inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Hexa­aqua­dodeca-μ2-iodido-octahedro-hexa­tantalum diiodide tetra­hydrate

CROSSMARK_Color_square_no_text.svg

aUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
*Correspondence e-mail: Martin.Koeckerling@uni-rostock.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 February 2021; accepted 23 March 2021; online 31 March 2021)

In the crystal structure of the cluster salt, [Ta6I12(H2O)6]I2·4H2O, the octa­hedral {Ta6} cluster core is μ2-coordinated by twelve iodido ligands (inner ligand sphere) whereas the six aqua ligands coordinate each at the six outer positions. The discrete, inversion-symmetric cluster complex is double-positively charged, and two iodide anions are present in the crystal structure as counter-ions. In addition, four water mol­ecules are co-crystallized. Hydrogen bonds between the cluster unit, the iodide anions and co-crystallized water mol­ecules stabilize the charge-assisted packing in the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cluster complexes with strong metal-metal bonds have been in the focus of research activities for a long time (Cotton, 1964[Cotton, F. A. (1964). Inorg. Chem. 3, 1217-1220.]; Simon, 1988[Simon, A. (1988). Angew. Chem. 100, 163-188.]). Starting from the well-known compound [Ta6I14] (Bauer et al., 1965[Bauer, D., von Schnering, H. G. & Schäfer, H. (1965). J. Less-Common Met. 8, 388-401.]), the title compound [Ta6I12(H2O)6]I2·4H2O was obtained by reaction with a water–acetone mixture and subsequent evaporation of the solvent. This compound was previously mentioned by Schäfer et al. (1972[Schäfer, H., Plautz, B. & Plautz, H. (1972). Z. Anorg. Allg. Chem. 392, 10-22.]) and Shamshurin et al. (2019[Shamshurin, M. V., Mikhaylov, M. A., Sukhikh, T., Benassi, E., Tarkova, A. R., Prokhorikhin, A. A., Kretov, E. I., Shestopalov, M. A., Abramov, P. A. & Sokolov, M. N. (2019). Inorg. Chem. 58, 9028-9035.]), however, without determination of its crystal structure. [Ta6I12(H2O)6]I2·4H2O can be used efficiently as a precursor for new tantalum cluster compounds.

The metal atoms of the {Ta6} unit are octa­hedrally arranged (point group symmetry [\overline{1}]), with an average Ta—Ta bond length of 2.934 Å. The twelve μ2-bridging positions of the inner ligand sphere are occupied by iodido ligands (Fig. 1[link]). The average Ta—I bond length is 2.809 Å and the average Ta—I—Ta angle is 63.1°. The six positions of the outer ligand sphere are occupied by aqua ligands (O1, O2, and O3). The average Ta—O bond length is 2.286 Å. All inter­atomic distances and angles within the cluster complex match well with those in comparable compounds of the same charge (Shamshurin et al., 2019[Shamshurin, M. V., Mikhaylov, M. A., Sukhikh, T., Benassi, E., Tarkova, A. R., Prokhorikhin, A. A., Kretov, E. I., Shestopalov, M. A., Abramov, P. A. & Sokolov, M. N. (2019). Inorg. Chem. 58, 9028-9035.]). Based on the anion:cation ratio and the bond lengths, 16 cluster-based electrons (CBE) are present. The double-positive charge of the cluster cation is counter-balanced by two iodide ions (I7). Two water mol­ecules (O4, O5) are co-crystallized per asymmetric unit, which are connected to the cluster complex via H⋯I and H⋯O hydrogen bonds. Further hydrogen bonds exist between some of the ligating I atoms, the iodide counter-anions and water mol­ecules. Numerical details of the hydrogen-bonding inter­actions up to DA distances of 3.7 Å are given in Table 1[link]. A packing plot with a view along the crystallographic c direction is displayed in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯I1 0.85 2.71 3.196 (5) 118
O1—H1B⋯I5 0.85 2.66 3.226 (4) 126
O2—H2B⋯O5 0.85 1.85 2.618 (6) 150
O2—H2A⋯I7i 0.85 2.70 3.534 (4) 169
O3—H3B⋯I7ii 0.85 2.80 3.455 (4) 135
O3—H3A⋯I7iii 0.85 2.75 3.488 (4) 146
O4—H4A⋯O1 0.85 2.16 2.685 (7) 120
O4—H4B⋯I6iv 0.85 2.95 3.695 (5) 148
O5—H5B⋯O4v 0.85 2.09 2.894 (8) 157
O5—H5A⋯I7vi 0.85 2.82 3.563 (5) 147
Symmetry codes: (i) [x, y, z-1]; (ii) [-x+1, -y+1, -z+1]; (iii) x+1, y+1, z; (iv) [x, y-1, z-1]; (v) [-x+1, -y+1, -z]; (vi) [-x, -y+1, -z+1].
[Figure 1]
Figure 1
The centrosymmetric cluster cation [Ta6I12(H2O)6]2+ in the crystal structure of [Ta6I12(H2O)6]I2·4H2O with the atoms shown as displacement ellipsoids at the 50% probability level. Non-labelled atoms are generated by the symmetry operationx + 1, −y + 1, −z + 1.
[Figure 2]
Figure 2
Packing of cluster units, iodide anions, and co-crystallized water mol­ecules of [Ta6I12(H2O)6]I2·4H2O in a view along the c axis with O—H⋯O and O—H⋯I hydrogen bonds shown as blue–green dashed lines.

Synthesis and crystallization

Under Schlenk conditions the starting material, viz. the cluster compound [Ta6I14], was produced analogously to a literature procedure (Bauer et al., 1965[Bauer, D., von Schnering, H. G. & Schäfer, H. (1965). J. Less-Common Met. 8, 388-401.]) and subsequently finely ground under protective gas by means of a ball mill. The obtained powder was pyrophoric in air. 400 mg (139.75 µmol) of [Ta6I14] were stirred under argon in an intensely degassed solution of 30 ml (1.67 mol) water and 30 ml (0.40 mol) acetone at room temperature for one day. After filtration, an intense green solution was obtained. The solvent was slowly evaporated in air at room temperature. After several days, black single crystals had formed, which were washed several times with water. 180 mg (59.16 µmol, yield: 45%) of [Ta6I12(H2O)6]I2·4H2O were obtained. NMR, IR and elemental analysis confirmed the composition determined by the X-ray structural analysis. Details of the complementary analytical methods are given in the supplementary information.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed on idealized positions and refined using a riding model with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Ta6I12(H2O)6]I2·4H2O
Mr 3042.46
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 10.009 (2), 10.118 (2), 10.498 (2)
α, β, γ (°) 117.451 (4), 97.465 (4), 96.344 (4)
V3) 917.7 (2)
Z 1
Radiation type Mo Kα
μ (mm−1) 29.32
Crystal size (mm) 0.04 × 0.03 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 39077, 5847, 5081
Rint 0.057
(sin θ/λ)max−1) 0.724
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.051, 1.07
No. of reflections 5847
No. of parameters 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.93, −1.52
Computer programs: APEX2 (Bruker, 2017[Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2019[Brandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2019).

Hexaaquadodeca-µ2-iodido-hexatantalum diiodide tetrahydrate top
Crystal data top
[Ta6I12(H2O)6]I2·4H2OZ = 1
Mr = 3042.46F(000) = 1280
Triclinic, P1Dx = 5.505 Mg m3
a = 10.009 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.118 (2) ÅCell parameters from 9987 reflections
c = 10.498 (2) Åθ = 2.3–32.8°
α = 117.451 (4)°µ = 29.32 mm1
β = 97.465 (4)°T = 123 K
γ = 96.344 (4)°Block, black
V = 917.7 (2) Å30.04 × 0.03 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
5081 reflections with I > 2σ(I)
Radiation source: microfocus sealed tubeRint = 0.057
φ and ω scansθmax = 31.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
k = 1414
39077 measured reflectionsl = 1515
5847 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.051H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0139P)2 + 1.4885P]
where P = (Fo2 + 2Fc2)/3
5847 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 1.93 e Å3
0 restraintsΔρmin = 1.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were placed on idealized positions and refined using a riding model with Uiso(H) = 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ta10.59756 (2)0.32569 (3)0.37992 (2)0.00826 (5)
Ta20.38779 (2)0.47496 (3)0.30732 (2)0.00757 (5)
Ta30.65272 (2)0.65637 (3)0.49926 (2)0.00823 (5)
I10.42859 (4)0.06430 (4)0.34481 (4)0.01322 (8)
I20.47893 (4)0.23469 (4)0.08727 (4)0.01115 (7)
I30.82943 (4)0.47721 (4)0.34401 (4)0.01372 (8)
I40.55445 (4)0.66827 (4)0.24333 (4)0.01211 (7)
I50.77566 (4)0.30105 (4)0.59483 (4)0.01271 (8)
I60.85016 (4)0.73689 (4)0.75183 (4)0.01137 (7)
I70.07640 (4)0.11686 (4)0.77730 (4)0.01530 (8)
O10.7026 (5)0.1315 (5)0.2412 (5)0.0188 (9)
H1A0.62960.06450.19570.028*
H1B0.74140.11570.30850.028*
O20.2672 (4)0.4452 (5)0.0938 (4)0.0153 (9)
H2A0.21950.36100.02600.023*
H2B0.25110.52000.08200.023*
O30.8193 (5)0.8295 (5)0.4994 (5)0.022 (1)
H3A0.85000.91750.57230.032*
H3B0.87600.81110.44250.032*
O40.8053 (5)0.1201 (6)0.0131 (6)0.031 (1)
H4A0.83860.13500.09840.047*
H4B0.77960.02480.04240.047*
O50.1291 (6)0.6203 (6)0.0313 (6)0.037 (1)
H5A0.05480.64620.05660.055*
H5B0.16670.68350.00820.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.0091 (1)0.0076 (1)0.0067 (1)0.00218 (8)0.00069 (8)0.00236 (9)
Ta20.0082 (1)0.0071 (1)0.0065 (1)0.00093 (8)0.00006 (8)0.00295 (9)
Ta30.0086 (1)0.0078 (1)0.0069 (1)0.00055 (8)0.00034 (8)0.00315 (9)
I10.0187 (2)0.0072 (2)0.0119 (2)0.0013 (1)0.0001 (1)0.0041 (1)
I20.0136 (2)0.0110 (2)0.0069 (2)0.0035 (1)0.0012 (1)0.0027 (1)
I30.0095 (2)0.0174 (2)0.0116 (2)0.0018 (1)0.0037 (1)0.0047 (2)
I40.0149 (2)0.0117 (2)0.0096 (2)0.0014 (1)0.0003 (1)0.0064 (2)
I50.0136 (2)0.0130 (2)0.0104 (2)0.0060 (1)0.0002 (1)0.0045 (2)
I60.0088 (2)0.0122 (2)0.0102 (2)0.0013 (1)0.0010 (1)0.0045 (2)
I70.0144 (2)0.0138 (2)0.0140 (2)0.0006 (2)0.0002 (1)0.0051 (2)
O10.021 (2)0.015 (2)0.014 (2)0.010 (2)0.001 (2)0.001 (2)
O20.021 (2)0.013 (2)0.009 (2)0.005 (2)0.002 (2)0.004 (2)
O30.021 (2)0.022 (2)0.014 (2)0.010 (2)0.002 (2)0.006 (2)
O40.031 (3)0.028 (3)0.021 (3)0.005 (2)0.006 (2)0.002 (2)
O50.057 (4)0.042 (3)0.029 (3)0.032 (3)0.017 (3)0.025 (3)
Geometric parameters (Å, º) top
Ta1—O12.303 (4)Ta3—I42.7996 (6)
Ta1—I32.8022 (5)Ta3—I62.8090 (6)
Ta1—I22.8104 (6)Ta3—I1i2.8141 (6)
Ta1—I52.8110 (5)Ta3—Ta1i2.9380 (5)
Ta1—I12.8181 (6)Ta3—Ta2i2.9386 (5)
Ta1—Ta2i2.9281 (5)I1—Ta3i2.8140 (6)
Ta1—Ta32.9352 (6)I5—Ta2i2.8245 (5)
Ta1—Ta22.9354 (4)I6—Ta2i2.8131 (5)
Ta1—Ta3i2.9379 (5)O1—H1A0.8500
Ta2—O22.273 (4)O1—H1B0.8501
Ta2—I42.8001 (5)O2—H2A0.8500
Ta2—I6i2.8131 (5)O2—H2B0.8500
Ta2—I22.8175 (5)O3—H3A0.8500
Ta2—I5i2.8245 (5)O3—H3B0.8501
Ta2—Ta1i2.9281 (5)O4—H4A0.8501
Ta2—Ta32.9303 (5)O4—H4B0.8499
Ta2—Ta3i2.9386 (5)O5—H5A0.8501
Ta3—O32.281 (4)O5—H5B0.8500
Ta3—I32.7936 (5)
O1—Ta1—I376.7 (1)Ta3—Ta2—Ta160.05 (1)
O1—Ta1—I275.0 (1)O2—Ta2—Ta3i135.2 (1)
I3—Ta1—I287.76 (2)I4—Ta2—Ta3i148.61 (1)
O1—Ta1—I577.5 (1)I6i—Ta2—Ta3i58.42 (1)
I3—Ta1—I586.83 (2)I2—Ta2—Ta3i99.08 (2)
I2—Ta1—I5152.47 (1)I5i—Ta2—Ta3i99.76 (1)
O1—Ta1—I176.5 (1)Ta1i—Ta2—Ta3i60.04 (1)
I3—Ta1—I1153.17 (1)Ta3—Ta2—Ta3i90.19 (1)
I2—Ta1—I186.94 (1)Ta1—Ta2—Ta3i60.02 (1)
I5—Ta1—I185.83 (2)O3—Ta3—I377.0 (1)
O1—Ta1—Ta2i136.4 (1)O3—Ta3—I476.5 (1)
I3—Ta1—Ta2i99.12 (1)I3—Ta3—I486.67 (2)
I2—Ta1—Ta2i148.59 (1)O3—Ta3—I676.7 (1)
I5—Ta1—Ta2i58.92 (1)I3—Ta3—I685.83 (2)
I1—Ta1—Ta2i99.05 (1)I4—Ta3—I6153.15 (2)
O1—Ta1—Ta3134.9 (1)O3—Ta3—I1i76.0 (1)
I3—Ta1—Ta358.22 (1)I3—Ta3—I1i152.98 (2)
I2—Ta1—Ta399.81 (1)I4—Ta3—I1i87.12 (2)
I5—Ta1—Ta3100.16 (1)I6—Ta3—I1i87.96 (2)
I1—Ta1—Ta3148.59 (1)O3—Ta3—Ta2135.0 (1)
Ta2i—Ta1—Ta360.156 (9)I3—Ta3—Ta299.94 (2)
O1—Ta1—Ta2133.6 (1)I4—Ta3—Ta258.46 (1)
I3—Ta1—Ta299.61 (2)I6—Ta3—Ta2148.36 (1)
I2—Ta1—Ta258.68 (1)I1i—Ta3—Ta299.10 (2)
I5—Ta1—Ta2148.84 (1)O3—Ta3—Ta1135.5 (1)
I1—Ta1—Ta299.98 (2)I3—Ta3—Ta158.51 (1)
Ta2i—Ta1—Ta289.92 (1)I4—Ta3—Ta198.94 (1)
Ta3—Ta1—Ta259.89 (1)I6—Ta3—Ta198.98 (1)
O1—Ta1—Ta3i134.9 (1)I1i—Ta3—Ta1148.52 (1)
I3—Ta1—Ta3i148.32 (1)Ta2—Ta3—Ta160.059 (9)
I2—Ta1—Ta3i99.26 (2)O3—Ta3—Ta1i134.6 (1)
I5—Ta1—Ta3i99.46 (2)I3—Ta3—Ta1i148.40 (1)
I1—Ta1—Ta3i58.49 (1)I4—Ta3—Ta1i99.99 (2)
Ta2i—Ta1—Ta3i59.94 (1)I6—Ta3—Ta1i99.87 (2)
Ta3—Ta1—Ta3i90.11 (1)I1i—Ta3—Ta1i58.63 (1)
Ta2—Ta1—Ta3i60.04 (1)Ta2—Ta3—Ta1i59.86 (1)
O2—Ta2—I476.1 (1)Ta1—Ta3—Ta1i89.89 (1)
O2—Ta2—I6i76.8 (1)O3—Ta3—Ta2i135.2 (1)
I4—Ta2—I6i152.96 (1)I3—Ta3—Ta2i99.07 (1)
O2—Ta2—I275.7 (1)I4—Ta3—Ta2i148.25 (1)
I4—Ta2—I286.51 (2)I6—Ta3—Ta2i58.56 (1)
I6i—Ta2—I286.90 (2)I1i—Ta3—Ta2i100.00 (2)
O2—Ta2—I5i77.3 (1)Ta2—Ta3—Ta2i89.81 (1)
I4—Ta2—I5i87.40 (2)Ta1—Ta3—Ta2i59.80 (1)
I6i—Ta2—I5i86.68 (2)Ta1i—Ta3—Ta2i59.935 (9)
I2—Ta2—I5i153.00 (1)Ta3i—I1—Ta162.88 (1)
O2—Ta2—Ta1i135.8 (1)Ta1—I2—Ta262.88 (1)
I4—Ta2—Ta1i100.22 (2)Ta3—I3—Ta163.28 (1)
I6i—Ta2—Ta1i99.05 (1)Ta3—I4—Ta263.11 (1)
I2—Ta2—Ta1i148.52 (1)Ta1—I5—Ta2i62.61 (1)
I5i—Ta2—Ta1i58.47 (1)Ta3—I6—Ta2i63.03 (1)
O2—Ta2—Ta3134.6 (1)Ta1—O1—H1A96.4
I4—Ta2—Ta358.44 (1)Ta1—O1—H1B99.0
I6i—Ta2—Ta3148.60 (1)H1A—O1—H1B107.7
I2—Ta2—Ta399.77 (2)Ta2—O2—H2A123.6
I5i—Ta2—Ta399.33 (2)Ta2—O2—H2B122.5
Ta1i—Ta2—Ta360.20 (1)H2A—O2—H2B112.6
O2—Ta2—Ta1134.1 (1)Ta3—O3—H3A123.3
I4—Ta2—Ta198.93 (2)Ta3—O3—H3B126.6
I6i—Ta2—Ta199.84 (2)H3A—O3—H3B107.7
I2—Ta2—Ta158.44 (1)H4A—O4—H4B107.7
I5i—Ta2—Ta1148.55 (1)H5A—O5—H5B107.7
Ta1i—Ta2—Ta190.08 (1)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···I10.852.713.196 (5)118
O1—H1B···I50.852.663.226 (4)126
O2—H2B···O50.851.852.618 (6)150
O2—H2A···I7ii0.852.703.534 (4)169
O3—H3B···I7i0.852.803.455 (4)135
O3—H3A···I7iii0.852.753.488 (4)146
O4—H4A···O10.852.162.685 (7)120
O4—H4B···I6iv0.852.953.695 (5)148
O5—H5B···O4v0.852.092.894 (8)157
O5—H5A···I7vi0.852.823.563 (5)147
O4—H4A···I30.853.253.633 (5)111
O4—H4B···I1vii0.853.233.656 (5)113
O4—H4A···I6viii0.853.133.670 (5)124
O5—H5B···I3v0.853.293.688 (5)112
O1—H1A···I2vii0.853.053.745 (4)140
O4—H4B···I2vii0.853.293.945 (5)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z; (iv) x, y1, z1; (v) x+1, y+1, z; (vi) x, y+1, z+1; (vii) x+1, y, z; (viii) x+2, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge the maintenance of the XRD equipment through Dr Alexander Villinger (University of Rostock).

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. KO1616-8-2).

References

First citationBauer, D., von Schnering, H. G. & Schäfer, H. (1965). J. Less-Common Met. 8, 388–401.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A. (1964). Inorg. Chem. 3, 1217–1220.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSchäfer, H., Plautz, B. & Plautz, H. (1972). Z. Anorg. Allg. Chem. 392, 10–22.  Google Scholar
First citationShamshurin, M. V., Mikhaylov, M. A., Sukhikh, T., Benassi, E., Tarkova, A. R., Prokhorikhin, A. A., Kretov, E. I., Shestopalov, M. A., Abramov, P. A. & Sokolov, M. N. (2019). Inorg. Chem. 58, 9028–9035.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimon, A. (1988). Angew. Chem. 100, 163–188.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds