metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethanol(nitrato)[tris­­(4-cyano-3-phenyl-1H-pyrazol-1-yl)hydroborato]nickel(II)

crossmark logo

aDepartment of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount St., Wichita, KS 67260-0051, USA
*Correspondence e-mail: david.eichhorn@wichita.edu

Edited by R. J. Butcher, Howard University, USA (Received 3 June 2021; accepted 5 July 2021; online 9 July 2021)

The synthesis and structure is reported of TpPh,4CNNi(NO3)(EtOH) or [Ni(C30H19BN9)(NO3)(C2H6O)], the first half-sandwich complex of a cyano­scorpionate ligand. The pseudo­octa­hedral coordination sphere of the NiII ion is comprised of a tridentate tris­(4-cyano-3-phenyl­pyrazol­yl)borate ligand, a bidentate nitrate ligand and a neutral ethanol ligand. The phenyl substituents on the TpPh,4CN ligand are relatively parallel to the planes of the ethanol and nitrate ligands. An inter­molecular hydrogen-bonding inter­action is evident between the ethanol OH group and the pyrazole CN substituent. The ethanol ligand was modeled with a 0.572 (13)/0.428 (13) disorder of the methyl C atom.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Scorpionate, or tris­pyrazolylborate (Tp), ligands were shown early in their existence to readily form octa­hedral sandwich complexes (Tp2M) with transition metals (Trofimenko, 1966[Trofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842-1844.]; Trofimenko, 1967[Trofimenko, S. (1967). J. Am. Chem. Soc. 89, 3170-3177.]). Trofimenko and coworkers reported, in 1987, the synthesis of TpPh, which they showed was resistant to formation of such complexes due to the bulk of the phenyl substituents (Trofimenko et al., 1987[Trofimenko, S., Calabrese, J. C. & Thompson, J. S. (1987). Inorg. Chem. 26, 1507-1514.]). Eichhorn and Armstrong showed that this ligand could still form sandwich compounds with increased M—N bond lengths (Eichhorn & Armstrong, 1990[Eichhorn, D. M. & Armstrong, W. H. (1990). Inorg. Chem. 29, 3607-3612.]). Eichhorn and coworkers later reported the cyano­scorpionates, including the TpPh,4CN ligand, for which to date only sandwich compounds have been reported, including those with two borotropic shifted TpPh,4CN ligands (Zhao et al., 2007[Zhao, N., Van Stipdonk, M. J., Bauer, C., Campana, C. & Eichhorn, D. M. (2007). Inorg. Chem. 46, 8662-8667.]) and those with one TpPh,4CN and one BpPh,4CN (bis­pyrazolylborate) ligand (Kadel et al., 2016[Kadel, L. R., Bullinger, J. R., Baum, R. R., Moore, C. E., Tierney, D. L. & Eichhorn, D. M. (2016). Eur. J. Inorg. Chem. pp. 2543-2551.]). The title NiII compound (Fig. 1[link]) is the first reported `half-sandwich' complex of TpPh,4CN. The Ni atom is coordinated by one TpPh,4CN ligand, occupying one face of the pseudo-octa­hedral coordination sphere, one bidentate nitrate ligand and one ethanol ligand. Selected bond distances and angles are given in Table 1[link]. The Ni—N bond lengths [2.079 (2)–2.103 (2) Å; Table 1[link]] are similar to those in TpPh,4CNBpPh,4CNNi (Kadel et al., 2016[Kadel, L. R., Bullinger, J. R., Baum, R. R., Moore, C. E., Tierney, D. L. & Eichhorn, D. M. (2016). Eur. J. Inorg. Chem. pp. 2543-2551.]) and shorter than those in the related full sandwich compound TpPh,Me2Ni (Deb et al., 2012[Deb, T., Rohde, G. T., Young, V. G. & Jensen, M. P. (2012). Inorg. Chem. 51, 7257-7270.]), in which the steric inter­actions between the phenyl substituents on the two ligands require the ligands to pull away from the metal. The coordination sphere bond angles are as expected for an octa­hedral complex involving a bidentate nitrate ligand, with only the in-plane angles involving the nitrate [O—Ni—O = 61.98 (8), N—Ni—O = 100.89 (8) and 106.86 (8)°] deviating significantly from ideal octa­hedral values. The phenyl rings are rotated such that they are relatively parallel to the other ligands, with dihedral angles between the C—C—O plane of the ethanol ligand and the two phenyl rings surrounding it of 17.278 (7) and 339.433 (16)°, and between the plane of the nitrate ligand and the adjacent phenyl ring of 19.578 (7)°. This results in dihedral angles between the phenyl rings and the pyrazole rings to which they are attached of 51.981 (11) and 52.528 (11)° for the groups surrounding the ethanol ligand and 62.302 (13)° for that adjacent to the nitrate, which are normal for a phenyl­pyrazole moiety and allow for minimization of the inter­action between the ortho-H on the phenyl ring and the 4-substituent (or H) on the pyrazole. Full sandwich compounds, because of the need to alleviate inter-ligand inter­actions, are forced to have smaller Ph/pz angles, as evidenced by those in TpPh,Me2Ni (12–30°) (Deb et al., 2012[Deb, T., Rohde, G. T., Young, V. G. & Jensen, M. P. (2012). Inorg. Chem. 51, 7257-7270.]), TpPh2M (M = Fe, Mn, Cd; 9–31°; Eichhorn & Armstrong, 1990[Eichhorn, D. M. & Armstrong, W. H. (1990). Inorg. Chem. 29, 3607-3612.]; Reger et al., 1995[Reger, D. L., Myers, S. M., Mason, S. S., Darensbourg, D. J., Holtcamp, M. W., Reibenspies, J. H., Lipton, A. S. & Ellis, P. D. (1995). J. Am. Chem. Soc. 117, 10998-11005.]), and TpPh,4CN2M (M = Fe, Co, Mn; 42–53°; Zhao et al., 2007[Zhao, N., Van Stipdonk, M. J., Bauer, C., Campana, C. & Eichhorn, D. M. (2007). Inorg. Chem. 46, 8662-8667.]). An inter­molecular hydrogen-bonding inter­action exists between the ethanol ligand and the CN substituent on one Tp pyrazole ring (Table 2[link]).

Table 1
Selected geometric parameters (Å, °)

Ni1—O4 2.071 (2) Ni1—N2 2.079 (2)
Ni1—N5 2.087 (2) Ni1—O1 2.104 (2)
Ni1—N8 2.103 (2) Ni1—O2 2.0812 (19)
       
N5—Ni1—O1 106.86 (8) O2—Ni1—O1 61.98 (8)
N2—Ni1—O2 100.89 (8)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N9i 0.83 (3) 2.17 (3) 2.999 (4) 178 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Only the major component of the Me atom is shown.

Synthesis and crystallization

The title compound was synthesized by adding a solution of 0.200 g (0.36 mmol) of potassium tris­(4-cyano-3-phenyl­pyra­zol­yl)hydro­borate (KTpPh,4CN; Zhao et al., 2007[Zhao, N., Van Stipdonk, M. J., Bauer, C., Campana, C. & Eichhorn, D. M. (2007). Inorg. Chem. 46, 8662-8667.]) in 10 ml of acetone dropwise to a solution of Ni(NO3)2·6H2O (0.100 g, 0.36 mmol) in 5 ml of ethanol. After stirring for 5 minutes, the navy blue solution was filtered and the blue precipitate was washed with ethanol. X-ray quality crystals were grown by slow diffusion of ethanol into an aceto­nitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The ethanol ligand was modeled with a 0.572 (13)/0.428 (13) disorder of the methyl C atom.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C30H19BN9)(NO3)(C2H6O)]
Mr 683.14
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 16.627 (6), 18.030 (7), 21.293 (8)
V3) 6383 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.66
Crystal size (mm) 0.59 × 0.52 × 0.32
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.673, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 118458, 7103, 4543
Rint 0.065
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.03
No. of reflections 7103
No. of parameters 448
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.76, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SIR2004 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethanol(nitrato)[tris(4-cyano-3-phenyl-1H-pyrazol-1-yl)hydroborato]nickel(II) top
Crystal data top
[Ni(C30H19BN9)(NO3)(C2H6O)]Dx = 1.422 Mg m3
Mr = 683.14Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9305 reflections
a = 16.627 (6) Åθ = 3.0–22.8°
b = 18.030 (7) ŵ = 0.66 mm1
c = 21.293 (8) ÅT = 150 K
V = 6383 (4) Å3Block, light blue
Z = 80.59 × 0.52 × 0.32 mm
F(000) = 2816
Data collection top
Bruker APEXII CCD
diffractometer
7103 independent reflections
Radiation source: sealed X-ray tube4543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 5.6 pixels mm-1θmax = 27.5°, θmin = 3.7°
φ and ω scansh = 2120
Absorption correction: numerical
(SADABS; Bruker, 2013)
k = 2323
Tmin = 0.673, Tmax = 0.746l = 2727
118458 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0804P)2 + 1.0693P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7103 reflectionsΔρmax = 0.76 e Å3
448 parametersΔρmin = 0.32 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.46783 (2)0.32105 (2)0.75782 (2)0.04004 (13)
O40.45090 (12)0.34845 (12)0.85134 (10)0.0554 (5)
N40.59048 (13)0.20364 (12)0.75765 (10)0.0459 (5)
N70.51417 (12)0.21874 (12)0.65688 (10)0.0479 (5)
N50.57845 (12)0.27386 (11)0.78134 (10)0.0455 (5)
N10.44970 (14)0.15850 (13)0.75030 (10)0.0456 (5)
N80.49015 (12)0.29152 (11)0.66387 (10)0.0444 (5)
N20.41089 (12)0.22004 (11)0.77343 (10)0.0435 (5)
O30.38604 (17)0.50607 (12)0.71996 (12)0.0887 (7)
N100.41371 (17)0.44527 (13)0.73128 (11)0.0577 (6)
C220.49747 (15)0.26308 (16)0.56234 (13)0.0511 (7)
C120.68610 (15)0.22229 (14)0.82726 (13)0.0504 (7)
C210.51872 (15)0.20149 (17)0.59654 (14)0.0525 (7)
H210.53400.15470.57980.063*
C50.29602 (14)0.24381 (15)0.84526 (13)0.0482 (6)
C240.48020 (14)0.31881 (14)0.60640 (13)0.0432 (6)
C20.35174 (15)0.11721 (15)0.80951 (14)0.0537 (7)
C140.63667 (14)0.28587 (14)0.82355 (12)0.0458 (6)
C40.35099 (14)0.19523 (14)0.80997 (12)0.0457 (6)
C110.65437 (15)0.17294 (14)0.78480 (14)0.0496 (7)
H110.67470.12480.77620.060*
N90.49338 (19)0.27259 (18)0.44209 (14)0.0826 (8)
C100.25357 (16)0.30045 (15)0.81617 (13)0.0518 (6)
H100.25920.30820.77230.062*
C10.41527 (16)0.09678 (15)0.77214 (15)0.0569 (7)
H10.43180.04740.76340.068*
C230.49527 (19)0.26954 (18)0.49556 (16)0.0611 (8)
C250.45741 (14)0.39623 (15)0.59128 (12)0.0465 (6)
C150.64625 (15)0.35621 (15)0.85781 (13)0.0502 (7)
C130.75612 (18)0.21118 (17)0.86449 (15)0.0632 (8)
C270.48543 (19)0.52701 (18)0.58728 (15)0.0641 (8)
H270.51910.56760.59810.077*
C280.4170 (2)0.53909 (19)0.55438 (16)0.0732 (9)
H280.40240.58820.54280.088*
C260.50660 (17)0.45578 (16)0.60520 (13)0.0541 (7)
H260.55550.44780.62730.065*
N60.81161 (18)0.20048 (19)0.89414 (16)0.0960 (10)
C30.29669 (19)0.07076 (17)0.84334 (19)0.0744 (9)
C200.6497 (2)0.42321 (17)0.82685 (16)0.0735 (9)
H200.64440.42420.78240.088*
C60.28563 (18)0.23255 (19)0.90931 (15)0.0690 (9)
H60.31250.19290.92990.083*
C160.65492 (18)0.35574 (19)0.92228 (15)0.0637 (8)
H160.65360.31000.94430.076*
N30.2532 (2)0.03462 (18)0.87100 (18)0.1132 (12)
C90.20337 (18)0.34536 (18)0.85066 (17)0.0676 (8)
H90.17430.38380.83020.081*
C300.38781 (16)0.40902 (18)0.55660 (15)0.0653 (8)
H300.35350.36890.54590.078*
C70.2353 (2)0.2801 (2)0.94312 (17)0.0846 (10)
H70.22940.27370.98720.102*
C80.1946 (2)0.3357 (2)0.91353 (18)0.0764 (10)
H80.16030.36750.93680.092*
C190.6607 (2)0.4889 (2)0.85900 (19)0.0934 (12)
H190.66350.53460.83690.112*
C180.6677 (2)0.4876 (2)0.9229 (2)0.0931 (12)
H180.67400.53270.94530.112*
C290.36861 (19)0.4806 (2)0.53762 (17)0.0801 (10)
H290.32190.48910.51300.096*
C170.6655 (2)0.4213 (2)0.95511 (17)0.0780 (10)
H170.67120.42070.99950.094*
B10.52890 (17)0.16769 (17)0.71325 (17)0.0480 (7)
H1A0.54880.11830.69870.058*
O10.48821 (13)0.43502 (10)0.74386 (9)0.0553 (5)
O20.37070 (11)0.38682 (11)0.73135 (9)0.0562 (5)
C310.4158 (2)0.4038 (2)0.88379 (19)0.0963 (13)
H31A0.35800.40100.87290.116*0.572 (13)
H31B0.43610.45010.86430.116*0.572 (13)
H31C0.38400.37990.91740.116*0.428 (13)
H31D0.37660.42710.85490.116*0.428 (13)
C32A0.4179 (7)0.4169 (5)0.9490 (4)0.101 (4)0.572 (13)
H32A0.38340.38080.97040.152*0.572 (13)
H32B0.39860.46720.95770.152*0.572 (13)
H32C0.47330.41180.96420.152*0.572 (13)
C32B0.4565 (6)0.4602 (7)0.9114 (7)0.099 (5)0.428 (13)
H32D0.47440.44480.95330.149*0.428 (13)
H32E0.42110.50350.91520.149*0.428 (13)
H32F0.50330.47320.88570.149*0.428 (13)
H40.4630 (15)0.3142 (16)0.8759 (14)0.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0524 (2)0.0270 (2)0.0407 (2)0.00113 (13)0.00158 (13)0.00124 (14)
O40.0763 (12)0.0436 (12)0.0462 (12)0.0038 (10)0.0028 (10)0.0018 (10)
N40.0548 (11)0.0306 (12)0.0522 (14)0.0034 (10)0.0021 (10)0.0030 (10)
N70.0626 (12)0.0351 (12)0.0458 (14)0.0041 (10)0.0011 (10)0.0070 (11)
N50.0535 (11)0.0338 (13)0.0492 (13)0.0022 (9)0.0025 (10)0.0026 (10)
N10.0547 (11)0.0284 (12)0.0538 (15)0.0047 (10)0.0050 (9)0.0038 (10)
N80.0580 (11)0.0345 (12)0.0407 (13)0.0032 (10)0.0022 (10)0.0013 (10)
N20.0531 (11)0.0294 (12)0.0480 (13)0.0044 (9)0.0024 (10)0.0051 (10)
O30.135 (2)0.0379 (13)0.0930 (17)0.0297 (13)0.0026 (15)0.0070 (12)
N100.0906 (18)0.0320 (14)0.0506 (15)0.0094 (13)0.0056 (12)0.0011 (11)
C220.0545 (14)0.0569 (19)0.0418 (16)0.0010 (13)0.0016 (12)0.0085 (14)
C120.0508 (13)0.0425 (16)0.0579 (18)0.0007 (12)0.0047 (12)0.0049 (14)
C210.0626 (15)0.0471 (17)0.0478 (18)0.0010 (13)0.0021 (12)0.0143 (14)
C50.0495 (13)0.0447 (16)0.0505 (17)0.0061 (11)0.0008 (12)0.0010 (13)
C240.0470 (12)0.0440 (16)0.0385 (15)0.0008 (10)0.0007 (10)0.0017 (12)
C20.0584 (15)0.0334 (15)0.069 (2)0.0043 (12)0.0035 (13)0.0065 (14)
C140.0519 (13)0.0370 (15)0.0484 (16)0.0045 (11)0.0010 (12)0.0020 (13)
C40.0496 (13)0.0393 (16)0.0482 (16)0.0003 (11)0.0083 (12)0.0026 (12)
C110.0512 (13)0.0364 (15)0.0614 (18)0.0037 (11)0.0010 (13)0.0042 (13)
N90.108 (2)0.090 (2)0.0493 (18)0.0042 (17)0.0003 (16)0.0112 (16)
C100.0562 (14)0.0512 (17)0.0481 (16)0.0014 (13)0.0005 (12)0.0046 (13)
C10.0584 (15)0.0320 (16)0.080 (2)0.0033 (12)0.0101 (14)0.0009 (14)
C230.0725 (18)0.061 (2)0.050 (2)0.0016 (15)0.0000 (15)0.0106 (16)
C250.0539 (13)0.0471 (17)0.0384 (15)0.0024 (12)0.0038 (11)0.0017 (12)
C150.0536 (13)0.0453 (17)0.0516 (18)0.0026 (12)0.0090 (12)0.0001 (14)
C130.0588 (15)0.0551 (19)0.076 (2)0.0036 (14)0.0108 (15)0.0059 (16)
C270.085 (2)0.0492 (19)0.057 (2)0.0017 (15)0.0079 (16)0.0061 (15)
C280.089 (2)0.057 (2)0.073 (2)0.0104 (18)0.0012 (18)0.0193 (17)
C260.0648 (15)0.0495 (18)0.0481 (17)0.0026 (13)0.0068 (13)0.0064 (14)
N60.0773 (18)0.094 (2)0.116 (3)0.0064 (17)0.0359 (18)0.004 (2)
C30.0740 (19)0.0429 (19)0.106 (3)0.0052 (15)0.0088 (19)0.0059 (19)
C200.105 (2)0.049 (2)0.066 (2)0.0111 (17)0.0229 (18)0.0021 (17)
C60.0778 (19)0.069 (2)0.060 (2)0.0040 (16)0.0055 (16)0.0170 (17)
C160.0732 (18)0.062 (2)0.056 (2)0.0017 (15)0.0090 (15)0.0040 (16)
N30.112 (2)0.068 (2)0.160 (4)0.0303 (19)0.036 (2)0.015 (2)
C90.0640 (17)0.066 (2)0.072 (2)0.0116 (15)0.0034 (16)0.0066 (18)
C300.0590 (16)0.063 (2)0.074 (2)0.0024 (14)0.0077 (15)0.0116 (17)
C70.092 (2)0.105 (3)0.056 (2)0.014 (2)0.0274 (19)0.004 (2)
C80.0664 (18)0.084 (3)0.078 (3)0.0008 (17)0.0190 (18)0.015 (2)
C190.137 (3)0.053 (2)0.090 (3)0.014 (2)0.037 (2)0.006 (2)
C180.121 (3)0.062 (3)0.097 (3)0.004 (2)0.026 (2)0.029 (2)
C290.0684 (18)0.087 (3)0.086 (3)0.0123 (18)0.0122 (17)0.031 (2)
C170.094 (2)0.082 (3)0.059 (2)0.0029 (19)0.0154 (17)0.021 (2)
B10.0575 (16)0.0351 (18)0.051 (2)0.0062 (13)0.0023 (14)0.0067 (15)
O10.0778 (13)0.0328 (11)0.0553 (13)0.0067 (10)0.0019 (9)0.0011 (9)
O20.0644 (11)0.0387 (11)0.0657 (13)0.0056 (9)0.0004 (9)0.0015 (9)
C310.107 (3)0.105 (3)0.077 (3)0.005 (2)0.006 (2)0.048 (2)
C32A0.158 (8)0.076 (6)0.071 (5)0.015 (6)0.006 (5)0.030 (4)
C32B0.085 (6)0.081 (8)0.131 (12)0.003 (5)0.013 (6)0.045 (8)
Geometric parameters (Å, º) top
Ni1—O42.071 (2)C25—C301.392 (4)
Ni1—N52.087 (2)C15—C201.377 (4)
Ni1—N82.103 (2)C15—C161.380 (4)
Ni1—N22.079 (2)C13—N61.134 (4)
Ni1—O12.104 (2)C27—H270.9500
Ni1—O22.0812 (19)C27—C281.354 (4)
O4—C311.347 (4)C27—C261.385 (4)
O4—H40.83 (3)C28—H280.9500
N4—N51.378 (3)C28—C291.374 (5)
N4—C111.330 (3)C26—H260.9500
N4—B11.537 (4)C3—N31.137 (4)
N7—N81.380 (3)C20—H200.9500
N7—C211.324 (3)C20—C191.380 (4)
N7—B11.532 (4)C6—H60.9500
N5—C141.339 (3)C6—C71.398 (5)
N1—N21.375 (3)C16—H160.9500
N1—C11.335 (4)C16—C171.385 (4)
N1—B11.544 (4)C9—H90.9500
N8—C241.329 (3)C9—C81.358 (5)
N2—C41.341 (3)C30—H300.9500
O3—N101.213 (3)C30—C291.389 (4)
N10—O11.281 (3)C7—H70.9500
N10—O21.274 (3)C7—C81.362 (5)
C22—C211.374 (4)C8—H80.9500
C22—C241.404 (4)C19—H190.9500
C22—C231.427 (4)C19—C181.365 (5)
C12—C141.413 (3)C18—H180.9500
C12—C111.374 (4)C18—C171.378 (5)
C12—C131.423 (4)C29—H290.9500
C21—H210.9500C17—H170.9500
C5—C41.472 (4)B1—H1A1.0000
C5—C101.387 (4)C31—H31A0.9900
C5—C61.390 (4)C31—H31B0.9900
C24—C251.482 (4)C31—H31C0.9900
C2—C41.407 (4)C31—H31D0.9900
C2—C11.373 (4)C31—C32A1.409 (8)
C2—C31.435 (4)C31—C32B1.355 (10)
C14—C151.472 (4)C32A—H32A0.9800
C11—H110.9500C32A—H32B0.9800
N9—C231.140 (4)C32A—H32C0.9800
C10—H100.9500C32B—H32D0.9800
C10—C91.376 (4)C32B—H32E0.9800
C1—H10.9500C32B—H32F0.9800
C25—C261.382 (4)
O4—Ni1—N589.22 (9)C16—C15—C14119.9 (3)
O4—Ni1—N8177.46 (8)N6—C13—C12178.3 (3)
O4—Ni1—N289.62 (8)C28—C27—H27119.8
O4—Ni1—O185.68 (8)C28—C27—C26120.3 (3)
O4—Ni1—O291.09 (8)C26—C27—H27119.8
N5—Ni1—N888.25 (8)C27—C28—H28119.9
N5—Ni1—O1106.86 (8)C27—C28—C29120.2 (3)
N8—Ni1—O194.85 (8)C29—C28—H28119.9
N2—Ni1—N590.33 (8)C25—C26—C27120.7 (3)
N2—Ni1—N890.61 (8)C25—C26—H26119.6
N2—Ni1—O1162.07 (8)C27—C26—H26119.6
N2—Ni1—O2100.89 (8)N3—C3—C2178.9 (4)
O2—Ni1—N5168.77 (8)C15—C20—H20119.3
O2—Ni1—N891.36 (8)C15—C20—C19121.4 (3)
O2—Ni1—O161.98 (8)C19—C20—H20119.3
Ni1—O4—H4113 (2)C5—C6—H6120.3
C31—O4—Ni1136.8 (2)C5—C6—C7119.3 (3)
C31—O4—H4109 (2)C7—C6—H6120.3
N5—N4—B1121.1 (2)C15—C16—H16119.7
C11—N4—N5109.8 (2)C15—C16—C17120.7 (3)
C11—N4—B1128.6 (2)C17—C16—H16119.7
N8—N7—B1122.2 (2)C10—C9—H9119.5
C21—N7—N8110.2 (2)C8—C9—C10121.0 (3)
C21—N7—B1127.6 (2)C8—C9—H9119.5
N4—N5—Ni1114.50 (15)C25—C30—H30120.0
C14—N5—Ni1137.08 (18)C29—C30—C25120.0 (3)
C14—N5—N4106.83 (19)C29—C30—H30120.0
N2—N1—B1119.8 (2)C6—C7—H7119.7
C1—N1—N2110.3 (2)C8—C7—C6120.7 (3)
C1—N1—B1129.3 (2)C8—C7—H7119.7
N7—N8—Ni1113.23 (16)C9—C8—C7119.8 (3)
C24—N8—Ni1139.46 (18)C9—C8—H8120.1
C24—N8—N7106.8 (2)C7—C8—H8120.1
N1—N2—Ni1115.84 (17)C20—C19—H19120.3
C4—N2—Ni1136.33 (17)C18—C19—C20119.4 (4)
C4—N2—N1106.7 (2)C18—C19—H19120.3
O3—N10—O1122.6 (3)C19—C18—H18119.7
O3—N10—O2122.3 (3)C19—C18—C17120.6 (3)
O2—N10—O1115.0 (2)C17—C18—H18119.7
C21—C22—C24106.1 (2)C28—C29—C30120.2 (3)
C21—C22—C23126.9 (3)C28—C29—H29119.9
C24—C22—C23127.0 (3)C30—C29—H29119.9
C14—C12—C13128.4 (3)C16—C17—H17120.3
C11—C12—C14105.4 (2)C18—C17—C16119.5 (3)
C11—C12—C13126.1 (3)C18—C17—H17120.3
N7—C21—C22108.0 (3)N4—B1—N1107.4 (3)
N7—C21—H21126.0N4—B1—H1A110.2
C22—C21—H21126.0N7—B1—N4109.6 (2)
C10—C5—C4121.7 (2)N7—B1—N1109.2 (2)
C10—C5—C6118.8 (3)N7—B1—H1A110.2
C6—C5—C4119.4 (3)N1—B1—H1A110.2
N8—C24—C22108.9 (2)N10—O1—Ni190.84 (15)
N8—C24—C25125.5 (2)N10—O2—Ni192.07 (16)
C22—C24—C25125.5 (2)O4—C31—H31A105.2
C4—C2—C3125.1 (3)O4—C31—H31B105.2
C1—C2—C4106.2 (2)O4—C31—H31C106.3
C1—C2—C3128.7 (3)O4—C31—H31D106.3
N5—C14—C12109.1 (2)O4—C31—C32A128.3 (5)
N5—C14—C15123.4 (2)O4—C31—C32B124.3 (6)
C12—C14—C15127.5 (2)H31A—C31—H31B105.9
N2—C4—C5124.0 (2)H31C—C31—H31D106.4
N2—C4—C2108.9 (2)C32A—C31—H31A105.2
C2—C4—C5127.2 (2)C32A—C31—H31B105.2
N4—C11—C12108.9 (2)C32B—C31—H31C106.3
N4—C11—H11125.6C32B—C31—H31D106.3
C12—C11—H11125.6C31—C32A—H32A109.5
C5—C10—H10119.9C31—C32A—H32B109.5
C9—C10—C5120.2 (3)C31—C32A—H32C109.5
C9—C10—H10119.9H32A—C32A—H32B109.5
N1—C1—C2107.9 (2)H32A—C32A—H32C109.5
N1—C1—H1126.0H32B—C32A—H32C109.5
C2—C1—H1126.0C31—C32B—H32D109.5
N9—C23—C22178.1 (4)C31—C32B—H32E109.5
C26—C25—C24122.3 (2)C31—C32B—H32F109.5
C26—C25—C30118.5 (3)H32D—C32B—H32E109.5
C30—C25—C24118.9 (2)H32D—C32B—H32F109.5
C20—C15—C14121.5 (3)H32E—C32B—H32F109.5
C20—C15—C16118.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N9i0.83 (3)2.17 (3)2.999 (4)178 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Funding information

This project was supported in part by the Ronald E. McNair Post-baccalaureate Achievement Program on the campus of Wichita State University through the US Department of Education and by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant No. P20 GM103418. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDeb, T., Rohde, G. T., Young, V. G. & Jensen, M. P. (2012). Inorg. Chem. 51, 7257–7270.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEichhorn, D. M. & Armstrong, W. H. (1990). Inorg. Chem. 29, 3607–3612.  CSD CrossRef CAS Web of Science Google Scholar
First citationKadel, L. R., Bullinger, J. R., Baum, R. R., Moore, C. E., Tierney, D. L. & Eichhorn, D. M. (2016). Eur. J. Inorg. Chem. pp. 2543–2551.  CSD CrossRef Google Scholar
First citationReger, D. L., Myers, S. M., Mason, S. S., Darensbourg, D. J., Holtcamp, M. W., Reibenspies, J. H., Lipton, A. S. & Ellis, P. D. (1995). J. Am. Chem. Soc. 117, 10998–11005.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842–1844.  CrossRef CAS Web of Science Google Scholar
First citationTrofimenko, S. (1967). J. Am. Chem. Soc. 89, 3170–3177.  CrossRef CAS Web of Science Google Scholar
First citationTrofimenko, S., Calabrese, J. C. & Thompson, J. S. (1987). Inorg. Chem. 26, 1507–1514.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhao, N., Van Stipdonk, M. J., Bauer, C., Campana, C. & Eichhorn, D. M. (2007). Inorg. Chem. 46, 8662–8667.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds