metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(pyridine-2-carboxyl­ato-κ2N,O)copper(II)]–benzene-1,3,5-tri­carb­­oxy­lic acid–water (1/2/2)

crossmark logo

aKey Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs, Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China, and bKey Laboratory of Non-ferrous Metals of the Ministry of Education, School of Materials Science and Engineering, Central South University, Changsha, 410083, People's Republic of China
*Correspondence e-mail: 3092809@mail.scuec.edu.cn

Edited by R. J. Butcher, Howard University, USA (Received 13 May 2021; accepted 28 June 2021; online 9 July 2021)

In the title complex, [Cu(C6H4O2N)2]·2C9H6O6·2H2O, the Cu2+ ion lies on a center of inversion and coordinates with symmetry related pyridine nitro­gen and carboxyl oxygen atoms from two pyridine-2-carb­oxy­lic acid anions, giving rise to a square-planar coordination geometry. There are weak axial bonds between Cu and an O atom of a symmetry-related trimesic acid moieties [Cu⋯O = 2.837 (2) Å] The Cu⋯O weak inter­actions and hydrogen bonds stabilize the whole structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric unit of the title compound contains half copper center, one pyridine-2-carb­oxy­lic acid anion, one BTC (benzene-1,3,5-tri­carb­oxy­lic acid) ligand and one crystal water mol­ecule (Fig. 1[link]). The Cu2+ ion lies on the symmetry center and is coordinated by two symmetry-related pyridine nitro­gen atoms and two symmetry-related carboxyl oxygen atoms, giving rise to a square-planar coordination geometry. In the axial position, a very weak inter­action Cu1⋯O3 [2.837 (2) Å] is observed. Inter­estingly, the 1,4-bis­(3-pyrid­yl)-2,3-di­aza-1,3-butadiene ligand decomposed during the hydro­thermal process and is oxidized into pyridine-2-carb­oxy­lic acid. According to our earlier research, the occurrence of oxidation may be caused by excess of CuII salt, which may act as an oxidative agent to promote the formation of the carboxyl group (Sun et al., 2016[Sun, Q.-Z., Yin, Y.-B., Pan, J.-Q., Chai, L.-Y., Su, N., Liu, H., Zhao, Y.-L. & Liu, X.-T. (2016). J. Mol. Struct. 1106, 64-69.]). Each pyridine-2-carb­oxy­lic acid anion coordinates with one Cu2+ ion in a bidentate N,O-chelated mode, forming a five-membered ring.

[Figure 1]
Figure 1
The title compound showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms are generated by the symmetry operation −x, −y, −z. Hydrogen bonds are shown by dashed lines

In the crystal, C—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]) and together with weak Cu⋯O inter­actions link the complex mol­ecules into a three-dimensional framework (Fig. 2[link]). Although the O1⋯C9 and O6⋯C7 distances [3.002 (3)and 3.014 (3) Å, respectively] between the two symmetry-related BTC3− ligands (symmetry code: −x, −y, −1 − z) are short, there are no ππ inter­actions because the inter-centroid distance between the two benzene rings is 5.4029 (15) Å, which is much larger than the normal ππ stacking distance of 3.3–3.8 Å. The shortest distance between the two carbon atoms (C1 and C1′) is 3.379 (4) Å. The other C⋯C distances of the two rings are longer than 3.94 Å. In addition, the distance between the centroid of one benzene ring and the C atoms of another is longer than 4.28 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5i 0.82 1.84 2.621 (2) 158
O4—H4⋯O3ii 0.82 1.85 2.659 (3) 167
O6—H6⋯OW1iii 0.82 1.73 2.553 (3) 176
C10—H10⋯O7iv 0.93 2.66 3.121 (3) 112
C13—H13⋯O4v 0.93 2.61 3.454 (4) 152
OW1—HW1A⋯O8vi 0.85 1.88 2.729 (3) 174
OW1—HW1A⋯O7vi 0.85 2.66 3.259 (3) 129
OW1—HW1B⋯O1 0.85 2.02 2.872 (3) 175
Symmetry codes: (i) [x-1, y-1, z]; (ii) [-x+1, -y, -z]; (iii) x+1, y+1, z; (iv) [-x, -y, -z]; (v) [-x+1, -y+1, -z]; (vi) [x-1, y-1, z-1].
[Figure 2]
Figure 2
The packing of the title compound. Hydrogen bonds and Cu⋯O inter­actions are shown as dashed lines.

Synthesis and crystallization

A mixture of trimesic acid (21 mg, 0.1 mmol), 1,4-bis­(3-pyrid­yl)-2,3-di­aza-1,3-butadiene (2-bpdb, 11 mg, 0.05 mmol) and CuCl2·2H2O (51 mg, 0.3 mmol) in 5 mL of distilled H2O was stirred for 10 min in air, and then the mixture was turned into a Parr Teflon-lined stainless steel vessel and heated at 160°C for 60 h. Dark-red crystals suitable for X-ray diffraction were obtained in a yield of 78% (based on CuCl2·2H2O).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C6H4NO2)2]·2C9H6O6·2H2O
Mr 764.05
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.9262 (6), 8.5356 (6), 12.3629 (9)
α, β, γ (°) 107.081 (2), 90.644 (2), 108.679 (2)
V3) 752.26 (10)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.31 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.639, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 14996, 3473, 2501
Rint 0.062
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.06
No. of reflections 3473
No. of parameters 238
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.46
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(pyridine-2-carboxylato-κ2N,O)copper(II)]–benzene-1,3,5-tricarboxylic acid–water (1/2/2) top
Crystal data top
[Cu(C6H4NO2)2]·2C9H6O6·2H2OZ = 1
Mr = 764.05F(000) = 391
Triclinic, P1Dx = 1.687 Mg m3
a = 7.9262 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5356 (6) ÅCell parameters from 5514 reflections
c = 12.3629 (9) Åθ = 3.1–26.9°
α = 107.081 (2)°µ = 0.82 mm1
β = 90.644 (2)°T = 296 K
γ = 108.679 (2)°Prism, red
V = 752.26 (10) Å30.31 × 0.14 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2501 reflections with I > 2σ(I)
phi and ω scansRint = 0.062
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 27.6°, θmin = 3.1°
Tmin = 0.639, Tmax = 0.746h = 1010
14996 measured reflectionsk = 1111
3473 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.4521P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3473 reflectionsΔρmax = 0.41 e Å3
238 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All of the non-hydrogen atoms were refined with anisotropic thermal displacement coefficients. Hydrogen atoms attached to the carbons were placed in their calculated position and refined with a idealized riding model. Those attached to oxygen were first located in a difference Fourier and then refined with a idealized riding model [Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(O)].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.04024 (18)
O10.1595 (2)0.3787 (3)0.56042 (16)0.0418 (5)
O20.1580 (3)0.4334 (3)0.39491 (18)0.0456 (5)
H20.25310.51040.42520.068*
O30.2978 (3)0.0951 (3)0.08146 (16)0.0428 (5)
O40.5456 (3)0.0969 (3)0.10936 (18)0.0500 (6)
H40.57970.09720.04640.075*
O50.5473 (3)0.2951 (3)0.44481 (17)0.0453 (5)
O60.3404 (2)0.1325 (2)0.59294 (15)0.0367 (4)
H60.40000.20250.62300.055*
O70.1869 (3)0.1722 (2)0.11419 (16)0.0457 (5)
O80.3797 (3)0.4424 (3)0.15484 (19)0.0594 (6)
N10.0395 (3)0.1833 (3)0.07130 (18)0.0344 (5)
C10.1570 (3)0.0820 (3)0.4716 (2)0.0275 (5)
H10.10940.10220.54550.033*
C20.0714 (3)0.1918 (3)0.4104 (2)0.0263 (5)
C30.1436 (3)0.1621 (3)0.3011 (2)0.0294 (6)
H30.08600.23430.25950.035*
C40.3020 (3)0.0248 (3)0.2530 (2)0.0281 (5)
C50.3855 (3)0.0857 (3)0.3140 (2)0.0291 (6)
H50.49040.17870.28150.035*
C60.3125 (3)0.0574 (3)0.4232 (2)0.0268 (5)
C70.0944 (3)0.3437 (3)0.4643 (2)0.0296 (6)
C80.3841 (3)0.0081 (3)0.1403 (2)0.0318 (6)
C90.4110 (3)0.1745 (3)0.4883 (2)0.0299 (6)
C100.0462 (4)0.1813 (4)0.1655 (2)0.0417 (7)
H100.13880.08090.20670.050*
C110.0005 (5)0.3247 (4)0.2033 (3)0.0509 (8)
H110.06360.32220.26800.061*
C120.1394 (5)0.4710 (4)0.1440 (3)0.0555 (9)
H120.17450.56750.16960.067*
C130.2268 (4)0.4741 (4)0.0469 (3)0.0479 (8)
H130.32140.57260.00560.058*
C140.1726 (4)0.3293 (4)0.0113 (2)0.0363 (6)
C150.2557 (4)0.3172 (4)0.0947 (2)0.0396 (7)
OW10.4676 (3)0.6609 (3)0.69195 (17)0.0420 (5)
HW1A0.52270.63210.73810.063*
HW1B0.37830.57340.65470.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0481 (3)0.0303 (3)0.0334 (3)0.0012 (2)0.0049 (2)0.0132 (2)
O10.0319 (10)0.0412 (11)0.0375 (11)0.0042 (9)0.0068 (8)0.0094 (9)
O20.0320 (11)0.0391 (11)0.0521 (12)0.0131 (9)0.0084 (9)0.0227 (10)
O30.0393 (11)0.0464 (12)0.0345 (11)0.0023 (9)0.0033 (8)0.0197 (9)
O40.0395 (11)0.0524 (13)0.0460 (12)0.0101 (10)0.0180 (9)0.0269 (10)
O50.0347 (11)0.0398 (11)0.0472 (12)0.0118 (9)0.0043 (9)0.0202 (9)
O60.0364 (11)0.0366 (11)0.0319 (10)0.0004 (8)0.0015 (8)0.0167 (8)
O70.0544 (13)0.0332 (11)0.0388 (11)0.0032 (9)0.0106 (9)0.0162 (9)
O80.0581 (14)0.0435 (13)0.0561 (14)0.0120 (11)0.0223 (11)0.0188 (11)
N10.0386 (13)0.0311 (12)0.0292 (12)0.0051 (10)0.0015 (9)0.0104 (9)
C10.0235 (12)0.0282 (13)0.0282 (13)0.0060 (10)0.0004 (10)0.0084 (10)
C20.0204 (12)0.0231 (12)0.0328 (13)0.0043 (10)0.0006 (10)0.0085 (10)
C30.0253 (13)0.0264 (13)0.0352 (14)0.0033 (10)0.0021 (10)0.0140 (11)
C40.0266 (13)0.0259 (12)0.0291 (13)0.0048 (10)0.0011 (10)0.0095 (10)
C50.0210 (12)0.0235 (12)0.0368 (14)0.0002 (10)0.0031 (10)0.0092 (10)
C60.0222 (12)0.0245 (12)0.0333 (13)0.0051 (10)0.0014 (10)0.0116 (10)
C70.0213 (12)0.0263 (13)0.0388 (15)0.0045 (10)0.0009 (11)0.0107 (11)
C80.0286 (14)0.0294 (13)0.0322 (14)0.0021 (11)0.0030 (11)0.0106 (11)
C90.0259 (13)0.0275 (13)0.0362 (14)0.0068 (11)0.0033 (11)0.0124 (11)
C100.0466 (17)0.0358 (16)0.0341 (15)0.0054 (13)0.0028 (12)0.0083 (12)
C110.069 (2)0.0491 (19)0.0354 (16)0.0176 (17)0.0004 (15)0.0176 (14)
C120.076 (2)0.0401 (17)0.0501 (19)0.0084 (17)0.0044 (17)0.0258 (15)
C130.0525 (18)0.0347 (16)0.0460 (18)0.0019 (14)0.0004 (14)0.0158 (13)
C140.0352 (15)0.0346 (15)0.0347 (15)0.0056 (12)0.0037 (11)0.0112 (12)
C150.0407 (16)0.0376 (16)0.0331 (15)0.0033 (13)0.0006 (12)0.0115 (12)
OW10.0400 (12)0.0408 (11)0.0403 (12)0.0014 (9)0.0043 (9)0.0192 (9)
Geometric parameters (Å, º) top
Cu1—O7i1.9204 (18)C2—C31.380 (3)
Cu1—O71.9204 (18)C2—C71.495 (3)
Cu1—N1i1.956 (2)C3—C41.391 (3)
Cu1—N11.956 (2)C3—H30.9300
Cu1—O32.837 (2)C4—C51.388 (3)
O1—C71.203 (3)C4—C81.479 (3)
O2—C71.313 (3)C5—C61.385 (3)
O2—H20.8200C5—H50.9300
O3—C81.246 (3)C6—C91.497 (3)
O4—C81.281 (3)C10—C111.379 (4)
O4—H40.8200C10—H100.9300
O5—C91.210 (3)C11—C121.373 (4)
O6—C91.303 (3)C11—H110.9300
O6—H60.8200C12—C131.369 (4)
O7—C151.278 (3)C12—H120.9300
O8—C151.227 (3)C13—C141.374 (4)
N1—C101.335 (3)C13—H130.9300
N1—C141.347 (3)C14—C151.505 (4)
C1—C61.385 (3)OW1—HW1A0.8499
C1—C21.390 (3)OW1—HW1B0.8499
C1—H10.9300
O7i—Cu1—O7180.0 (2)C4—C5—H5120.0
O7i—Cu1—N1i84.32 (8)C5—C6—C1119.8 (2)
O7—Cu1—N1i95.68 (8)C5—C6—C9118.4 (2)
O7i—Cu1—N195.68 (8)C1—C6—C9121.7 (2)
O7—Cu1—N184.32 (8)O1—C7—O2124.7 (2)
N1i—Cu1—N1180.0O1—C7—C2123.2 (2)
O7i—Cu1—O399.58 (8)O2—C7—C2112.1 (2)
O7—Cu1—O380.42 (8)O3—C8—O4123.3 (2)
N1i—Cu1—O385.19 (8)O3—C8—C4120.2 (2)
N1—Cu1—O394.81 (8)O4—C8—C4116.4 (2)
C7—O2—H2109.5O5—C9—O6124.5 (2)
C8—O3—Cu1113.90 (18)O5—C9—C6120.8 (2)
C8—O4—H4109.5O6—C9—C6114.7 (2)
C9—O6—H6109.5N1—C10—C11121.5 (3)
C15—O7—Cu1114.81 (17)N1—C10—H10119.2
C10—N1—C14119.2 (2)C11—C10—H10119.2
C10—N1—Cu1129.42 (19)C12—C11—C10119.1 (3)
C14—N1—Cu1111.42 (18)C12—C11—H11120.5
C6—C1—C2120.5 (2)C10—C11—H11120.5
C6—C1—H1119.8C13—C12—C11119.6 (3)
C2—C1—H1119.8C13—C12—H12120.2
C3—C2—C1119.5 (2)C11—C12—H12120.2
C3—C2—C7120.5 (2)C12—C13—C14119.0 (3)
C1—C2—C7120.0 (2)C12—C13—H13120.5
C2—C3—C4120.4 (2)C14—C13—H13120.5
C2—C3—H3119.8N1—C14—C13121.6 (3)
C4—C3—H3119.8N1—C14—C15114.3 (2)
C5—C4—C3119.9 (2)C13—C14—C15124.1 (3)
C5—C4—C8121.4 (2)O8—C15—O7125.4 (3)
C3—C4—C8118.6 (2)O8—C15—C14119.5 (3)
C6—C5—C4120.0 (2)O7—C15—C14115.1 (2)
C6—C5—H5120.0HW1A—OW1—HW1B109.5
C6—C1—C2—C30.7 (4)C5—C6—C9—O52.9 (4)
C6—C1—C2—C7178.8 (2)C1—C6—C9—O5179.6 (2)
C1—C2—C3—C40.8 (4)C5—C6—C9—O6175.6 (2)
C7—C2—C3—C4177.3 (2)C1—C6—C9—O61.1 (4)
C2—C3—C4—C51.7 (4)C14—N1—C10—C110.6 (4)
C2—C3—C4—C8174.1 (2)Cu1—N1—C10—C11179.5 (2)
C3—C4—C5—C61.0 (4)N1—C10—C11—C121.7 (5)
C8—C4—C5—C6174.6 (2)C10—C11—C12—C132.1 (5)
C4—C5—C6—C10.5 (4)C11—C12—C13—C140.3 (5)
C4—C5—C6—C9177.2 (2)C10—N1—C14—C132.4 (4)
C2—C1—C6—C51.3 (4)Cu1—N1—C14—C13178.4 (2)
C2—C1—C6—C9178.0 (2)C10—N1—C14—C15178.5 (2)
C3—C2—C7—O1177.5 (3)Cu1—N1—C14—C150.6 (3)
C1—C2—C7—O10.6 (4)C12—C13—C14—N12.0 (5)
C3—C2—C7—O22.0 (3)C12—C13—C14—C15179.1 (3)
C1—C2—C7—O2179.9 (2)Cu1—O7—C15—O8177.8 (3)
Cu1—O3—C8—O4113.7 (3)Cu1—O7—C15—C142.5 (3)
Cu1—O3—C8—C467.3 (3)N1—C14—C15—O8179.1 (3)
C5—C4—C8—O3171.8 (3)C13—C14—C15—O80.1 (5)
C3—C4—C8—O312.5 (4)N1—C14—C15—O71.2 (4)
C5—C4—C8—O49.2 (4)C13—C14—C15—O7179.7 (3)
C3—C4—C8—O4166.5 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5ii0.821.842.621 (2)158
O4—H4···O3iii0.821.852.659 (3)167
O6—H6···OW1iv0.821.732.553 (3)176
C10—H10···O7i0.932.663.121 (3)112
C13—H13···O4v0.932.613.454 (4)152
OW1—HW1A···O8vi0.851.882.729 (3)174
OW1—HW1A···O7vi0.852.663.259 (3)129
OW1—HW1B···O10.852.022.872 (3)175
Symmetry codes: (i) x, y, z; (ii) x1, y1, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x+1, y+1, z; (vi) x1, y1, z1.
 

Funding information

This work was supported financially by the National Natural Science Foundation of China (No. 51604307).

References

First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Q.-Z., Yin, Y.-B., Pan, J.-Q., Chai, L.-Y., Su, N., Liu, H., Zhao, Y.-L. & Liu, X.-T. (2016). J. Mol. Struct. 1106, 64–69.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds