organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(Di­phenyl­meth­­oxy)-3-eth­­oxy­benzaldehyde

crossmark logo

aInstitute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
*Correspondence e-mail: samolova@fzu.cz

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 March 2021; accepted 1 April 2021; online 9 April 2021)

In the title compound, C22H20O3, the dihedral angle between the aromatic rings linked by the methine group is 81.265 (4)° and the eth­oxy side chain adopts an extended conformation [C—O—C—C = 177.24 (10)°]. In the crystal, weak C—H⋯π and C—H⋯O inter­actions link the mol­ecules into sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The preparation of Schiff bases (Omidi & Kakanejadifard, 2020[Omidi, S. & Kakanejadifard, A. (2020). RSC Adv. 10, 30186-30202.]) is nowadays an inter­esting topic, because of their various application and properties (e.g., Kizilkaya et al., 2020[Kizilkaya, H., Dag, B., Aral, T., Genc, N. & Erenler, R. (2020). J. Chin. Chem. Soc. 67, 1696-1701.]). As part of our studies in this area, the title aldehyde, C22H20O3, was prepared as a precursor to new Schiff bases and we now describe its crystal structure (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

As expected, the C2—O2, C20—O2, C1—O1 and C7—O1 bond lengths reveal single bond character while C22=O3 is a double bond. The dihedral angle between the C1–C6 and C8–C13 aromatic rings connected by the C7 methine group is 81.265 (4)°. In the crystal, weak C—H⋯O (Table 1[link]) and C—H⋯π inter­actions [C20iii—H1c20iiiCg3 = 3.05 Å and C5iv—H1c5ivCg3 = 2.89 Å; symmetry codes: (iii) [{1\over 2}] − x, [{1\over 2}] + y, z; (iv) x − [{1\over 2}], y, [{1\over 2}] − z; Cg3 is the centroid of the C14–C19 ring] are observed. These link the mol­ecules into sheets lying perpendicular to the c-axis direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H1c7⋯O3i 0.96 2.52 3.3794 (15) 148
C17—H1c17⋯O1ii 0.96 2.57 3.4440 (15) 152
C18—H1c18⋯O3iii 0.96 2.53 3.2906 (16) 136
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, y, z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Partial packing diagram showing the hydrogen bonds in the title compound. Hydrogen atoms not involved in hydrogen bonding were omitted for clarity. Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + 1; (ii) x − 1, y, z; (iii) −x + [{1\over 2}], y + [{1\over 2}], z.

Synthesis and crystallization

3-Eth­oxy-4-hy­droxy benzaldehyde (0.20 mmol) and potassium carbonate (0.40 mmol) were mixed in di­methyl­formamide (25 ml) and stirred for 0.5 h. A solution of di­phenyl­bromo­methane (0.2 mmol) in ethanol (20 ml) was added dropwise and the mixture was stirred at 80°C for 24 h. After that, the solution was concentrated under reduced pressure. The cream precipitate of the title compound formed by adding cold water (250 ml) was filtered off and washed several times with cold ethanol. Colourless slabs were recrystallized from the mixed solvents of chloro­form and ethanol (1:1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H20O3
Mr 332.4
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 120
a, b, c (Å) 8.1123 (4), 15.8713 (9), 27.6155 (14)
V3) 3555.6 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.83 × 0.32 × 0.26
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, AtlasS2, Gemini ultra
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.958, 0.982
No. of measured, independent and observed [I > 3σ(I)] reflections 16215, 4454, 3284
Rint 0.028
(sin θ/λ)max−1) 0.695
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.44
No. of reflections 4454
No. of parameters 227
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.20
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, (2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: Superflip (Palatinus & Chapuis, (2007); program(s) used to refine structure: Jana2006 (Petříček et al., 2014); molecular graphics: DIAMOND (Brandenburg, 1999).

4-(Diphenylmethoxy)-3-ethoxybenzaldehyde top
Crystal data top
C22H20O3F(000) = 1408
Mr = 332.4Dx = 1.242 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P -2xab;-2ybc;-2zacCell parameters from 4539 reflections
a = 8.1123 (4) Åθ = 3.9–29.2°
b = 15.8713 (9) ŵ = 0.08 mm1
c = 27.6155 (14) ÅT = 120 K
V = 3555.6 (3) Å3Plate, colourless
Z = 80.83 × 0.32 × 0.26 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, AtlasS2, Gemini ultra
diffractometer
4454 independent reflections
Radiation source: X-ray tube3284 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 5.1783 pixels mm-1θmax = 29.6°, θmin = 3.6°
ω scansh = 118
Absorption correction: analytical
(CrysalisPro; Rigaku OD, 2015)
k = 2020
Tmin = 0.958, Tmax = 0.982l = 3737
16215 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F2) = 0.107(Δ/σ)max = 0.0004
S = 1.44Δρmax = 0.22 e Å3
4454 reflectionsΔρmin = 0.20 e Å3
227 parametersExtinction correction: B-C type 1 Gaussian isotropic [Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147]
0 restraintsExtinction coefficient: 13000 (2000)
80 constraints
Special details top

Refinement. All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry, but according to common practice they were refined as riding atoms with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34686 (10)0.62710 (5)0.13059 (3)0.0193 (2)
O20.52510 (10)0.49847 (5)0.11100 (3)0.0203 (2)
O30.64458 (13)0.36127 (6)0.27937 (3)0.0385 (3)
C10.38844 (13)0.57930 (7)0.16975 (4)0.0170 (3)
C20.48965 (13)0.50922 (7)0.15898 (4)0.0170 (3)
C30.54565 (14)0.45894 (7)0.19596 (4)0.0195 (3)
C40.50097 (14)0.47681 (7)0.24410 (4)0.0205 (3)
C50.40159 (14)0.54531 (8)0.25426 (4)0.0206 (3)
C60.34409 (14)0.59647 (8)0.21712 (4)0.0198 (3)
C70.27297 (14)0.70813 (7)0.13914 (4)0.0171 (3)
C80.32021 (13)0.76454 (7)0.09687 (4)0.0178 (3)
C90.39897 (15)0.73419 (8)0.05577 (4)0.0261 (4)
C100.43962 (18)0.78854 (9)0.01835 (5)0.0326 (4)
C110.40310 (16)0.87355 (9)0.02180 (5)0.0297 (4)
C120.32477 (15)0.90430 (9)0.06254 (5)0.0261 (4)
C130.28374 (14)0.85001 (8)0.10003 (4)0.0218 (4)
C140.08714 (14)0.70028 (7)0.14420 (4)0.0177 (3)
C150.00177 (15)0.65479 (8)0.11019 (5)0.0256 (4)
C160.17290 (16)0.65229 (9)0.11241 (5)0.0322 (4)
C170.25477 (16)0.69522 (8)0.14866 (5)0.0298 (4)
C180.16734 (15)0.73910 (8)0.18332 (5)0.0250 (4)
C190.00414 (14)0.74156 (7)0.18104 (4)0.0199 (3)
C200.63310 (15)0.43012 (8)0.09834 (4)0.0245 (4)
C210.64587 (17)0.42893 (9)0.04403 (5)0.0316 (4)
C220.55991 (16)0.42412 (8)0.28389 (5)0.0275 (4)
H1c30.6153070.4115870.1889540.0233*
H1c50.372140.5575850.2871860.0248*
H1c60.2738910.6435440.224280.0237*
H1c70.3120560.7320240.1689390.0205*
H1c90.4253230.6753830.0532660.0313*
H1c100.4933410.7671590.0100790.0391*
H1c110.4321790.9110710.0040950.0357*
H1c120.2987540.9631570.064920.0313*
H1c130.229770.8715970.1283730.0261*
H1c150.0551070.6249030.0850030.0307*
H1c160.234050.6207720.0887950.0386*
H1c170.3730470.6945270.1497410.0357*
H1c180.2244670.7678240.2089060.0301*
H1c190.0651080.7720390.2051410.0239*
H1c200.5864520.3779550.109390.0294*
H2c200.7401360.4398960.1120630.0294*
H1c210.7190410.3845710.0342220.0379*
H2c210.5387330.4194480.0303130.0379*
H3c210.6879790.4820330.0328920.0379*
H1c220.5294380.4403450.3161620.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0248 (4)0.0172 (4)0.0158 (4)0.0056 (3)0.0024 (3)0.0000 (3)
O20.0249 (4)0.0180 (4)0.0180 (4)0.0037 (3)0.0006 (3)0.0005 (3)
O30.0567 (6)0.0310 (6)0.0277 (5)0.0151 (5)0.0056 (4)0.0064 (4)
C10.0164 (5)0.0162 (6)0.0185 (6)0.0025 (5)0.0032 (4)0.0020 (4)
C20.0181 (5)0.0164 (6)0.0165 (5)0.0037 (5)0.0010 (4)0.0009 (4)
C30.0207 (6)0.0160 (6)0.0217 (6)0.0001 (5)0.0018 (5)0.0006 (4)
C40.0219 (6)0.0190 (6)0.0205 (6)0.0036 (5)0.0029 (5)0.0032 (5)
C50.0220 (6)0.0219 (6)0.0180 (6)0.0037 (5)0.0007 (5)0.0006 (5)
C60.0188 (5)0.0197 (6)0.0208 (6)0.0006 (5)0.0000 (4)0.0005 (5)
C70.0197 (6)0.0151 (6)0.0164 (5)0.0019 (5)0.0028 (4)0.0022 (4)
C80.0143 (5)0.0208 (6)0.0182 (5)0.0004 (5)0.0042 (4)0.0004 (4)
C90.0328 (7)0.0224 (7)0.0230 (6)0.0036 (6)0.0031 (5)0.0003 (5)
C100.0405 (8)0.0327 (8)0.0245 (7)0.0045 (6)0.0101 (6)0.0017 (6)
C110.0326 (7)0.0299 (7)0.0267 (7)0.0012 (6)0.0039 (5)0.0093 (6)
C120.0280 (6)0.0200 (7)0.0304 (7)0.0006 (5)0.0002 (5)0.0033 (5)
C130.0218 (6)0.0211 (6)0.0225 (6)0.0012 (5)0.0008 (5)0.0010 (5)
C140.0190 (5)0.0145 (6)0.0195 (6)0.0008 (5)0.0033 (4)0.0050 (4)
C150.0268 (7)0.0270 (7)0.0230 (7)0.0037 (5)0.0032 (5)0.0009 (5)
C160.0279 (7)0.0352 (8)0.0335 (8)0.0112 (6)0.0109 (6)0.0019 (6)
C170.0178 (6)0.0313 (7)0.0402 (7)0.0048 (6)0.0016 (5)0.0120 (6)
C180.0234 (6)0.0210 (6)0.0307 (7)0.0010 (5)0.0053 (5)0.0076 (5)
C190.0222 (6)0.0167 (6)0.0208 (6)0.0010 (5)0.0011 (5)0.0029 (5)
C200.0256 (6)0.0223 (6)0.0257 (6)0.0064 (5)0.0022 (5)0.0009 (5)
C210.0347 (7)0.0333 (8)0.0267 (7)0.0066 (6)0.0065 (6)0.0034 (6)
C220.0347 (7)0.0257 (7)0.0221 (7)0.0013 (6)0.0025 (5)0.0035 (5)
Geometric parameters (Å, º) top
O1—C11.3632 (13)C11—C121.3813 (18)
O1—C71.4380 (13)C11—H1c110.96
O2—C21.3662 (13)C12—C131.3873 (18)
O2—C201.4377 (14)C12—H1c120.96
O3—C221.2174 (16)C13—H1c130.96
C1—C21.4142 (15)C14—C151.3870 (17)
C1—C61.3838 (16)C14—C191.3845 (16)
C2—C31.3736 (16)C15—C161.3902 (18)
C3—C41.4067 (16)C15—H1c150.96
C3—H1c30.96C16—C171.3809 (19)
C4—C51.3821 (16)C16—H1c160.96
C4—C221.4614 (17)C17—C181.3807 (18)
C5—C61.3892 (16)C17—H1c170.96
C5—H1c50.96C18—C191.3931 (17)
C6—H1c60.96C18—H1c180.96
C7—C81.5202 (16)C19—H1c190.96
C7—C141.5192 (16)C20—C211.5034 (17)
C7—H1c70.96C20—H1c200.96
C8—C91.3885 (17)C20—H2c200.96
C8—C131.3911 (17)C21—H1c210.96
C9—C101.3865 (18)C21—H2c210.96
C9—H1c90.96C21—H3c210.96
C10—C111.3843 (19)C22—H1c220.96
C10—H1c100.96
C1—O1—C7118.07 (8)C11—C12—H1c12120.04
C2—O2—C20117.29 (9)C13—C12—H1c12120.04
O1—C1—C2114.48 (9)C8—C13—C12120.52 (11)
O1—C1—C6125.17 (10)C8—C13—H1c13119.74
C2—C1—C6120.32 (10)C12—C13—H1c13119.74
O2—C2—C1115.12 (9)C7—C14—C15119.76 (10)
O2—C2—C3125.37 (10)C7—C14—C19120.76 (10)
C1—C2—C3119.51 (10)C15—C14—C19119.40 (10)
C2—C3—C4120.02 (10)C14—C15—C16120.29 (12)
C2—C3—H1c3119.99C14—C15—H1c15119.86
C4—C3—H1c3119.99C16—C15—H1c15119.86
C3—C4—C5120.07 (11)C15—C16—C17119.88 (12)
C3—C4—C22120.72 (11)C15—C16—H1c16120.06
C5—C4—C22119.22 (11)C17—C16—H1c16120.06
C4—C5—C6120.37 (11)C16—C17—C18120.30 (12)
C4—C5—H1c5119.81C16—C17—H1c17119.85
C6—C5—H1c5119.81C18—C17—H1c17119.85
C1—C6—C5119.71 (11)C17—C18—C19119.70 (11)
C1—C6—H1c6120.14C17—C18—H1c18120.15
C5—C6—H1c6120.14C19—C18—H1c18120.15
O1—C7—C8107.20 (8)C14—C19—C18120.39 (11)
O1—C7—C14110.82 (9)C14—C19—H1c19119.8
O1—C7—H1c7110.86C18—C19—H1c19119.8
C8—C7—C14111.65 (9)O2—C20—C21107.10 (10)
C8—C7—H1c7110.01O2—C20—H1c20109.47
C14—C7—H1c7106.34O2—C20—H2c20109.47
C7—C8—C9122.61 (10)C21—C20—H1c20109.47
C7—C8—C13118.21 (10)C21—C20—H2c20109.47
C9—C8—C13119.18 (11)H1c20—C20—H2c20111.74
C8—C9—C10120.17 (12)C20—C21—H1c21109.47
C8—C9—H1c9119.91C20—C21—H2c21109.47
C10—C9—H1c9119.91C20—C21—H3c21109.47
C9—C10—C11120.28 (12)H1c21—C21—H2c21109.47
C9—C10—H1c10119.86H1c21—C21—H3c21109.47
C11—C10—H1c10119.86H2c21—C21—H3c21109.47
C10—C11—C12119.93 (12)O3—C22—C4125.21 (12)
C10—C11—H1c11120.04O3—C22—H1c22117.39
C12—C11—H1c11120.04C4—C22—H1c22117.4
C11—C12—C13119.91 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H1c7···O3i0.962.523.3794 (15)148
C17—H1c17···O1ii0.962.573.4440 (15)152
C18—H1c18···O3iii0.962.533.2906 (16)136
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to Golestan University. CzechNanoLab project LM2018110 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements at LNSM Research Infrastructure.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKizilkaya, H., Dag, B., Aral, T., Genc, N. & Erenler, R. (2020). J. Chin. Chem. Soc. 67, 1696–1701.  Web of Science CrossRef CAS Google Scholar
First citationOmidi, S. & Kakanejadifard, A. (2020). RSC Adv. 10, 30186–30202.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds