organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N′-Di­cyclo­hexyl-N-(phthaloylglyc­yl)urea

crossmark logo

aInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and bLaboratorio de Investigación del Jardín Botánico, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 July 2021; accepted 6 July 2021; online 13 July 2021)

The mol­ecular structure of the title compound {systematic name: 1,3-di­cyclo­hexyl-1-[2-(1,3-dioxo-2,3-di­hydro-1H-isoindol-2-yl)acet­yl]urea}, C23H29N3O4, derived from N,N′-di­cyclo­hexyl­urea, shows that the tertiary N atom substituted by a cyclo­hexyl and phthaloylglycyl groups adopts a perfectly planar geometry (bond-angle sum = 360.0°). In the same way as for N,N′-di­cyclo­hexyl­urea, the extended structure of the title compound features N—H⋯O hydrogen bonds, which generate chains of mol­ecules running in the [001] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The crystal structure of N,N′-di­cyclo­hexyl­urea (DCU) was first determined 50 years ago in space group P2/c (Coiro et al., 1971[Coiro, V. M., Giacomello, P. & Giglio, E. (1971). Acta Cryst. B27, 2112-2119.]), followed by numerous redeterminations, including a wrong claim for a P[\overline{1}] polymorph (Zhu et al., 2009[Zhu, X., Fan, J., Wu, Y., Wang, S., Zhang, L., Yang, G., Wei, Y., Yin, C., Zhu, H., Wu, S. & Zhang, H. (2009). Organometallics, 28, 3882-3888.]; the reported triclinic unit cell with Z′ = 3 can be restored to the Laue 2/m class, using the transformation matrix [1 0 −1/3, 0 0 −1/3, 0 1 −1/3], affording the cell parameters of the actual P2/c structure with Z′ = 1). This cheap compound is an entrance gate for many organic derivatives, through the functionalization of one or two of the amine groups (e.g. Orea Flores et al., 2006[Orea Flores, M. L., Galindo Guzmán, A., Gnecco Medina, D. & Bernès, S. (2006). Acta Cryst. E62, o2922-o2923.]; Imhof, 2007[Imhof, W. (2007). Acta Cryst. E63, o4036-o4037.]; Pinheiro et al., 2012[Pinheiro, A. C., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2012). Z. Kristallogr. 227, 167-177.]). While DCU has been found to be basic enough to coordinate to acid cations such as Nb5+ or La3+ (Aresta et al., 2010[Aresta, M., Dibenedetto, A., Stufano, P., Aresta, B. M., Maggi, S., Pápai, I., Rokob, T. A. & Gabriele, B. (2010). Dalton Trans. 39, 6985-6992.]; Zhang et al., 2016[Zhang, Y., Jia, H., Zhang, J., Zhu, S., Chen, K. & Wei, Y. (2016). Inorg. Chem. Commun. 70, 177-180.]), its derivatives obtained by functionalization of the amine groups cannot serve as ligands, because of the hindrance between urea substituents.

In the here-reported structure of the title compound, one amine, N12, is substituted by a phthaloylglycyl group (Fig. 1[link]). Atom N12 is thus bonded to three bulky groups, and displays a planar geometry: the sum of angles at N12 is exactly 360°. The cyclo­hexyl groups have the normal chair conformation, and the phthaloyl plane is inclined by 46.53 (8) and 44.92 (7)° with respect to the mean planes of the cyclo­hexyl rings. This conformation seems to be suitable for minimizing intra­molecular steric hindrance.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with displacement ellipsoids at the 30% probability level.

The non-substituted DCU amine site, N14, is the single available donor group for hydrogen bonding. Weak N—H⋯O hydrogen bonds are formed with the urea carbonyl group as acceptor (Table 1[link]), forming chains of connected mol­ecules in the crystal, parallel to [001]. Adjacent mol­ecules within this supra­molecular one-dimensional structure are related by the c glide planes of space group P21/c, while the 21 screw axis relates parallel chains in the crystal (Fig. 2[link]). A consequence of this arrangement is that the phthaloyl aromatic rings inter­act poorly in the crystal: the shortest distance between the centroids of symmetry-related benzene rings is 5.77 Å. The poor packing results in voids of ca 30 Å3, placed at the unit-cell origin and at the centre of the (b, c) unit-cell faces. However, these voids seem to be empty, and attempts to model disordered solvent in the crystal did not improve the refinement. The poor crystal packing is reflected in the quite low Kitaigorodskii index of 0.643 (Kitaigorodskii, 1965[Kitaigorodskii, A. I. (1965). Acta Cryst. 18, 585-590.]; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14⋯O13i 0.858 (18) 2.031 (19) 2.8741 (16) 167.0 (18)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure, showing the one-dimensional supra­molecular network formed by N—H⋯O hydrogen bonds (dashed orange bonds, see Table 1[link]). The green mol­ecule corresponds to the asymmetric unit. All H atoms were omitted, except H14, which is involved in hydrogen bonds.

Synthesis and crystallization

A solution of 0.5 g (6.66 mmol) of glycine, 0.5 g (3.38 mmol) of phthalic anhydride and 0.224 g of N,N′-di­cyclo­hexyl­urea (1 mmol) in 50 ml of glacial acetic acid was maintained under reflux for 30 min. Cooling of this mixture led to separation of a nearly white powder, which was filtered out and washed twice with 10 ml of water, to afford 0.254 g (yield: 62%) of the desired N,N′-di­cyclo­hexyl-N-(phthaloylglyc­yl)urea derivative. Single crystals were obtained by recrystallization from an EtOAc/hexa­ne/acetone mixed solvent system (7:2:1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H29N3O4
Mr 411.49
Crystal system, space group Monoclinic, P21/c
Temperature (K) 263
a, b, c (Å) 10.2705 (5), 23.5891 (18), 9.3482 (4)
β (°) 97.810 (4)
V3) 2243.8 (2)
Z 4
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.05
Crystal size (mm) 0.60 × 0.40 × 0.20
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.525, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 38438, 4522, 2974
Rint 0.039
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.05
No. of reflections 4522
No. of parameters 275
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.14
Computer programs: X-AREA (Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2018); cell refinement: X-AREA (Stoe & Cie, 2018); data reduction: X-AREA (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

1,3-Dicyclohexyl-1-[2-(1,3-dioxo-2,3-dihydro-1H-isoindol-2-yl)acetyl]urea top
Crystal data top
C23H29N3O4F(000) = 880
Mr = 411.49Dx = 1.218 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56083 Å
a = 10.2705 (5) ÅCell parameters from 17715 reflections
b = 23.5891 (18) Åθ = 2.3–25.4°
c = 9.3482 (4) ŵ = 0.05 mm1
β = 97.810 (4)°T = 263 K
V = 2243.8 (2) Å3Prism, colourless
Z = 40.60 × 0.40 × 0.20 mm
Data collection top
Stoe Stadivari
diffractometer
4522 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source2974 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.039
Detector resolution: 5.81 pixels mm-1θmax = 20.5°, θmin = 2.2°
ω scansh = 1212
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2018)
k = 2929
Tmin = 0.525, Tmax = 1.000l = 1111
38438 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.1585P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4522 reflectionsΔρmax = 0.16 e Å3
275 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.013 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Refinement. The refinement was straightforward. All H atoms were placed in idealized positions, except amine H atom (H14), which was found in a difference map, and refined with free coordinates (Table 1).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.50710 (14)0.65006 (7)0.53206 (16)0.0611 (4)
C20.44228 (17)0.66270 (9)0.3962 (2)0.0606 (5)
O20.45849 (15)0.70516 (7)0.32921 (18)0.0883 (5)
C30.35388 (16)0.61377 (8)0.35670 (19)0.0569 (5)
C40.2652 (2)0.60453 (11)0.2345 (2)0.0771 (6)
H4A0.2513070.6313250.1610110.093*
C50.1979 (2)0.55356 (13)0.2260 (3)0.0909 (8)
H5A0.1368210.5460090.1454040.109*
C60.2194 (2)0.51398 (12)0.3340 (4)0.0947 (8)
H6A0.1736710.4798740.3242360.114*
C70.3075 (2)0.52358 (10)0.4568 (3)0.0799 (6)
H7A0.3214400.4967450.5301850.096*
C80.37350 (17)0.57431 (9)0.46639 (19)0.0587 (5)
C90.47180 (18)0.59748 (10)0.5822 (2)0.0631 (5)
O90.51337 (16)0.57772 (8)0.69790 (15)0.0910 (5)
C100.60516 (18)0.68651 (10)0.6082 (2)0.0745 (6)
H10A0.5917110.6888730.7087640.089*
H10B0.5960250.7243420.5674320.089*
C110.74357 (16)0.66443 (8)0.59874 (16)0.0494 (4)
O110.76138 (12)0.61945 (6)0.54114 (13)0.0609 (3)
N120.84226 (13)0.69750 (6)0.66247 (12)0.0442 (3)
C130.81671 (15)0.75108 (7)0.72619 (14)0.0442 (4)
O130.82208 (13)0.75622 (6)0.85662 (10)0.0628 (4)
N140.78851 (14)0.79217 (6)0.63139 (13)0.0486 (4)
H140.7920 (17)0.7824 (8)0.544 (2)0.058*
C150.75042 (16)0.84949 (8)0.66761 (15)0.0489 (4)
H15A0.7257000.8484460.7652100.059*
C160.6322 (2)0.86825 (10)0.5665 (3)0.0840 (7)
H16A0.5602090.8422030.5730180.101*
H16B0.6524290.8674050.4681480.101*
C170.5906 (2)0.92800 (11)0.6028 (3)0.0994 (8)
H17A0.5167290.9396670.5331240.119*
H17B0.5621830.9279680.6975660.119*
C180.7003 (3)0.96934 (10)0.6012 (3)0.0908 (7)
H18A0.6722731.0063880.6302100.109*
H18B0.7225570.9724680.5039660.109*
C190.8200 (2)0.95069 (10)0.7026 (3)0.0971 (8)
H19A0.8007110.9522860.8012100.117*
H19B0.8919830.9765760.6942410.117*
C200.8620 (2)0.89019 (9)0.6689 (3)0.0835 (7)
H20A0.8931960.8897000.5755060.100*
H20B0.9338510.8784210.7410150.100*
C210.98021 (15)0.67802 (8)0.66926 (16)0.0481 (4)
H21A0.9851340.6539990.5846180.058*
C221.07413 (17)0.72744 (9)0.6609 (2)0.0608 (5)
H22A1.0693350.7529260.7414110.073*
H22B1.0486870.7483970.5722020.073*
C231.21452 (19)0.70585 (11)0.6649 (2)0.0810 (7)
H23A1.2207260.6830890.5796770.097*
H23B1.2737050.7378370.6636120.097*
C241.2556 (2)0.67079 (12)0.7979 (3)0.0869 (7)
H24A1.2563420.6943520.8830570.104*
H24B1.3439720.6565740.7960540.104*
C251.1626 (2)0.62139 (11)0.8063 (2)0.0832 (7)
H25A1.1887500.6004770.8949230.100*
H25B1.1680830.5959500.7258330.100*
C261.02084 (19)0.64185 (9)0.80252 (19)0.0630 (5)
H26A0.9626610.6094240.8015470.076*
H26B1.0131250.6638870.8885720.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0527 (8)0.0596 (11)0.0689 (9)0.0029 (7)0.0010 (7)0.0066 (8)
C20.0493 (10)0.0562 (13)0.0757 (11)0.0017 (9)0.0069 (8)0.0019 (10)
O20.0843 (10)0.0665 (11)0.1115 (11)0.0071 (8)0.0036 (8)0.0236 (9)
C30.0472 (9)0.0567 (13)0.0664 (10)0.0015 (8)0.0069 (8)0.0059 (9)
C40.0625 (12)0.0847 (18)0.0806 (13)0.0026 (11)0.0035 (10)0.0108 (12)
C50.0634 (13)0.095 (2)0.1089 (18)0.0025 (13)0.0064 (12)0.0388 (17)
C60.0702 (14)0.0702 (18)0.144 (2)0.0172 (12)0.0152 (15)0.0283 (17)
C70.0726 (14)0.0632 (16)0.1071 (16)0.0077 (11)0.0236 (12)0.0026 (13)
C80.0520 (10)0.0560 (13)0.0705 (10)0.0012 (8)0.0170 (8)0.0047 (9)
C90.0577 (11)0.0713 (15)0.0615 (10)0.0056 (9)0.0127 (8)0.0004 (10)
O90.0957 (11)0.1102 (15)0.0661 (8)0.0102 (10)0.0079 (7)0.0163 (9)
C100.0542 (11)0.0751 (16)0.0918 (13)0.0031 (10)0.0015 (10)0.0281 (12)
C110.0571 (10)0.0467 (11)0.0442 (7)0.0002 (8)0.0061 (7)0.0040 (8)
O110.0666 (8)0.0508 (9)0.0654 (7)0.0037 (6)0.0089 (6)0.0131 (6)
N120.0513 (7)0.0418 (9)0.0394 (6)0.0007 (6)0.0059 (5)0.0024 (6)
C130.0493 (8)0.0463 (11)0.0372 (7)0.0017 (7)0.0067 (6)0.0013 (7)
O130.0977 (9)0.0579 (9)0.0338 (5)0.0094 (7)0.0126 (5)0.0004 (5)
N140.0680 (9)0.0454 (9)0.0332 (6)0.0056 (7)0.0092 (6)0.0012 (6)
C150.0610 (10)0.0452 (11)0.0416 (7)0.0043 (8)0.0112 (7)0.0004 (7)
C160.0839 (15)0.0568 (15)0.1026 (15)0.0061 (11)0.0186 (12)0.0063 (12)
C170.0805 (15)0.0611 (17)0.149 (2)0.0171 (12)0.0117 (15)0.0091 (16)
C180.114 (2)0.0515 (15)0.1135 (18)0.0124 (13)0.0386 (15)0.0163 (13)
C190.0762 (15)0.0521 (15)0.168 (2)0.0070 (11)0.0330 (16)0.0266 (16)
C200.0651 (13)0.0546 (15)0.1344 (19)0.0020 (10)0.0267 (12)0.0204 (13)
C210.0522 (9)0.0488 (11)0.0435 (7)0.0045 (8)0.0071 (6)0.0039 (7)
C220.0546 (10)0.0628 (14)0.0659 (10)0.0028 (9)0.0111 (8)0.0024 (9)
C230.0540 (11)0.098 (2)0.0926 (14)0.0021 (11)0.0140 (10)0.0135 (13)
C240.0571 (12)0.102 (2)0.0968 (15)0.0174 (13)0.0077 (11)0.0246 (14)
C250.0848 (15)0.0796 (18)0.0807 (13)0.0313 (13)0.0056 (11)0.0015 (12)
C260.0728 (12)0.0526 (13)0.0610 (10)0.0086 (9)0.0001 (9)0.0055 (9)
Geometric parameters (Å, º) top
N1—C21.384 (2)C16—C171.524 (3)
N1—C91.391 (3)C16—H16A0.9700
N1—C101.437 (2)C16—H16B0.9700
C2—O21.205 (2)C17—C181.491 (4)
C2—C31.484 (3)C17—H17A0.9700
C3—C41.378 (3)C17—H17B0.9700
C3—C81.379 (3)C18—C191.512 (4)
C4—C51.384 (4)C18—H18A0.9700
C4—H4A0.9300C18—H18B0.9700
C5—C61.371 (4)C19—C201.536 (3)
C5—H5A0.9300C19—H19A0.9700
C6—C71.380 (4)C19—H19B0.9700
C6—H6A0.9300C20—H20A0.9700
C7—C81.372 (3)C20—H20B0.9700
C7—H7A0.9300C21—C261.521 (2)
C8—C91.481 (3)C21—C221.522 (3)
C9—O91.202 (2)C21—H21A0.9800
C10—C111.528 (3)C22—C231.525 (3)
C10—H10A0.9700C22—H22A0.9700
C10—H10B0.9700C22—H22B0.9700
C11—O111.215 (2)C23—C241.505 (3)
C11—N121.352 (2)C23—H23A0.9700
N12—C131.436 (2)C23—H23B0.9700
N12—C211.483 (2)C24—C251.515 (4)
C13—O131.2191 (16)C24—H24A0.9700
C13—N141.319 (2)C24—H24B0.9700
N14—C151.460 (2)C25—C261.530 (3)
N14—H140.858 (18)C25—H25A0.9700
C15—C201.494 (3)C25—H25B0.9700
C15—C161.500 (3)C26—H26A0.9700
C15—H15A0.9800C26—H26B0.9700
C2—N1—C9112.71 (16)C16—C17—H17A109.3
C2—N1—C10122.89 (19)C18—C17—H17B109.3
C9—N1—C10124.32 (17)C16—C17—H17B109.3
O2—C2—N1124.95 (19)H17A—C17—H17B108.0
O2—C2—C3129.83 (18)C17—C18—C19110.8 (2)
N1—C2—C3105.22 (17)C17—C18—H18A109.5
C4—C3—C8121.53 (19)C19—C18—H18A109.5
C4—C3—C2129.96 (19)C17—C18—H18B109.5
C8—C3—C2108.51 (16)C19—C18—H18B109.5
C3—C4—C5117.0 (2)H18A—C18—H18B108.1
C3—C4—H4A121.5C18—C19—C20111.7 (2)
C5—C4—H4A121.5C18—C19—H19A109.3
C6—C5—C4121.4 (2)C20—C19—H19A109.3
C6—C5—H5A119.3C18—C19—H19B109.3
C4—C5—H5A119.3C20—C19—H19B109.3
C5—C6—C7121.5 (2)H19A—C19—H19B107.9
C5—C6—H6A119.2C15—C20—C19111.25 (17)
C7—C6—H6A119.2C15—C20—H20A109.4
C8—C7—C6117.3 (2)C19—C20—H20A109.4
C8—C7—H7A121.3C15—C20—H20B109.4
C6—C7—H7A121.3C19—C20—H20B109.4
C7—C8—C3121.27 (19)H20A—C20—H20B108.0
C7—C8—C9130.6 (2)N12—C21—C26111.30 (13)
C3—C8—C9108.08 (17)N12—C21—C22111.66 (15)
O9—C9—N1124.9 (2)C26—C21—C22111.50 (14)
O9—C9—C8129.7 (2)N12—C21—H21A107.4
N1—C9—C8105.43 (16)C26—C21—H21A107.4
N1—C10—C11111.23 (17)C22—C21—H21A107.4
N1—C10—H10A109.4C21—C22—C23110.29 (18)
C11—C10—H10A109.4C21—C22—H22A109.6
N1—C10—H10B109.4C23—C22—H22A109.6
C11—C10—H10B109.4C21—C22—H22B109.6
H10A—C10—H10B108.0C23—C22—H22B109.6
O11—C11—N12123.39 (16)H22A—C22—H22B108.1
O11—C11—C10121.39 (16)C24—C23—C22111.21 (17)
N12—C11—C10115.18 (16)C24—C23—H23A109.4
C11—N12—C13121.49 (14)C22—C23—H23A109.4
C11—N12—C21119.66 (14)C24—C23—H23B109.4
C13—N12—C21118.84 (13)C22—C23—H23B109.4
O13—C13—N14125.09 (16)H23A—C23—H23B108.0
O13—C13—N12121.08 (15)C23—C24—C25110.95 (18)
N14—C13—N12113.82 (12)C23—C24—H24A109.4
C13—N14—C15124.48 (12)C25—C24—H24A109.4
C13—N14—H14114.4 (13)C23—C24—H24B109.4
C15—N14—H14121.1 (13)C25—C24—H24B109.4
N14—C15—C20111.57 (15)H24A—C24—H24B108.0
N14—C15—C16110.27 (15)C24—C25—C26111.14 (19)
C20—C15—C16111.69 (18)C24—C25—H25A109.4
N14—C15—H15A107.7C26—C25—H25A109.4
C20—C15—H15A107.7C24—C25—H25B109.4
C16—C15—H15A107.7C26—C25—H25B109.4
C15—C16—C17111.12 (19)H25A—C25—H25B108.0
C15—C16—H16A109.4C21—C26—C25110.52 (16)
C17—C16—H16A109.4C21—C26—H26A109.5
C15—C16—H16B109.4C25—C26—H26A109.5
C17—C16—H16B109.4C21—C26—H26B109.5
H16A—C16—H16B108.0C25—C26—H26B109.5
C18—C17—C16111.6 (2)H26A—C26—H26B108.1
C18—C17—H17A109.3
C9—N1—C2—O2178.38 (19)C10—C11—N12—C133.6 (2)
C10—N1—C2—O21.5 (3)O11—C11—N12—C212.5 (2)
C9—N1—C2—C31.5 (2)C10—C11—N12—C21175.45 (15)
C10—N1—C2—C3178.41 (16)C11—N12—C13—O13102.49 (18)
O2—C2—C3—C41.5 (4)C21—N12—C13—O1376.59 (19)
N1—C2—C3—C4178.66 (19)C11—N12—C13—N1477.72 (18)
O2—C2—C3—C8177.8 (2)C21—N12—C13—N14103.21 (16)
N1—C2—C3—C82.13 (19)O13—C13—N14—C154.4 (3)
C8—C3—C4—C50.7 (3)N12—C13—N14—C15175.80 (14)
C2—C3—C4—C5178.39 (19)C13—N14—C15—C20102.1 (2)
C3—C4—C5—C60.5 (3)C13—N14—C15—C16133.17 (18)
C4—C5—C6—C71.1 (4)N14—C15—C16—C17179.85 (19)
C5—C6—C7—C80.4 (4)C20—C15—C16—C1755.5 (3)
C6—C7—C8—C30.8 (3)C15—C16—C17—C1856.4 (3)
C6—C7—C8—C9179.4 (2)C16—C17—C18—C1955.8 (3)
C4—C3—C8—C71.4 (3)C17—C18—C19—C2054.6 (3)
C2—C3—C8—C7177.87 (17)N14—C15—C20—C19178.28 (19)
C4—C3—C8—C9178.77 (17)C16—C15—C20—C1954.4 (3)
C2—C3—C8—C91.9 (2)C18—C19—C20—C1554.0 (3)
C2—N1—C9—O9178.78 (18)C11—N12—C21—C2687.41 (17)
C10—N1—C9—O94.4 (3)C13—N12—C21—C2691.68 (18)
C2—N1—C9—C80.4 (2)C11—N12—C21—C22147.27 (14)
C10—N1—C9—C8177.23 (16)C13—N12—C21—C2233.64 (17)
C7—C8—C9—O92.9 (3)N12—C21—C22—C23178.80 (14)
C3—C8—C9—O9177.28 (19)C26—C21—C22—C2355.99 (19)
C7—C8—C9—N1178.76 (19)C21—C22—C23—C2456.7 (2)
C3—C8—C9—N11.02 (19)C22—C23—C24—C2557.2 (3)
C2—N1—C10—C11101.7 (2)C23—C24—C25—C2656.5 (2)
C9—N1—C10—C1174.8 (2)N12—C21—C26—C25179.09 (16)
N1—C10—C11—O114.7 (3)C22—C21—C26—C2555.5 (2)
N1—C10—C11—N12177.35 (16)C24—C25—C26—C2155.4 (2)
O11—C11—N12—C13178.43 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···N140.972.553.114 (3)117
N14—H14···O13i0.858 (18)2.031 (19)2.8741 (16)167.0 (18)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

MGH-L is grateful for Perfil Deseable, PRODEP (Secretaría de Educación Pública, Mexico).

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant Nos. 268178 and 171508).

References

First citationAresta, M., Dibenedetto, A., Stufano, P., Aresta, B. M., Maggi, S., Pápai, I., Rokob, T. A. & Gabriele, B. (2010). Dalton Trans. 39, 6985–6992.  CSD CrossRef CAS PubMed Google Scholar
First citationCoiro, V. M., Giacomello, P. & Giglio, E. (1971). Acta Cryst. B27, 2112–2119.  CSD CrossRef IUCr Journals Google Scholar
First citationImhof, W. (2007). Acta Cryst. E63, o4036–o4037.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitaigorodskii, A. I. (1965). Acta Cryst. 18, 585–590.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOrea Flores, M. L., Galindo Guzmán, A., Gnecco Medina, D. & Bernès, S. (2006). Acta Cryst. E62, o2922–o2923.  CSD CrossRef IUCr Journals Google Scholar
First citationPinheiro, A. C., de Souza, M. V. N., Wardell, J. L. & Wardell, S. M. S. V. (2012). Z. Kristallogr. 227, 167–177.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2018). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Jia, H., Zhang, J., Zhu, S., Chen, K. & Wei, Y. (2016). Inorg. Chem. Commun. 70, 177–180.  CSD CrossRef CAS Google Scholar
First citationZhu, X., Fan, J., Wu, Y., Wang, S., Zhang, L., Yang, G., Wei, Y., Yin, C., Zhu, H., Wu, S. & Zhang, H. (2009). Organometallics, 28, 3882–3888.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds