organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Pyridinium 3-nitro­benzoate–3-nitro­benzoic acid (1/1)

crossmark logo

aAve Maria University, Department of Chemistry and Physics, 5050 Ave Maria Blvd, Ave Maria FL, 34142, USA, and bPurdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana USA, 47907, USA
*Correspondence e-mail: Patrick.Hillesheim@avemaria.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 28 April 2021; accepted 4 June 2021; online 15 June 2021)

The crystal structure of the product of the neutralization reaction between 3-nitro­benzoic acid and pyridine is reported. The entities that crystallized are a pyridinium cation, a 3-nitrobenzoate anion and a 3-nitrobenzoic acid molecule in a 1:1:1 molar ratio, C5H6N+·C7H4NO4·C7H5NO4. Distinct sets of hydrogen bonds link the pyridinium and benzoate ions (N—H⋯O) and the acid and benzoate moieties (O—H⋯O). The hydrogen bonding along with ππ stacking between the acid and benzoate moieties accounts for the long-range ordering of the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The sample crystallizes in the monoclinic crystal system in the Pc space group. Three discrete entities in a 1:1:1 molar ratio comprise the asymmetric unit of this structure: 3-nitro­benzoic acid, 3-nitro­benzoate, and a pyridinium cation (Fig. 1[link]). The structure is the result of a neutralization reaction of the carb­oxy­lic acid and pyridine (see Synthesis and crystallization section for details). The benzoic acid molecule and benzoate anion in the asymmetric unit are nearly coplanar with a 1.16 (14)° dihedral angle. The dihedral angle between the pyridinium and the acid is 99.99 (10)° and the dihedral angle between the benzoate anion and pyridinium cation is 99.58 (10)°.

[Figure 1]
Figure 1
The asymmetric unit of the structure with 50% probability ellipsoids and hydrogen bonds indicated by red dotted lines.

The acid and benzoate moieties are linked through a short hydrogen bond between the protonated carb­oxy­lic acid oxygen atom O1 and the carboxyl­ate anion oxygen Oatom 5 [O1—H1⋯O5, d = 1.69 (4) Å]. The other carboxyl­ate oxygen atom, O6, accepts a hydrogen bond from the protonated pyridinium cation, N3—H3A⋯O6 at a distance of 1.81 (4) Å (Figs. 1[link] and 2[link]; Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5 0.83 (4) 1.69 (4) 2.508 (3) 169 (5)
N3—H3A⋯O6 0.88 (4) 1.81 (4) 2.667 (4) 164 (4)
[Figure 2]
Figure 2
Packing diagram of the title compound viewed from the (100) face.

Parallel, offset π inter­actions between benzoate anions and between benzoic acid molecules account, in part, for the long-range ordering of the structure. The inter­actions range in distance from approximately 3.3 to 3.5 Å. Given the offset inter­actions of the aromatic rings, it appears that inter­actions are between the nitro groups and the aromatic rings in a manner similar to previously reported structures (Sánchez-Moreno et al., 2003[Sánchez-Moreno, M. J., Choquesillo-Lazarte, D., González-Pérez, J. M., Carballo, R., Mart\?ín-Ramos, J. D., Castiñeiras, A. & Niclós-Gutiérrez, J. (2003). Polyhedron, 22, 1039-1049.]). A depiction of these π inter­actions is shown in Fig. 3[link]. No π inter­actions are observed from the pyridinium moiety.

[Figure 3]
Figure 3
Depiction of the π inter­actions in the title structure. Lines in green display multiple close points of contact between the aromatic rings. Distances in Å.

Both distinct nitro groups, that is the nitro group on the acid molecule and the nitro group on the benzoate anion, inter­act with hydrogen atoms on the pyridinium ring. The shortest H⋯ONO2 inter­actions are between O7 and O8 with H19 in one of the α positions of the pyridinium ring. Both O atoms of the nitro moiety participate in a nearly symmetric, bifurcated inter­action with the H19 atom at distances of 2.695 (3) and 2.714 (3) Å, respectively. The other nitro oxygen atoms (O3 and O4) also display a nearly symmetric bifurcated set of inter­actions with H16 in the β position of the pyridinium ring, at H⋯ONO2 distances of 2.882 (3) and 2.820 (3) Å, respectively. The H⋯ONO2 inter­actions observed herein are similar to those observed in some previously reported compounds (Allen et al., 1997[Allen, F. H., Baalham, C. A., Lommerse, J. P. M., Raithby, P. R. & Sparr, E. (1997). Acta Cryst. B53, 1017-1024.]; Gu et al., 1999[Gu, Y., Kar, T. & Scheiner, S. (1999). J. Am. Chem. Soc. 121, 9411-9422.]; Vijayvergiya et al., 1995[Vijayvergiya, V., Padmanabhan, B. & Singh, T. P. (1995). Acta Cryst. C51, 2235-2238.]).

Synthesis and crystallization

The reported crystal is an impurity from residual water from an esterification reaction. A sample of 3-nitro­benzoyl chloride (1 eq.) was dissolved in di­chloro­methane (30 ml) with stirring. Pyridine (2 eq.) and ethanol (5 eq.) were added to the solution, the flask sealed, and the entire mixture allowed to stir overnight at room temperature. A white crystalline solid formed after several minutes of stirring. A sample of this crystalline material was collected and analyzed, yielding the structure presented herein.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The spatial arrangement of the two nitro­aromatic moieties in the asymmetric unit, with the exception of the acidic proton on the carbonyl group forming the acid versus the carboxyl­ate group, might lead to the conclusion that a higher crystallographic symmetry would exist. As such, these two mol­ecules appear related by pseudo screw-axis symmetry; however, they are, in fact, not related by symmetry. To verify this claim, the structure was solved in the P21/c space group, which leads to a substantial increase in the R1 and wR2 residuals (11.78% and 23.88%, respectively). The final structure solution presented is thus in the correct space group, accounting for the subtle differences in the bonding of two nitro­aromatic moieties.

Table 2
Experimental details

Crystal data
Chemical formula C5H6N+·C7H4NO4·C7H5NO4
Mr 413.34
Crystal system, space group Monoclinic, Pc
Temperature (K) 150
a, b, c (Å) 6.2434 (3), 21.3584 (10), 6.8938 (3)
β (°) 93.118 (2)
V3) 917.92 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.35 × 0.15 × 0.05
 
Data collection
Diffractometer Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
Absorption correction Multi-scan (SADABS; Bruker, 2020[Bruker (2020). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.636, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7895, 4437, 3733
Rint 0.023
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.05
No. of reflections 4437
No. of parameters 277
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.19
Computer programs: APEX3 (Bruker, 2020[Bruker (2020). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2020[Bruker (2020). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2020); cell refinement: SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010), CSD (Groom et al., 2016) and enCIFer (Allen et al., 2004).

(I) top
Crystal data top
C5H6N+·C7H4NO4·C7H5NO4F(000) = 428
Mr = 413.34Dx = 1.495 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 6.2434 (3) ÅCell parameters from 3891 reflections
b = 21.3584 (10) Åθ = 3.0–28.3°
c = 6.8938 (3) ŵ = 0.12 mm1
β = 93.118 (2)°T = 150 K
V = 917.92 (7) Å3Plate, colourless
Z = 20.35 × 0.15 × 0.05 mm
Data collection top
Bruker AXS D8 Quest
diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
4437 independent reflections
Radiation source: 1 kW fine focus sealed tube X-ray source3733 reflections with I > 2σ(I)
Detector resolution: 7.4074 pixels mm-1Rint = 0.023
ω and φ scansθmax = 28.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2020)
h = 88
Tmin = 0.636, Tmax = 0.746k = 2828
7895 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.044P)2 + 0.2733P]
where P = (Fo2 + 2Fc2)/3
4437 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = 0.19 e Å3
Special details top

Refinement. H atoms on the aromatic (sp2) carbons were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2 × Ueq(carrier atom). H atoms H1 and H3A were located as residual electron density and allowed to refine freely with Uiso(H) = 1.5 × Ueq(O or N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3880 (5)0.35185 (15)0.2998 (4)0.0229 (7)
C20.5147 (5)0.40980 (15)0.3404 (4)0.0203 (7)
C30.4093 (5)0.46720 (14)0.3147 (4)0.0190 (7)
H30.2621800.4685430.2716910.023*
C40.5217 (5)0.52186 (15)0.3528 (4)0.0198 (7)
C50.7352 (5)0.52249 (16)0.4169 (5)0.0241 (7)
H50.8090700.5607360.4425600.029*
C60.8384 (5)0.46494 (16)0.4425 (5)0.0261 (7)
H60.9852320.4639020.4866110.031*
C70.7308 (5)0.40954 (16)0.4048 (5)0.0235 (7)
H70.8042060.3708380.4227860.028*
N10.4075 (5)0.58181 (13)0.3261 (4)0.0254 (6)
O10.5027 (4)0.30049 (11)0.3136 (4)0.0325 (6)
H10.419 (7)0.2717 (19)0.283 (7)0.049*
O20.1965 (4)0.35353 (11)0.2591 (4)0.0346 (6)
O30.2159 (4)0.58001 (12)0.2787 (5)0.0421 (7)
O40.5076 (5)0.63004 (12)0.3523 (4)0.0410 (7)
C80.3862 (6)0.15289 (15)0.2486 (5)0.0246 (7)
C90.2590 (5)0.09406 (15)0.1956 (4)0.0213 (7)
C100.3561 (6)0.03643 (14)0.2200 (4)0.0208 (7)
H100.5018550.0332980.2662890.025*
C110.2370 (5)0.01667 (14)0.1758 (4)0.0213 (7)
C120.0235 (5)0.01458 (16)0.1095 (4)0.0239 (7)
H120.0554280.0518720.0822200.029*
C130.0699 (6)0.04316 (16)0.0848 (5)0.0275 (8)
H130.2154010.0460600.0377390.033*
C140.0457 (6)0.09765 (16)0.1278 (5)0.0266 (7)
H140.0213820.1373340.1107870.032*
N20.3439 (5)0.07747 (13)0.2017 (4)0.0278 (7)
O50.2900 (4)0.20430 (11)0.2221 (4)0.0343 (6)
O60.5729 (4)0.14586 (12)0.3167 (4)0.0366 (6)
O70.5346 (5)0.07837 (13)0.2492 (5)0.0448 (7)
O80.2350 (5)0.12516 (12)0.1741 (4)0.0376 (6)
C150.9530 (6)0.23917 (17)0.5534 (5)0.0337 (8)
H151.0029330.2336890.4268330.040*
C161.0720 (6)0.27288 (17)0.6888 (6)0.0337 (8)
H161.2049650.2908250.6574190.040*
C170.9967 (6)0.28047 (15)0.8709 (5)0.0352 (8)
H171.0784360.3033790.9670640.042*
C180.8023 (7)0.25478 (17)0.9138 (6)0.0392 (9)
H180.7475240.2601631.0385920.047*
C190.6901 (7)0.22142 (16)0.7730 (6)0.0372 (8)
H190.5558150.2033740.7998990.045*
N30.7677 (5)0.21406 (13)0.5984 (5)0.0321 (7)
H3A0.694 (7)0.198 (2)0.498 (6)0.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (17)0.0217 (15)0.0224 (15)0.0023 (13)0.0047 (13)0.0001 (12)
C20.0209 (16)0.0212 (15)0.0189 (15)0.0001 (12)0.0026 (12)0.0000 (11)
C30.0177 (17)0.0205 (15)0.0188 (15)0.0009 (12)0.0017 (12)0.0010 (11)
C40.0218 (17)0.0199 (14)0.0178 (14)0.0021 (12)0.0021 (12)0.0021 (11)
C50.0260 (19)0.0249 (16)0.0215 (16)0.0050 (13)0.0023 (13)0.0017 (12)
C60.0149 (16)0.0374 (19)0.0259 (16)0.0000 (13)0.0005 (12)0.0001 (13)
C70.0201 (17)0.0264 (16)0.0241 (16)0.0062 (13)0.0019 (13)0.0034 (12)
N10.0302 (16)0.0175 (13)0.0286 (15)0.0028 (12)0.0018 (12)0.0019 (11)
O10.0352 (14)0.0188 (11)0.0432 (15)0.0014 (10)0.0021 (11)0.0014 (10)
O20.0270 (13)0.0249 (12)0.0516 (15)0.0031 (10)0.0005 (11)0.0095 (11)
O30.0301 (14)0.0248 (13)0.0699 (19)0.0093 (12)0.0115 (13)0.0070 (13)
O40.0391 (16)0.0209 (12)0.0625 (18)0.0042 (11)0.0030 (13)0.0034 (12)
C80.0320 (19)0.0172 (15)0.0247 (15)0.0062 (13)0.0027 (13)0.0059 (12)
C90.0243 (17)0.0204 (15)0.0195 (15)0.0018 (12)0.0035 (13)0.0024 (11)
C100.0202 (17)0.0229 (16)0.0192 (15)0.0023 (13)0.0003 (12)0.0037 (11)
C110.0275 (18)0.0193 (15)0.0175 (14)0.0003 (13)0.0041 (12)0.0008 (12)
C120.0230 (18)0.0285 (17)0.0204 (15)0.0072 (13)0.0025 (13)0.0034 (13)
C130.0222 (18)0.0349 (19)0.0251 (17)0.0019 (13)0.0001 (13)0.0003 (13)
C140.0314 (19)0.0235 (16)0.0249 (16)0.0013 (13)0.0001 (14)0.0005 (13)
N20.0353 (18)0.0204 (13)0.0274 (15)0.0017 (13)0.0003 (13)0.0049 (11)
O50.0388 (14)0.0184 (11)0.0454 (15)0.0015 (10)0.0008 (12)0.0011 (10)
O60.0296 (14)0.0266 (13)0.0529 (16)0.0034 (11)0.0054 (12)0.0146 (11)
O70.0380 (16)0.0282 (14)0.066 (2)0.0069 (13)0.0156 (14)0.0071 (13)
O80.0461 (16)0.0173 (11)0.0493 (15)0.0075 (11)0.0033 (13)0.0027 (11)
C150.037 (2)0.0301 (16)0.0328 (18)0.0057 (15)0.0043 (15)0.0010 (14)
C160.0286 (18)0.0296 (17)0.042 (2)0.0019 (14)0.0051 (15)0.0037 (14)
C170.041 (2)0.0240 (16)0.0384 (19)0.0009 (15)0.0174 (16)0.0036 (14)
C180.051 (2)0.0314 (18)0.0358 (19)0.0082 (17)0.0066 (17)0.0024 (15)
C190.0296 (18)0.0252 (16)0.057 (2)0.0014 (14)0.0043 (16)0.0026 (16)
N30.0319 (16)0.0193 (12)0.0431 (17)0.0009 (11)0.0152 (13)0.0053 (11)
Geometric parameters (Å, º) top
C1—C21.488 (4)C10—C111.381 (4)
C1—O11.311 (4)C11—C121.386 (5)
C1—O21.214 (4)C11—N21.467 (4)
C2—C31.398 (4)C12—H120.9500
C2—C71.397 (4)C12—C131.371 (5)
C3—H30.9500C13—H130.9500
C3—C41.380 (4)C13—C141.393 (5)
C4—C51.382 (4)C14—H140.9500
C4—N11.472 (4)N2—O71.217 (4)
C5—H50.9500N2—O81.234 (4)
C5—C61.395 (4)C15—H150.9500
C6—H60.9500C15—C161.366 (5)
C6—C71.378 (5)C15—N31.327 (5)
C7—H70.9500C16—H160.9500
N1—O31.223 (4)C16—C171.374 (6)
N1—O41.213 (4)C17—H170.9500
O1—H10.83 (4)C17—C181.379 (6)
C8—C91.520 (4)C18—H180.9500
C8—O51.260 (4)C18—C191.366 (6)
C8—O61.242 (4)C19—H190.9500
C9—C101.378 (4)C19—N31.331 (5)
C9—C141.389 (5)N3—H3A0.88 (4)
C10—H100.9500
O1—C1—C2113.5 (3)C10—C11—C12122.9 (3)
O2—C1—C2121.8 (3)C10—C11—N2117.6 (3)
O2—C1—O1124.7 (3)C12—C11—N2119.5 (3)
C3—C2—C1117.6 (3)C11—C12—H12121.2
C7—C2—C1123.4 (3)C13—C12—C11117.7 (3)
C7—C2—C3118.9 (3)C13—C12—H12121.2
C2—C3—H3120.4C12—C13—H13119.6
C4—C3—C2119.1 (3)C12—C13—C14120.9 (3)
C4—C3—H3120.4C14—C13—H13119.6
C3—C4—C5122.7 (3)C9—C14—C13120.1 (3)
C3—C4—N1118.3 (3)C9—C14—H14119.9
C5—C4—N1118.9 (3)C13—C14—H14119.9
C4—C5—H5121.2O7—N2—C11118.6 (3)
C4—C5—C6117.6 (3)O7—N2—O8123.4 (3)
C6—C5—H5121.2O8—N2—C11117.9 (3)
C5—C6—H6119.5C16—C15—H15119.9
C7—C6—C5121.0 (3)N3—C15—H15119.9
C7—C6—H6119.5N3—C15—C16120.1 (4)
C2—C7—H7119.7C15—C16—H16120.5
C6—C7—C2120.6 (3)C15—C16—C17119.1 (4)
C6—C7—H7119.7C17—C16—H16120.5
O3—N1—C4117.8 (3)C16—C17—H17120.1
O4—N1—C4118.5 (3)C16—C17—C18119.9 (3)
O4—N1—O3123.7 (3)C18—C17—H17120.1
C1—O1—H1105 (3)C17—C18—H18120.7
O5—C8—C9116.6 (3)C19—C18—C17118.6 (4)
O6—C8—C9117.3 (3)C19—C18—H18120.7
O6—C8—O5126.2 (3)C18—C19—H19119.8
C10—C9—C8119.2 (3)N3—C19—C18120.4 (4)
C10—C9—C14119.8 (3)N3—C19—H19119.8
C14—C9—C8120.9 (3)C15—N3—C19121.9 (3)
C9—C10—H10120.7C15—N3—H3A113 (3)
C9—C10—C11118.6 (3)C19—N3—H3A124 (3)
C11—C10—H10120.7
C1—C2—C3—C4179.4 (3)C9—C10—C11—N2179.6 (3)
C1—C2—C7—C6179.1 (3)C10—C9—C14—C130.1 (5)
C2—C3—C4—C50.4 (5)C10—C11—C12—C131.1 (5)
C2—C3—C4—N1179.6 (3)C10—C11—N2—O74.4 (5)
C3—C2—C7—C60.0 (5)C10—C11—N2—O8175.5 (3)
C3—C4—C5—C60.2 (5)C11—C12—C13—C140.9 (5)
C3—C4—N1—O32.8 (4)C12—C11—N2—O7175.8 (3)
C3—C4—N1—O4177.3 (3)C12—C11—N2—O84.2 (4)
C4—C5—C6—C70.1 (5)C12—C13—C14—C90.4 (5)
C5—C4—N1—O3176.4 (3)C14—C9—C10—C110.0 (5)
C5—C4—N1—O43.5 (4)N2—C11—C12—C13179.2 (3)
C5—C6—C7—C20.2 (5)O5—C8—C9—C10179.5 (3)
C7—C2—C3—C40.3 (4)O5—C8—C9—C142.1 (5)
N1—C4—C5—C6179.4 (3)O6—C8—C9—C101.7 (5)
O1—C1—C2—C3175.3 (3)O6—C8—C9—C14176.7 (3)
O1—C1—C2—C75.6 (4)C15—C16—C17—C180.7 (5)
O2—C1—C2—C35.1 (5)C16—C15—N3—C191.1 (5)
O2—C1—C2—C7174.0 (3)C16—C17—C18—C190.8 (5)
C8—C9—C10—C11178.4 (3)C17—C18—C19—N30.0 (5)
C8—C9—C14—C13178.3 (3)C18—C19—N3—C151.0 (5)
C9—C10—C11—C120.6 (5)N3—C15—C16—C170.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.83 (4)1.69 (4)2.508 (3)169 (5)
N3—H3A···O60.88 (4)1.81 (4)2.667 (4)164 (4)
 

Acknowledgements

Parts of this work is supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1919785 (funding for the single-crystal X-ray diffractometer). The authors would also like to thank the reviewers for their assistance with structure solution and refinement and related fruitful discussions.

Funding information

Funding for this research was provided by: Ave Maria University Department of Chemistry and Physics; National Science Foundation (grant No. 1919785).

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M., Raithby, P. R. & Sparr, E. (1997). Acta Cryst. B53, 1017–1024.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2020). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGu, Y., Kar, T. & Scheiner, S. (1999). J. Am. Chem. Soc. 121, 9411–9422.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSánchez-Moreno, M. J., Choquesillo-Lazarte, D., González-Pérez, J. M., Carballo, R., Mart\?ín-Ramos, J. D., Castiñeiras, A. & Niclós-Gutiérrez, J. (2003). Polyhedron, 22, 1039–1049.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVijayvergiya, V., Padmanabhan, B. & Singh, T. P. (1995). Acta Cryst. C51, 2235–2238.  CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds