metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis­(ethanol-κO)bis­(1-ferrocenyl-4,4,4-tri­fluoro­butane-1,3-dionato-κ2O,O′)nickel(II)

crossmark logo

aDepartment of Chemistry, Anhui University, Hefei, Anhui 230039, People's Republic of China
*Correspondence e-mail: 2388344134@qq.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 28 May 2021; accepted 6 July 2021; online 13 July 2021)

In the title compound, [NiFe2(C5H5)(C9H5F3O2)2(C2H6O)2], the central NiII ion is observed in an octa­hedral coordination environment. The chelating β-diketonate ligands are substituted by ferrocene, a lipophilic organometallic moiety. The ferrocene groups have the normal geometry, with eclipsed cyclo­penta­diene rings. Coordinated ethanol mol­ecules are engaged in inter­molecular hydrogen bonds, and the crystal is further stabilized by weak C—H⋯F and C—H⋯π contacts.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The introduction of the lipophilic organometallic moiety ferrocene, a compound with a sandwich-like structure, in an existing bioactive mol­ecule, is a promising tool for the development of new more efficient drugs with innovative mechanisms of action (Ludwig et al., 2019[Ludwig, B. S., Correia, J. D. G. & Kühn, F. E. (2019). Coord. Chem. Rev. 396, 22-48.]). As a result of their lipophilic character, ferrocene derivatives can be transferred across cell membranes (Lai et al., 2019[Lai, A., Clifton, J., Diaconescu, P. L. & Fey, N. (2019). Chem. Commun. 55, 7021-7024.]). Ferrocene is not only an excellent chromophore group, it also performs as an excellent inter­molecular electron and energy-transfer group. The introduction of tri­fluoro­methyl into the compound is conducive to inter­molecular charge transfer, and thus potentially gives the mol­ecule better non-linear optical properties. The β-diketonate ligands form stable six-membered metallacycles with transition metals such as Ru, and their terminal groups can be easily modified to change the electronic character of the ligand (Baird et al., 2003[Baird, I. R., Cameron, B. R. & Skerlj, R. T. (2003). Inorg. Chim. Acta, 353, 107-118.]).

The mol­ecular structure of the trimetallic title compound is shown in Fig. 1[link]. The NiII centre shows an octa­hedral coordination environment built up by the coordination of two chelating β-diketonate ligands and two ethanol mol­ecules in a cis arrangement. The nickel is placed in general position in the triclinic cell, and the Ni—O coordination bond lengths are in the range 2.003 (2) to 2.149 (2) Å. The cis bond angles describing the octa­hedral coordination geometry around NiII are in the range 85.60 (10) to 93.52 (10)°. The ferrocene moieties substituting the β-diketon­ate ligands have the expected geometry, with eclipsed cyclo­penta­diene rings.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms were omitted for clarity.

There are inter­actions between mol­ecules in the crystal structure, through hydrogen bonds involving both coordinated ethanol mol­ecules (Table 1[link]). Other secondary contacts are C16—H16⋯F5ii and C13—H13⋯C13iii. The crystal is further stabilized by C—H⋯π contacts involving cyclo­penta­diene rings of neighbouring mol­ecules (Fig. 2[link]), giving rise to a three-dimensional architecture.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C23–C27 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.68 (5) 2.24 (5) 2.887 (3) 162 (6)
O3—H3⋯O4i 0.78 (4) 2.06 (4) 2.800 (3) 160 (5)
C16—H16⋯F5ii 0.93 2.63 3.401 (7) 141
C13—H13⋯C13iii 0.93 2.85 3.454 (4) 124
C11—H11⋯Cg3iii 0.93 2.69 3.520 (5) 150
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, showing some inter­molecular inter­actions.

Synthesis and crystallization

4,4,4-Tri­fluoro-1-ferrocene­butane-1,3-dione (1.6 mmol, 0.518 g) and tri­ethyl­amine (2.45 mmol, 0.248 g) were dissolved in ethanol (10 ml). Nickel acetate tetra­hydrate (0.5 mmol, 0.122 g) was dissolved in 15 ml of ethanol, added to the previous solution, and stirred at room temperature for 10 min. The mixture was then refluxed for 4 h. After the reaction was complete, the mixture was cooled to room temperature and filtered. The residue was washed twice with 30 ml of ethanol, yielding a red solid (yield: 370 mg, 92%). Single crystals for X-ray analysis were obtained by recrystallization from cyclo­hexane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [NiFe2(C5H5)(C9H5F3O2)2(C2H6O)2]
Mr 796.98
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 10.123 (3), 11.147 (3), 14.869 (4)
α, β, γ (°) 82.741 (3), 77.523 (3), 82.077 (3)
V3) 1614.5 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.54
Crystal size (mm) 0.05 × 0.03 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.484, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 12246, 6266, 5279
Rint 0.029
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.05
No. of reflections 6266
No. of parameters 432
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.53
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014; cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(1-ferrocenyl-4,4,4-trifluorobutane-1,3-dionato-κ2O,O)-bis(ethanol-κO)-nickel(II) top
Crystal data top
[NiFe2(C14H10F3O2)2(C2H6O)2]Z = 2
Mr = 796.98F(000) = 812
Triclinic, P1Dx = 1.639 Mg m3
a = 10.123 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.147 (3) ÅCell parameters from 6629 reflections
c = 14.869 (4) Åθ = 2.3–26.4°
α = 82.741 (3)°µ = 1.54 mm1
β = 77.523 (3)°T = 296 K
γ = 82.077 (3)°Block, clear reddish black
V = 1614.5 (8) Å30.05 × 0.03 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
5279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1210
Tmin = 0.484, Tmax = 0.745k = 1313
12246 measured reflectionsl = 1818
6266 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0565P)2 + 1.4766P]
where P = (Fo2 + 2Fc2)/3
6266 reflections(Δ/σ)max = 0.001
432 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.53 e Å3
0 constraints
Special details top

Refinement. H atoms for the hydroxy groups of ethanol molecules, H2 and H3, were found in a difference map, and refined with free coordinates and Uiso(H) = 1.5×Ueq(O). Other H atoms were refined using a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.38087 (4)0.50361 (3)0.16176 (2)0.03598 (12)
Fe10.48422 (5)0.25393 (4)0.48840 (3)0.03846 (13)
Fe20.07724 (5)0.95627 (4)0.24265 (3)0.04027 (13)
O10.2129 (2)0.4287 (2)0.22821 (16)0.0489 (6)
O20.2976 (3)0.5708 (3)0.04646 (17)0.0518 (6)
H20.331 (5)0.546 (5)0.008 (3)0.078*
O30.5572 (2)0.5889 (2)0.08975 (15)0.0441 (5)
H30.541 (5)0.620 (4)0.043 (3)0.066*
O40.4540 (2)0.34975 (19)0.09715 (14)0.0427 (5)
O50.4838 (2)0.44236 (19)0.26318 (14)0.0436 (5)
O60.3104 (2)0.65990 (19)0.21809 (15)0.0432 (5)
C10.1286 (5)0.6571 (6)0.0420 (4)0.0943 (17)
H1A0.1700010.6095990.0924210.141*
H1B0.1637540.7344490.0526740.141*
H1C0.0317280.6694410.0374910.141*
C20.1594 (5)0.5927 (6)0.0443 (3)0.0885 (16)
H2A0.1137500.6399330.0949190.106*
H2B0.1221400.5153460.0546850.106*
C30.6125 (5)0.6664 (5)0.1389 (3)0.0817 (15)
H3A0.5514840.7413380.1452210.098*
H3B0.6135500.6267850.2007600.098*
C40.7447 (7)0.6966 (8)0.0987 (6)0.146 (3)
H4A0.7616440.6918950.0330840.220*
H4B0.8103710.6405750.1250780.220*
H4C0.7522050.7778300.1104990.220*
C50.5006 (3)0.2527 (3)0.1413 (2)0.0385 (7)
C60.5175 (4)0.1406 (3)0.0896 (2)0.0512 (8)
F10.5835 (3)0.1583 (3)0.00428 (18)0.0958 (10)
F20.3978 (3)0.1127 (3)0.0822 (3)0.1122 (12)
F30.5745 (5)0.0419 (2)0.1280 (3)0.1271 (15)
C70.5386 (4)0.2387 (3)0.2254 (2)0.0435 (7)
H70.5688450.1604020.2480380.052*
C80.5353 (3)0.3351 (3)0.28099 (19)0.0370 (6)
C90.5958 (3)0.3085 (3)0.3632 (2)0.0381 (6)
C100.6575 (3)0.1942 (3)0.3996 (2)0.0433 (7)
H100.6733720.1215530.3722670.052*
C110.6899 (4)0.2119 (3)0.4841 (3)0.0524 (9)
H110.7308210.1524110.5222710.063*
C120.6501 (4)0.3347 (3)0.5015 (2)0.0508 (8)
H120.6606780.3698690.5526500.061*
C130.5911 (3)0.3950 (3)0.4272 (2)0.0418 (7)
H130.5557090.4764670.4212910.050*
C140.3826 (5)0.1472 (4)0.5950 (3)0.0777 (13)
H140.4235800.0915160.6355800.093*
C150.3386 (5)0.2722 (5)0.6059 (3)0.0835 (16)
H150.3443920.3124470.6558320.100*
C160.2849 (4)0.3245 (4)0.5285 (3)0.0692 (12)
H160.2495710.4053920.5178010.083*
C170.2941 (4)0.2327 (4)0.4702 (3)0.0610 (10)
H170.2661820.2423310.4138160.073*
C180.3528 (4)0.1233 (4)0.5117 (3)0.0601 (10)
H180.3689500.0482290.4878480.072*
C190.1191 (3)0.4833 (3)0.2836 (2)0.0454 (7)
C200.0023 (4)0.4068 (4)0.3253 (4)0.0670 (12)
F40.0861 (5)0.4202 (6)0.2785 (5)0.237 (4)
F50.0597 (5)0.4306 (4)0.4073 (4)0.184 (3)
F60.0404 (3)0.2922 (3)0.3364 (3)0.1246 (14)
C210.1045 (4)0.5994 (3)0.3088 (2)0.0508 (8)
H210.0267280.6241670.3513300.061*
C220.2008 (3)0.6844 (3)0.2742 (2)0.0383 (7)
C230.1753 (3)0.8068 (3)0.3052 (2)0.0410 (7)
C240.0596 (4)0.8595 (3)0.3692 (2)0.0507 (8)
H240.0153780.8209090.4005870.061*
C250.0815 (5)0.9810 (3)0.3751 (2)0.0584 (10)
H250.0231141.0358060.4116650.070*
C260.2055 (4)1.0048 (3)0.3169 (3)0.0568 (9)
H260.2429781.0780230.3082990.068*
C270.2640 (4)0.8992 (3)0.2733 (2)0.0467 (8)
H270.3463630.8911000.2310450.056*
C280.1004 (5)0.9924 (6)0.1031 (3)0.0824 (15)
H280.1805840.9756870.0602570.099*
C290.0596 (5)1.0991 (5)0.1446 (3)0.0760 (13)
H290.1076471.1665920.1344760.091*
C300.0656 (4)1.0885 (4)0.2042 (3)0.0664 (11)
H300.1156131.1480520.2402280.080*
C310.1040 (4)0.9737 (5)0.2011 (4)0.0761 (13)
H310.1828410.9431480.2349070.091*
C320.0009 (6)0.9123 (5)0.1370 (4)0.0893 (17)
H320.0002250.8344990.1202330.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0390 (2)0.0332 (2)0.0318 (2)0.00441 (16)0.00298 (15)0.00509 (15)
Fe10.0466 (3)0.0348 (2)0.0337 (2)0.00839 (19)0.00571 (18)0.00216 (17)
Fe20.0411 (3)0.0362 (3)0.0406 (2)0.00489 (19)0.00639 (19)0.00622 (18)
O10.0500 (14)0.0356 (12)0.0544 (13)0.0018 (10)0.0058 (11)0.0110 (10)
O20.0442 (14)0.0649 (17)0.0437 (13)0.0071 (12)0.0112 (11)0.0056 (11)
O30.0439 (12)0.0507 (14)0.0373 (11)0.0059 (10)0.0072 (10)0.0041 (10)
O40.0537 (13)0.0384 (12)0.0333 (10)0.0066 (10)0.0072 (9)0.0092 (9)
O50.0629 (15)0.0313 (11)0.0348 (10)0.0052 (10)0.0116 (10)0.0045 (8)
O60.0408 (12)0.0338 (11)0.0482 (12)0.0024 (9)0.0033 (10)0.0063 (9)
C10.071 (3)0.129 (5)0.083 (3)0.005 (3)0.037 (3)0.021 (3)
C20.057 (3)0.136 (5)0.067 (3)0.012 (3)0.021 (2)0.003 (3)
C30.089 (3)0.104 (4)0.062 (3)0.040 (3)0.011 (2)0.024 (2)
C40.092 (5)0.172 (8)0.192 (8)0.063 (5)0.000 (5)0.080 (6)
C50.0396 (16)0.0347 (16)0.0378 (15)0.0031 (13)0.0002 (12)0.0059 (12)
C60.064 (2)0.0387 (18)0.0518 (19)0.0043 (16)0.0116 (17)0.0084 (15)
F10.131 (3)0.0731 (17)0.0711 (16)0.0160 (16)0.0277 (16)0.0397 (14)
F20.089 (2)0.110 (2)0.155 (3)0.0319 (19)0.019 (2)0.068 (2)
F30.231 (4)0.0458 (15)0.126 (3)0.036 (2)0.100 (3)0.0345 (16)
C70.055 (2)0.0320 (16)0.0425 (16)0.0034 (14)0.0115 (14)0.0046 (13)
C80.0367 (16)0.0365 (16)0.0320 (14)0.0006 (12)0.0009 (12)0.0003 (12)
C90.0396 (16)0.0362 (16)0.0353 (14)0.0041 (13)0.0037 (12)0.0019 (12)
C100.0427 (17)0.0393 (17)0.0448 (17)0.0001 (14)0.0071 (14)0.0001 (13)
C110.050 (2)0.054 (2)0.055 (2)0.0058 (16)0.0237 (16)0.0081 (16)
C120.056 (2)0.053 (2)0.0499 (19)0.0155 (17)0.0219 (16)0.0000 (15)
C130.0498 (19)0.0366 (16)0.0397 (15)0.0125 (14)0.0087 (13)0.0010 (13)
C140.097 (4)0.073 (3)0.056 (2)0.032 (3)0.002 (2)0.017 (2)
C150.097 (4)0.091 (4)0.056 (2)0.041 (3)0.029 (2)0.028 (2)
C160.055 (2)0.051 (2)0.091 (3)0.0073 (18)0.017 (2)0.021 (2)
C170.045 (2)0.061 (2)0.078 (3)0.0142 (18)0.0081 (18)0.007 (2)
C180.060 (2)0.043 (2)0.076 (3)0.0195 (17)0.0006 (19)0.0077 (18)
C190.0421 (18)0.0374 (17)0.0514 (18)0.0022 (14)0.0008 (14)0.0017 (14)
C200.045 (2)0.049 (2)0.101 (3)0.0060 (17)0.008 (2)0.023 (2)
F40.138 (4)0.291 (7)0.313 (8)0.156 (5)0.145 (5)0.174 (6)
F50.183 (4)0.129 (3)0.206 (5)0.103 (3)0.126 (4)0.079 (3)
F60.085 (2)0.0529 (17)0.213 (4)0.0262 (15)0.023 (2)0.000 (2)
C210.0459 (19)0.0430 (19)0.0542 (19)0.0047 (15)0.0123 (15)0.0094 (15)
C220.0399 (17)0.0354 (16)0.0369 (15)0.0027 (13)0.0067 (13)0.0027 (12)
C230.0487 (18)0.0330 (16)0.0401 (15)0.0014 (13)0.0099 (13)0.0041 (12)
C240.061 (2)0.0428 (19)0.0414 (17)0.0024 (16)0.0008 (15)0.0033 (14)
C250.088 (3)0.0423 (19)0.0433 (18)0.0107 (19)0.0145 (19)0.0163 (15)
C260.075 (3)0.043 (2)0.061 (2)0.0039 (18)0.032 (2)0.0111 (16)
C270.0481 (19)0.0380 (17)0.0571 (19)0.0027 (14)0.0192 (15)0.0041 (14)
C280.071 (3)0.123 (4)0.044 (2)0.024 (3)0.015 (2)0.006 (2)
C290.068 (3)0.074 (3)0.070 (3)0.012 (2)0.012 (2)0.025 (2)
C300.053 (2)0.062 (3)0.074 (3)0.0180 (19)0.012 (2)0.001 (2)
C310.047 (2)0.091 (4)0.091 (3)0.001 (2)0.021 (2)0.008 (3)
C320.108 (4)0.091 (4)0.089 (3)0.014 (3)0.062 (3)0.037 (3)
Geometric parameters (Å, º) top
Ni1—O62.003 (2)C6—F21.322 (5)
Ni1—O12.006 (2)C7—C81.429 (4)
Ni1—O52.012 (2)C7—H70.9300
Ni1—O42.043 (2)C8—C91.462 (4)
Ni1—O22.082 (2)C9—C131.428 (4)
Ni1—O32.149 (2)C9—C101.435 (4)
Fe1—C92.026 (3)C10—C111.409 (5)
Fe1—C142.035 (4)C10—H100.9300
Fe1—C132.038 (3)C11—C121.413 (5)
Fe1—C152.040 (4)C11—H110.9300
Fe1—C102.041 (3)C12—C131.420 (5)
Fe1—C172.050 (4)C12—H120.9300
Fe1—C162.051 (4)C13—H130.9300
Fe1—C182.054 (4)C14—C181.400 (6)
Fe1—C112.059 (4)C14—C151.422 (7)
Fe1—C122.067 (3)C14—H140.9300
Fe2—C282.031 (4)C15—C161.406 (7)
Fe2—C242.032 (3)C15—H150.9300
Fe2—C252.033 (3)C16—C171.404 (6)
Fe2—C292.035 (4)C16—H160.9300
Fe2—C302.036 (4)C17—C181.410 (6)
Fe2—C312.036 (4)C17—H170.9300
Fe2—C272.039 (3)C18—H180.9300
Fe2—C262.039 (4)C19—C211.373 (5)
Fe2—C322.043 (4)C19—C201.529 (5)
Fe2—C232.044 (3)C20—F41.230 (6)
O1—C191.256 (4)C20—F61.283 (5)
O2—C21.393 (5)C20—F51.287 (6)
O2—H20.68 (5)C21—C221.424 (5)
O3—C31.437 (5)C21—H210.9300
O3—H30.78 (4)C22—C231.467 (4)
O4—C51.280 (4)C23—C271.428 (5)
O5—C81.256 (4)C23—C241.446 (5)
O6—C221.255 (4)C24—C251.418 (5)
C1—C21.461 (6)C24—H240.9300
C1—H1A0.9600C25—C261.399 (6)
C1—H1B0.9600C25—H250.9300
C1—H1C0.9600C26—C271.411 (5)
C2—H2A0.9700C26—H260.9300
C2—H2B0.9700C27—H270.9300
C3—C41.411 (8)C28—C291.381 (7)
C3—H3A0.9700C28—C321.420 (8)
C3—H3B0.9700C28—H280.9300
C4—H4A0.9600C29—C301.391 (6)
C4—H4B0.9600C29—H290.9300
C4—H4C0.9600C30—C311.396 (7)
C5—C71.370 (4)C30—H300.9300
C5—C61.520 (5)C31—C321.415 (7)
C6—F31.295 (5)C31—H310.9300
C6—F11.305 (4)C32—H320.9300
O6—Ni1—O191.01 (9)F3—C6—C5115.6 (3)
O6—Ni1—O591.94 (9)F1—C6—C5112.4 (3)
O1—Ni1—O593.52 (10)F2—C6—C5110.8 (3)
O6—Ni1—O4176.77 (8)C5—C7—C8125.0 (3)
O1—Ni1—O490.86 (9)C5—C7—H7117.5
O5—Ni1—O490.57 (9)C8—C7—H7117.5
O6—Ni1—O289.89 (10)O5—C8—C7123.8 (3)
O1—Ni1—O293.30 (11)O5—C8—C9117.7 (3)
O5—Ni1—O2172.91 (10)C7—C8—C9118.5 (3)
O4—Ni1—O287.38 (10)C13—C9—C10107.5 (3)
O6—Ni1—O387.69 (9)C13—C9—C8123.7 (3)
O1—Ni1—O3178.29 (9)C10—C9—C8128.6 (3)
O5—Ni1—O387.64 (10)C13—C9—Fe169.88 (17)
O4—Ni1—O390.39 (9)C10—C9—Fe169.89 (17)
O2—Ni1—O385.60 (10)C8—C9—Fe1121.4 (2)
C9—Fe1—C14161.24 (17)C11—C10—C9107.6 (3)
C9—Fe1—C1341.13 (13)C11—C10—Fe170.6 (2)
C14—Fe1—C13156.45 (17)C9—C10—Fe168.78 (17)
C9—Fe1—C15156.13 (19)C11—C10—H10126.2
C14—Fe1—C1540.8 (2)C9—C10—H10126.2
C13—Fe1—C15120.84 (17)Fe1—C10—H10126.0
C9—Fe1—C1041.32 (12)C10—C11—C12109.0 (3)
C14—Fe1—C10124.28 (18)C10—C11—Fe169.22 (19)
C13—Fe1—C1068.94 (14)C12—C11—Fe170.3 (2)
C15—Fe1—C10161.3 (2)C10—C11—H11125.5
C9—Fe1—C17107.79 (15)C12—C11—H11125.5
C14—Fe1—C1767.8 (2)Fe1—C11—H11126.6
C13—Fe1—C17124.62 (15)C11—C12—C13107.9 (3)
C15—Fe1—C1767.4 (2)C11—C12—Fe169.7 (2)
C10—Fe1—C17122.27 (16)C13—C12—Fe168.68 (19)
C9—Fe1—C16120.97 (17)C11—C12—H12126.0
C14—Fe1—C1668.2 (2)C13—C12—H12126.0
C13—Fe1—C16107.32 (16)Fe1—C12—H12127.2
C15—Fe1—C1640.2 (2)C12—C13—C9108.0 (3)
C10—Fe1—C16157.09 (17)C12—C13—Fe170.86 (19)
C17—Fe1—C1640.04 (17)C9—C13—Fe168.99 (17)
C9—Fe1—C18124.92 (15)C12—C13—H13126.0
C14—Fe1—C1840.06 (18)C9—C13—H13126.0
C13—Fe1—C18161.60 (16)Fe1—C13—H13125.7
C15—Fe1—C1867.51 (18)C18—C14—C15107.4 (4)
C10—Fe1—C18108.46 (15)C18—C14—Fe170.7 (2)
C17—Fe1—C1840.20 (17)C15—C14—Fe169.8 (2)
C16—Fe1—C1867.55 (17)C18—C14—H14126.3
C9—Fe1—C1168.35 (13)C15—C14—H14126.3
C14—Fe1—C11108.35 (19)Fe1—C14—H14124.8
C13—Fe1—C1167.97 (14)C16—C15—C14108.3 (4)
C15—Fe1—C11125.2 (2)C16—C15—Fe170.3 (2)
C10—Fe1—C1140.19 (14)C14—C15—Fe169.4 (2)
C17—Fe1—C11157.55 (16)C16—C15—H15125.9
C16—Fe1—C11161.17 (18)C14—C15—H15125.9
C18—Fe1—C11122.58 (16)Fe1—C15—H15126.0
C9—Fe1—C1268.47 (14)C17—C16—C15107.7 (4)
C14—Fe1—C12121.71 (18)C17—C16—Fe169.9 (2)
C13—Fe1—C1240.46 (13)C15—C16—Fe169.5 (3)
C15—Fe1—C12108.11 (18)C17—C16—H16126.2
C10—Fe1—C1268.00 (15)C15—C16—H16126.2
C17—Fe1—C12161.10 (16)Fe1—C16—H16126.0
C16—Fe1—C12124.70 (17)C16—C17—C18108.4 (4)
C18—Fe1—C12156.99 (16)C16—C17—Fe170.0 (2)
C11—Fe1—C1240.04 (15)C18—C17—Fe170.0 (2)
C28—Fe2—C24159.6 (2)C16—C17—H17125.8
C28—Fe2—C25158.6 (2)C18—C17—H17125.8
C24—Fe2—C2540.85 (15)Fe1—C17—H17125.7
C28—Fe2—C2939.7 (2)C14—C18—C17108.3 (4)
C24—Fe2—C29159.77 (18)C14—C18—Fe169.3 (2)
C25—Fe2—C29121.8 (2)C17—C18—Fe169.7 (2)
C28—Fe2—C3067.06 (18)C14—C18—H18125.9
C24—Fe2—C30124.86 (16)C17—C18—H18125.9
C25—Fe2—C30105.46 (17)Fe1—C18—H18126.7
C29—Fe2—C3039.96 (17)O1—C19—C21130.3 (3)
C28—Fe2—C3168.1 (2)O1—C19—C20112.9 (3)
C24—Fe2—C31109.31 (19)C21—C19—C20116.7 (3)
C25—Fe2—C31120.04 (19)F4—C20—F6106.9 (5)
C29—Fe2—C3167.7 (2)F4—C20—F5106.0 (5)
C30—Fe2—C3140.10 (19)F6—C20—F5102.9 (5)
C28—Fe2—C27108.43 (18)F4—C20—C19112.6 (4)
C24—Fe2—C2769.10 (15)F6—C20—C19113.8 (3)
C25—Fe2—C2768.20 (16)F5—C20—C19113.9 (4)
C29—Fe2—C27118.64 (17)C19—C21—C22124.3 (3)
C30—Fe2—C27152.05 (17)C19—C21—H21117.9
C31—Fe2—C27166.41 (18)C22—C21—H21117.9
C28—Fe2—C26123.6 (2)O6—C22—C21123.2 (3)
C24—Fe2—C2668.53 (16)O6—C22—C23116.8 (3)
C25—Fe2—C2640.20 (17)C21—C22—C23120.0 (3)
C29—Fe2—C26104.4 (2)C27—C23—C24106.9 (3)
C30—Fe2—C26117.13 (18)C27—C23—C22124.3 (3)
C31—Fe2—C26152.59 (19)C24—C23—C22128.8 (3)
C27—Fe2—C2640.49 (15)C27—C23—Fe269.32 (18)
C28—Fe2—C3240.8 (2)C24—C23—Fe268.78 (18)
C24—Fe2—C32124.0 (2)C22—C23—Fe2125.5 (2)
C25—Fe2—C32157.0 (2)C25—C24—C23107.3 (3)
C29—Fe2—C3267.8 (2)C25—C24—Fe269.6 (2)
C30—Fe2—C3267.5 (2)C23—C24—Fe269.66 (18)
C31—Fe2—C3240.6 (2)C25—C24—H24126.3
C27—Fe2—C32128.29 (19)C23—C24—H24126.3
C26—Fe2—C32162.7 (2)Fe2—C24—H24126.0
C28—Fe2—C23123.33 (17)C26—C25—C24108.9 (3)
C24—Fe2—C2341.56 (13)C26—C25—Fe270.2 (2)
C25—Fe2—C2368.93 (13)C24—C25—Fe269.55 (19)
C29—Fe2—C23155.42 (16)C26—C25—H25125.6
C30—Fe2—C23164.37 (16)C24—C25—H25125.6
C31—Fe2—C23129.01 (18)Fe2—C25—H25126.3
C27—Fe2—C2340.96 (13)C25—C26—C27108.6 (3)
C26—Fe2—C2368.63 (14)C25—C26—Fe269.6 (2)
C32—Fe2—C23111.63 (18)C27—C26—Fe269.7 (2)
C19—O1—Ni1122.9 (2)C25—C26—H26125.7
C2—O2—Ni1126.2 (2)C27—C26—H26125.7
C2—O2—H2109 (5)Fe2—C26—H26126.5
Ni1—O2—H2113 (5)C26—C27—C23108.3 (3)
C3—O3—Ni1117.9 (2)C26—C27—Fe269.8 (2)
C3—O3—H3114 (3)C23—C27—Fe269.72 (19)
Ni1—O3—H3107 (3)C26—C27—H27125.8
C5—O4—Ni1121.03 (19)C23—C27—H27125.8
C8—O5—Ni1126.9 (2)Fe2—C27—H27126.2
C22—O6—Ni1128.2 (2)C29—C28—C32108.5 (4)
C2—C1—H1A109.5C29—C28—Fe270.3 (2)
C2—C1—H1B109.5C32—C28—Fe270.1 (3)
H1A—C1—H1B109.5C29—C28—H28125.8
C2—C1—H1C109.5C32—C28—H28125.8
H1A—C1—H1C109.5Fe2—C28—H28125.5
H1B—C1—H1C109.5C28—C29—C30108.3 (5)
O2—C2—C1114.7 (4)C28—C29—Fe270.0 (3)
O2—C2—H2A108.6C30—C29—Fe270.1 (2)
C1—C2—H2A108.6C28—C29—H29125.9
O2—C2—H2B108.6C30—C29—H29125.9
C1—C2—H2B108.6Fe2—C29—H29125.6
H2A—C2—H2B107.6C29—C30—C31108.9 (4)
C4—C3—O3116.2 (5)C29—C30—Fe270.0 (2)
C4—C3—H3A108.2C31—C30—Fe270.0 (2)
O3—C3—H3A108.2C29—C30—H30125.5
C4—C3—H3B108.2C31—C30—H30125.5
O3—C3—H3B108.2Fe2—C30—H30126.1
H3A—C3—H3B107.4C30—C31—C32107.5 (5)
C3—C4—H4A109.5C30—C31—Fe269.9 (2)
C3—C4—H4B109.5C32—C31—Fe270.0 (3)
H4A—C4—H4B109.5C30—C31—H31126.2
C3—C4—H4C109.5C32—C31—H31126.2
H4A—C4—H4C109.5Fe2—C31—H31125.4
H4B—C4—H4C109.5C31—C32—C28106.8 (5)
O4—C5—C7129.0 (3)C31—C32—Fe269.4 (3)
O4—C5—C6113.3 (3)C28—C32—Fe269.2 (3)
C7—C5—C6117.7 (3)C31—C32—H32126.6
F3—C6—F1108.2 (4)C28—C32—H32126.6
F3—C6—F2104.6 (4)Fe2—C32—H32126.4
F1—C6—F2104.4 (3)
Ni1—O2—C2—C1171.1 (4)C16—C17—C18—Fe159.8 (3)
Ni1—O3—C3—C4165.1 (5)Ni1—O1—C19—C212.5 (6)
Ni1—O4—C5—C715.8 (5)Ni1—O1—C19—C20179.9 (3)
Ni1—O4—C5—C6165.8 (2)O1—C19—C20—F489.4 (6)
O4—C5—C6—F3174.7 (4)C21—C19—C20—F488.5 (6)
C7—C5—C6—F33.9 (5)O1—C19—C20—F632.5 (6)
O4—C5—C6—F149.8 (4)C21—C19—C20—F6149.6 (4)
C7—C5—C6—F1128.8 (4)O1—C19—C20—F5149.9 (5)
O4—C5—C6—F266.5 (4)C21—C19—C20—F532.2 (6)
C7—C5—C6—F2114.9 (4)O1—C19—C21—C220.2 (7)
O4—C5—C7—C81.3 (6)C20—C19—C21—C22177.7 (4)
C6—C5—C7—C8177.0 (3)Ni1—O6—C22—C210.5 (5)
Ni1—O5—C8—C75.5 (4)Ni1—O6—C22—C23179.4 (2)
Ni1—O5—C8—C9174.8 (2)C19—C21—C22—O61.5 (6)
C5—C7—C8—O57.6 (5)C19—C21—C22—C23179.7 (3)
C5—C7—C8—C9172.0 (3)O6—C22—C23—C272.3 (5)
O5—C8—C9—C134.5 (4)C21—C22—C23—C27178.7 (3)
C7—C8—C9—C13175.9 (3)O6—C22—C23—C24179.6 (3)
O5—C8—C9—C10178.4 (3)C21—C22—C23—C240.7 (5)
C7—C8—C9—C101.9 (5)O6—C22—C23—Fe290.1 (3)
O5—C8—C9—Fe190.0 (3)C21—C22—C23—Fe290.9 (4)
C7—C8—C9—Fe190.3 (3)C27—C23—C24—C250.6 (4)
C13—C9—C10—C110.2 (4)C22—C23—C24—C25178.9 (3)
C8—C9—C10—C11174.9 (3)Fe2—C23—C24—C2559.7 (2)
Fe1—C9—C10—C1160.2 (2)C27—C23—C24—Fe259.1 (2)
C13—C9—C10—Fe160.0 (2)C22—C23—C24—Fe2119.2 (3)
C8—C9—C10—Fe1114.7 (3)C23—C24—C25—C260.4 (4)
C9—C10—C11—C120.1 (4)Fe2—C24—C25—C2659.3 (3)
Fe1—C10—C11—C1259.2 (3)C23—C24—C25—Fe259.7 (2)
C9—C10—C11—Fe159.1 (2)C24—C25—C26—C270.1 (4)
C10—C11—C12—C130.4 (4)Fe2—C25—C26—C2759.0 (2)
Fe1—C11—C12—C1358.2 (2)C24—C25—C26—Fe258.9 (3)
C10—C11—C12—Fe158.5 (2)C25—C26—C27—C230.3 (4)
C11—C12—C13—C90.5 (4)Fe2—C26—C27—C2359.3 (2)
Fe1—C12—C13—C959.2 (2)C25—C26—C27—Fe259.0 (3)
C11—C12—C13—Fe158.8 (3)C24—C23—C27—C260.5 (4)
C10—C9—C13—C120.4 (4)C22—C23—C27—C26179.0 (3)
C8—C9—C13—C12175.4 (3)Fe2—C23—C27—C2659.3 (2)
Fe1—C9—C13—C1260.4 (2)C24—C23—C27—Fe258.8 (2)
C10—C9—C13—Fe160.0 (2)C22—C23—C27—Fe2119.7 (3)
C8—C9—C13—Fe1115.0 (3)C32—C28—C29—C300.0 (5)
C18—C14—C15—C161.2 (5)Fe2—C28—C29—C3059.9 (3)
Fe1—C14—C15—C1659.8 (3)C32—C28—C29—Fe259.9 (3)
C18—C14—C15—Fe161.0 (3)C28—C29—C30—C310.5 (5)
C14—C15—C16—C170.6 (5)Fe2—C29—C30—C3159.3 (3)
Fe1—C15—C16—C1759.7 (3)C28—C29—C30—Fe259.8 (3)
C14—C15—C16—Fe159.2 (3)C29—C30—C31—C320.8 (5)
C15—C16—C17—C180.3 (5)Fe2—C30—C31—C3260.1 (3)
Fe1—C16—C17—C1859.8 (3)C29—C30—C31—Fe259.3 (3)
C15—C16—C17—Fe159.5 (3)C30—C31—C32—C280.8 (5)
C15—C14—C18—C171.4 (5)Fe2—C31—C32—C2859.3 (3)
Fe1—C14—C18—C1759.0 (3)C30—C31—C32—Fe260.1 (3)
C15—C14—C18—Fe160.4 (3)C29—C28—C32—C310.5 (5)
C16—C17—C18—C141.1 (5)Fe2—C28—C32—C3159.5 (3)
Fe1—C17—C18—C1458.7 (3)C29—C28—C32—Fe260.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C23–C27 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.68 (5)2.24 (5)2.887 (3)162 (6)
O3—H3···O4i0.78 (4)2.06 (4)2.800 (3)160 (5)
C3—H3B···O50.972.563.168 (6)121
C16—H16···F5ii0.932.633.401 (7)141
C13—H13···C13iii0.932.853.454 (4)124
C11—H11···Cg3iii0.932.693.520 (5)150
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

References

First citationBaird, I. R., Cameron, B. R. & Skerlj, R. T. (2003). Inorg. Chim. Acta, 353, 107–118.  CSD CrossRef CAS Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLai, A., Clifton, J., Diaconescu, P. L. & Fey, N. (2019). Chem. Commun. 55, 7021–7024.  CrossRef CAS Google Scholar
First citationLudwig, B. S., Correia, J. D. G. & Kühn, F. E. (2019). Coord. Chem. Rev. 396, 22–48.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds