organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

tert-Butyl 3-amino-5-bromo-1H-indazole-1-carboxyl­ate

crossmark logo

aPrincipal (Retired), Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India, and bDepartment of Chemistry, RV College of Engineering, Bangalore 560 059, Karnataka, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 June 2021; accepted 6 July 2021; online 9 July 2021)

In the title compound, C12H14BrN3O2, the pyrazole and benzene rings are nearly co-planar with a dihedral angle between the rings of 2.36 (5)°. In the crystal, inversion dimers linked by pairwise N—H⋯N hydrogen bonds generate R22(8) loops. The dimers are linked into a three-dimensional network by weak aromatic ππ stacking inter­actions [centroid–centroid separation = 3.7394 (6) Å] and C—H⋯O and C—H⋯Br hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indazole derivatives possess pharmacological properties against infectious, neurodegenerative and inflammatory disorders and are also good anti-microbial agents (e.g., Kusanur & Mahesh, 2013[Kusanur, R. & Mahesh, R. (2013). Int. J. Life Pharma. Res. 3, 6-10.]). To generate a library of compounds using 3-amino-6-bromo indazole, the boc protection of the ring NH group was carried out to form the title compound. From the crystal data, it is confirmed that, as expected, the boc protection happened only at the ring NH grouping.

In this structure (Fig. 1[link]), the fused pyrazole (N1/N2/C7/C6/C1) and benzene (C1–C6) rings are nearly co-planar, subtending a dihedral angle of 2.36 (5)°. The dihedral angle between the C8/O1/O2 ester group and the fused-ring system is 10.01 (4)°. One of the methyl groups (C10) of the tert-butyl substituent lies close to the ester-group plane [displacement = −0.068 (1) Å], whereas C11 and C12 are displaced above and below it. Very weak C2—H2⋯O2, C11—H11C⋯O2 and C12—H12B⋯O2 intra­molecular inter­actions are present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.95 2.46 2.9609 (13) 113
C11—H11C⋯O2 0.98 2.38 2.9559 (15) 117
C12—H12B⋯O2 0.98 2.46 3.0475 (15) 118
N3—H3B⋯N2i 0.865 (18) 2.165 (19) 3.0249 (12) 172.8 (16)
C2—H2⋯O2ii 0.95 2.62 3.4133 (12) 141
C5—H5⋯Br1iii 0.95 3.11 3.8871 (10) 140
C12—H12A⋯O2iv 0.98 2.62 3.5582 (14) 161
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+2, -y+1, -z+1]; (iii) [-x+2, -y+2, -z]; (iv) [x-1, y, z].
[Figure 1]
Figure 1
A view of the structure of the title compound with displacement ellipsoids drawn at the 70% probability level.

In the extended structure, pairwise N3—H3B⋯N2 links form centrosymmetric dimers with an R22(8) ring motif (Fig. 2[link]). The dimers are linked into a three-dimensional network by C2—H2⋯O2, C5—H5⋯Br1 and C12—H12A⋯O2 hydrogen bonds and a ππ stacking inter­action (Fig. 3[link]) also occurs with Cg1⋯Cg1(2 − x, 1 − y, −z) = 3.7394 (6) Å, where Cg1 is the centroid of the pyrazole ring.

[Figure 2]
Figure 2
Partial packing viewed along b-axis direction showing the R22(8) ring motif.
[Figure 3]
Figure 3
A view of the ππ inter­action along the a-axis direction.

Synthesis and crystallization

5-Bromo-1H-indazol-3-amine (1): To a solution of 5-bromo-2-fluoro benzo­nitrile (1.0 mmol) in ethanol (20 ml) was added hydrazine hydrate (99%) (10.0 mmol). The reaction mixture was heated in sealed tube at 343 K for 4 h and progress of the reaction was monitored by TLC. The reaction mixture was concentrated to dryness. The brown-coloured solid was purified by recrystallization from ethanol solution to afford pale-yellow needles (90%), m.p. 407 K (Fig. 4[link]).

[Figure 4]
Figure 4
Synthesis scheme for the title compound.

tert-Butyl 3-amino-5-bromo-1H-indazole-1-carboxyl­ate (2): To a solution of compound (1) (5.0 mmol) in di­chloro­methane (40 ml) was added DMAP (5.0 mmol). The reaction mixture cooled to 273 K and boc anhydride (5.0 mmol) was added. The reaction mixture was slowly warmed to room temperature and stirred for 15 h. Progress of the reaction was monitored by TLC. The reaction mixture was diluted with di­chloro­methane (50 ml) and washed with water and brine (25 ml), dried over anhydrous sodium sulfate and concentrated. The crude compound was purified by column chromatography (silica gel, 20–30% ethyl acetate in hexa­ne) to afford a gummy solid, which solidifies as transparent crystals after 2 d (62%), m.p. 389 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H14BrN3O2
Mr 312.17
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 5.8281 (2), 10.5313 (3), 11.0917 (3)
α, β, γ (°) 85.954 (1), 78.801 (2), 75.105 (1)
V3) 645.23 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.18
Crystal size (mm) 0.45 × 0.32 × 0.30
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.502, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 19603, 7076, 5872
Rint 0.018
(sin θ/λ)max−1) 0.895
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.08
No. of reflections 7076
No. of parameters 174
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.59, −0.53
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

tert-Butyl 3-amino-5-bromo-1H-indazole-1-carboxylate top
Crystal data top
C12H14BrN3O2F(000) = 316
Mr = 312.17Dx = 1.607 Mg m3
Triclinic, P1Melting point: 389 K
a = 5.8281 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5313 (3) ÅCell parameters from 2120 reflections
c = 11.0917 (3) Åθ = 2.7–25.5°
α = 85.954 (1)°µ = 3.18 mm1
β = 78.801 (2)°T = 100 K
γ = 75.105 (1)°Fragment, colourless
V = 645.23 (3) Å30.45 × 0.32 × 0.30 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
5872 reflections with I > 2σ(I)
φ and ω scansRint = 0.018
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 39.5°, θmin = 1.9°
Tmin = 0.502, Tmax = 0.748h = 1010
19603 measured reflectionsk = 1818
7076 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.1773P]
where P = (Fo2 + 2Fc2)/3
7076 reflections(Δ/σ)max = 0.002
174 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The amino –NH2 H atoms were located in a difference Fourier map and their positions were freely refined. The C-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were refined with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.90907 (17)0.59306 (9)0.21941 (9)0.01265 (14)
C21.04771 (18)0.62182 (10)0.29904 (9)0.01532 (16)
H21.0637440.5742730.3742420.018*
C31.16027 (19)0.72288 (10)0.26285 (10)0.01661 (17)
H31.2554050.7457570.3143330.020*
C41.13572 (18)0.79194 (10)0.15122 (10)0.01534 (16)
C51.00073 (18)0.76403 (10)0.07169 (9)0.01467 (16)
H50.9871320.8110060.0039820.018*
C60.88544 (17)0.66311 (9)0.10852 (9)0.01246 (14)
C70.73941 (17)0.60237 (9)0.05102 (9)0.01226 (14)
C80.76837 (18)0.40037 (10)0.31328 (9)0.01421 (15)
C90.61429 (18)0.20590 (10)0.36754 (9)0.01514 (16)
C100.5067 (2)0.12827 (12)0.29308 (11)0.0236 (2)
H10A0.3564300.1840900.2723050.035*
H10B0.4726950.0515480.3414950.035*
H10C0.6215700.0990560.2173510.035*
C110.8457 (2)0.11997 (11)0.40268 (11)0.02108 (19)
H11A0.9636380.0904410.3280040.032*
H11B0.8103980.0434170.4509340.032*
H11C0.9121100.1707190.4517210.032*
C120.4299 (2)0.26645 (12)0.47786 (11)0.0218 (2)
H12A0.2850950.3204780.4500720.033*
H12B0.4989110.3214610.5210260.033*
H12C0.3866700.1964750.5336950.033*
Br11.30179 (2)0.92671 (2)0.10637 (2)0.01982 (3)
N10.78125 (15)0.49788 (8)0.22385 (8)0.01335 (13)
N20.67956 (15)0.50413 (8)0.11849 (7)0.01299 (13)
N30.67793 (17)0.63640 (9)0.06185 (8)0.01576 (15)
O10.66674 (15)0.31183 (8)0.27930 (7)0.01632 (13)
O20.84393 (16)0.40048 (8)0.40767 (7)0.01973 (15)
H3A0.669 (3)0.7159 (19)0.0811 (17)0.029 (5)*
H3B0.575 (3)0.6006 (17)0.0839 (16)0.025 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0122 (4)0.0141 (4)0.0128 (3)0.0042 (3)0.0033 (3)0.0017 (3)
C20.0155 (4)0.0186 (4)0.0141 (4)0.0059 (3)0.0051 (3)0.0017 (3)
C30.0160 (4)0.0194 (4)0.0172 (4)0.0068 (3)0.0054 (3)0.0041 (3)
C40.0148 (4)0.0145 (4)0.0181 (4)0.0059 (3)0.0020 (3)0.0031 (3)
C50.0160 (4)0.0137 (4)0.0156 (4)0.0059 (3)0.0031 (3)0.0004 (3)
C60.0123 (4)0.0132 (4)0.0131 (3)0.0039 (3)0.0038 (3)0.0009 (3)
C70.0119 (3)0.0136 (4)0.0124 (3)0.0042 (3)0.0032 (3)0.0006 (3)
C80.0144 (4)0.0157 (4)0.0136 (4)0.0049 (3)0.0041 (3)0.0008 (3)
C90.0158 (4)0.0163 (4)0.0147 (4)0.0065 (3)0.0044 (3)0.0039 (3)
C100.0311 (6)0.0252 (5)0.0218 (5)0.0178 (4)0.0103 (4)0.0064 (4)
C110.0169 (4)0.0192 (4)0.0260 (5)0.0022 (3)0.0055 (4)0.0031 (4)
C120.0161 (4)0.0275 (5)0.0193 (4)0.0035 (4)0.0008 (4)0.0033 (4)
Br10.01951 (5)0.01624 (5)0.02640 (6)0.00958 (4)0.00275 (4)0.00328 (4)
N10.0151 (3)0.0157 (3)0.0120 (3)0.0067 (3)0.0058 (3)0.0013 (3)
N20.0140 (3)0.0156 (3)0.0115 (3)0.0055 (3)0.0052 (3)0.0005 (3)
N30.0205 (4)0.0166 (4)0.0136 (3)0.0080 (3)0.0077 (3)0.0022 (3)
O10.0216 (3)0.0177 (3)0.0137 (3)0.0105 (3)0.0069 (3)0.0039 (2)
O20.0260 (4)0.0218 (4)0.0159 (3)0.0096 (3)0.0111 (3)0.0037 (3)
Geometric parameters (Å, º) top
C1—N11.3874 (12)C9—O11.4835 (12)
C1—C61.4006 (13)C9—C101.5177 (15)
C1—C21.4019 (13)C9—C121.5185 (16)
C2—C31.3859 (15)C9—C111.5222 (15)
C2—H20.9500C10—H10A0.9800
C3—C41.4039 (15)C10—H10B0.9800
C3—H30.9500C10—H10C0.9800
C4—C51.3815 (14)C11—H11A0.9800
C4—Br11.9021 (10)C11—H11B0.9800
C5—C61.3954 (13)C11—H11C0.9800
C5—H50.9500C12—H12A0.9800
C6—C71.4453 (13)C12—H12B0.9800
C7—N21.3141 (12)C12—H12C0.9800
C7—N31.3671 (12)N1—N21.3998 (11)
C8—O21.2122 (12)N3—H3A0.840 (19)
C8—O11.3351 (12)N3—H3B0.865 (18)
C8—N11.3824 (13)
N1—C1—C6106.05 (8)C10—C9—C11110.23 (10)
N1—C1—C2132.33 (9)C12—C9—C11112.91 (9)
C6—C1—C2121.59 (9)C9—C10—H10A109.5
C3—C2—C1116.85 (9)C9—C10—H10B109.5
C3—C2—H2121.6H10A—C10—H10B109.5
C1—C2—H2121.6C9—C10—H10C109.5
C2—C3—C4120.95 (9)H10A—C10—H10C109.5
C2—C3—H3119.5H10B—C10—H10C109.5
C4—C3—H3119.5C9—C11—H11A109.5
C5—C4—C3122.74 (9)C9—C11—H11B109.5
C5—C4—Br1118.85 (8)H11A—C11—H11B109.5
C3—C4—Br1118.40 (7)C9—C11—H11C109.5
C4—C5—C6116.38 (9)H11A—C11—H11C109.5
C4—C5—H5121.8H11B—C11—H11C109.5
C6—C5—H5121.8C9—C12—H12A109.5
C5—C6—C1121.49 (8)C9—C12—H12B109.5
C5—C6—C7133.15 (9)H12A—C12—H12B109.5
C1—C6—C7105.28 (8)C9—C12—H12C109.5
N2—C7—N3122.92 (9)H12A—C12—H12C109.5
N2—C7—C6111.54 (8)H12B—C12—H12C109.5
N3—C7—C6125.46 (9)C8—N1—C1126.18 (8)
O2—C8—O1127.43 (9)C8—N1—N2122.33 (8)
O2—C8—N1121.75 (9)C1—N1—N2111.27 (8)
O1—C8—N1110.82 (8)C7—N2—N1105.85 (8)
O1—C9—C10102.25 (8)C7—N3—H3A113.2 (13)
O1—C9—C12109.28 (9)C7—N3—H3B118.0 (12)
C10—C9—C12110.83 (9)H3A—N3—H3B117.7 (17)
O1—C9—C11110.84 (8)C8—O1—C9119.35 (8)
N1—C1—C2—C3177.48 (10)O2—C8—N1—C110.52 (16)
C6—C1—C2—C30.02 (15)O1—C8—N1—C1169.07 (9)
C1—C2—C3—C40.25 (15)O2—C8—N1—N2175.37 (10)
C2—C3—C4—C50.10 (16)O1—C8—N1—N25.04 (13)
C2—C3—C4—Br1178.60 (8)C6—C1—N1—C8175.41 (9)
C3—C4—C5—C60.68 (15)C2—C1—N1—C82.34 (17)
Br1—C4—C5—C6179.17 (7)C6—C1—N1—N20.75 (11)
C4—C5—C6—C10.91 (14)C2—C1—N1—N2177.00 (10)
C4—C5—C6—C7177.26 (10)N3—C7—N2—N1177.97 (9)
N1—C1—C6—C5177.46 (9)C6—C7—N2—N10.84 (11)
C2—C1—C6—C50.59 (15)C8—N1—N2—C7175.90 (9)
N1—C1—C6—C70.22 (10)C1—N1—N2—C71.00 (11)
C2—C1—C6—C7177.83 (9)O2—C8—O1—C96.31 (16)
C5—C6—C7—N2176.37 (10)N1—C8—O1—C9174.13 (8)
C1—C6—C7—N20.41 (11)C10—C9—O1—C8179.09 (9)
C5—C6—C7—N30.68 (18)C12—C9—O1—C863.43 (12)
C1—C6—C7—N3177.45 (9)C11—C9—O1—C861.63 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.952.462.9609 (13)113
C11—H11C···O20.982.382.9559 (15)117
C12—H12B···O20.982.463.0475 (15)118
N3—H3B···N2i0.865 (18)2.165 (19)3.0249 (12)172.8 (16)
C2—H2···O2ii0.952.623.4133 (12)141
C5—H5···Br1iii0.953.113.8871 (10)140
C12—H12A···O2iv0.982.623.5582 (14)161
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z; (iv) x1, y, z.
 

Acknowledgements

MS thanks the academic and administrative authorities of RV College of Engineering for their support and encouragement. The authors are grateful to Dr M. Zeller for the single-crystal X-ray diffraction data.

References

First citationBruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKusanur, R. & Mahesh, R. (2013). Int. J. Life Pharma. Res. 3, 6–10.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds