1—F1v67.9 (4)F1vi—Ba1—F4i128.6 (4)
F3iii—Ba1—F1v125.4 (4)F1vii—Ba1—F4i63.2 (4)
F3iv—Ba1—F1v62.1 (4)F1—Ba1—F4i114.0 (4)
F3i—Ba1—F1vi125.4 (4)F4ii—Ba1—F4i117.4 (3)
F3ii—Ba1—F1vi105.4 (4)F4iv—Ba1—F4i94.6 (6)
F3iii—Ba1—F1vi62.1 (4)F4iii—Ba1—F4i117.4 (3)
F3iv—Ba1—F1vi67.9 (4)F2—Br1—F392.6 (6)
F1v—Ba1—F1vi90.93 (7)F2—Br1—F4177.3 (6)
F3i—Ba1—F1vii67.9 (4)F3—Br1—F484.9 (6)
F3ii—Ba1—F1vii62.1 (4)F2—Br1—F192.9 (6)
F3iii—Ba1—F1vii105.4 (4)F3—Br1—F1174.4 (6)
F3iv—Ba1—F1vii125.4 (4)F4—Br1—F189.6 (6)
F1v—Ba1—F1vii90.93 (7)Br1—F1—Ba1132.3 (7)
F1vi—Ba1—F1vii165.4 (5)F2viii—Ba2—F2ix136.3 (4)
F3i—Ba1—F162.1 (4)F2viii—Ba2—F2x63.5 (6)
F3ii—Ba1—F1125.4 (4)F2ix—Ba2—F2x136.3 (4)
F3iii—Ba1—F167.9 (4)F2viii—Ba2—F2136.3 (4)
F3iv—Ba1—F1105.4 (4)F2ix—Ba2—F263.5 (6)
F1v—Ba1—F1165.4 (5)F2x—Ba2—F2136.3 (4)
F1vi—Ba1—F190.93 (7)F2viii—Ba2—F4xi114.0 (5)
F1vii—Ba1—F190.93 (7)F2ix—Ba2—F4xi109.7 (5)
F3i—Ba1—F4ii168.1 (4)F2x—Ba2—F4xi67.9 (5)
F3ii—Ba1—F4ii52.0 (4)F2—Ba2—F4xi68.4 (5)
F3iii—Ba1—F4ii62.5 (4)F2viii—Ba2—F4vii67.9 (5)
F3iv—Ba1—F4ii95.7 (4)F2ix—Ba2—F4vii68.4 (5)
F1v—Ba1—F4ii63.2 (4)F2x—Ba2—F4vii114.0 (5)
F1vi—Ba1—F4ii54.6 (4)F2—Ba2—F4vii109.7 (5)
F1vii—Ba1—F4ii114.0 (4)F4xi—Ba2—F4vii178.0 (7)
F1—Ba1—F4ii128.6 (4)F2viii—Ba2—F4iii68.4 (5)
F3i—Ba1—F4iv62.5 (4)F2ix—Ba2—F4iii114.0 (5)
F3ii—Ba1—F4iv168.1 (4)F2x—Ba2—F4iii109.7 (5)
F3iii—Ba1—F4iv95.7 (4)F2—Ba2—F4iii67.9 (5)
F3iv—Ba1—F4iv52.0 (4)F4xi—Ba2—F4iii90.018 (16)
F1v—Ba1—F4iv114.0 (4)F4vii—Ba2—F4iii90.018 (15)
F1vi—Ba1—F4iv63.2 (4)F2viii—Ba2—F4xii109.7 (5)
F1vii—Ba1—F4iv128.6 (4)F2ix—Ba2—F4xii67.9 (5)
F1—Ba1—F4iv54.6 (4)F2x—Ba2—F4xii68.4 (5)
F4ii—Ba1—F4iv117.4 (3)F2—Ba2—F4xii114.0 (5)
F3i—Ba1—F4iii95.7 (4)F4xi—Ba2—F4xii90.018 (15)
F3ii—Ba1—F4iii62.5 (4)F4vii—Ba2—F4xii90.018 (15)
F3iii—Ba1—F4iii52.0 (4)F4iii—Ba2—F4xii178.0 (7)
F3iv—Ba1—F4iii168.1 (4)Br1—F2—Ba2146.6 (8)
F1v—Ba1—F4iii128.6 (4)Br1—F3—Ba1xiii114.9 (6)
F1vi—Ba1—F4iii114.0 (4)Br1—F4—Ba2xiv120.5 (6)
F1vii—Ba1—F4iii54.6 (4)Br1—F4—Ba1xiii103.2 (5)
F1—Ba1—F4iii63.2 (4)Ba2xiv—F4—Ba1xiii130.1 (5)
F3—Br1—F2—Ba2103.8 (13)F2—Br1—F3—Ba1xiii158.2 (7)
F1—Br1—F2—Ba275.4 (13)F4—Br1—F3—Ba1xiii20.9 (7)
Symmetry codes: (i) y1/2, x+3/2, z+3/2; (ii) x1/2, y1/2, z1/2; (iii) x+3/2, y+3/2, z1/2; (iv) y+3/2, x1/2, z+3/2; (v) x+1, y+1, z; (vi) y, x+1, z+1; (vii) y+1, x, z+1; (viii) y1/2, x+3/2, z+1/2; (ix) x+1, y+2, z; (x) y+3/2, x+1/2, z+1/2; (xi) y, x+2, z+1; (xii) x1/2, y+1/2, z1/2; (xiii) x+1/2, y+1/2, z+1/2; (xiv) x+1/2, y1/2, z+1/2.
 

Funding information

We thank the Deutsche Forschungsgemeinschaft for generous funding.

References

First citationBrandenburg, K. (2020). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationIvlev, S., Sobolev, V., Hoelzel, M., Karttunen, A. J., Müller, T., Gerin, I., Ostvald, R. & Kraus, F. (2014). Eur. J. Inorg. Chem. pp. 6261–6267.  Web of Science CrossRef ICSD Google Scholar
First citationKiselev, N. I., Lapshin, O. N., Sadikova, A. T., Sukhoverkhov, V. F. & Churbanov, M. F. (1987). Visok. Veschestva, 3, 178–182.  Google Scholar
First citationKoziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136–140.  Web of Science CrossRef CAS Google Scholar
First citationMalin, A. V., Ivlev, S. I., Ostvald, R. V. & Kraus, F. (2019). IUCrData, 4, x191595.  Google Scholar
First citationMalin, A. V., Ivlev, S. I., Ostvald, R. V. & Kraus, F. (2020). IUCrData, 5, x200114.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSharpe, A. G. & Emeléus, H. J. (1948). J. Chem. Soc. pp. 2135–2138.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2020). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds