inorganic compounds
Hexaaquadodeca-μ2-iodido-octahedro-hexatantalum diiodide tetrahydrate
aUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
*Correspondence e-mail: Martin.Koeckerling@uni-rostock.de
In the 6I12(H2O)6]I2·4H2O, the octahedral {Ta6} cluster core is μ2-coordinated by twelve iodido ligands (inner ligand sphere) whereas the six aqua ligands coordinate each at the six outer positions. The discrete, inversion-symmetric cluster complex is double-positively charged, and two iodide anions are present in the as counter-ions. In addition, four water molecules are co-crystallized. Hydrogen bonds between the cluster unit, the iodide anions and co-crystallized water molecules stabilize the charge-assisted packing in the crystal structure.
of the cluster salt, [TaKeywords: crystal structure; metal cluster; tantalum; iodide.
CCDC reference: 2072508
Structure description
Cluster complexes with strong metal-metal bonds have been in the focus of research activities for a long time (Cotton, 1964; Simon, 1988). Starting from the well-known compound [Ta6I14] (Bauer et al., 1965), the title compound [Ta6I12(H2O)6]I2·4H2O was obtained by reaction with a water–acetone mixture and subsequent evaporation of the solvent. This compound was previously mentioned by Schäfer et al. (1972) and Shamshurin et al. (2019), however, without determination of its [Ta6I12(H2O)6]I2·4H2O can be used efficiently as a precursor for new tantalum cluster compounds.
The metal atoms of the {Ta6} unit are octahedrally arranged (point group symmetry ), with an average Ta—Ta bond length of 2.934 Å. The twelve μ2-bridging positions of the inner ligand sphere are occupied by iodido ligands (Fig. 1). The average Ta—I bond length is 2.809 Å and the average Ta—I—Ta angle is 63.1°. The six positions of the outer ligand sphere are occupied by aqua ligands (O1, O2, and O3). The average Ta—O bond length is 2.286 Å. All interatomic distances and angles within the cluster complex match well with those in comparable compounds of the same charge (Shamshurin et al., 2019). Based on the anion:cation ratio and the bond lengths, 16 cluster-based electrons (CBE) are present. The double-positive charge of the cluster cation is counter-balanced by two iodide ions (I7). Two water molecules (O4, O5) are co-crystallized per which are connected to the cluster complex via H⋯I and H⋯O hydrogen bonds. Further hydrogen bonds exist between some of the ligating I atoms, the iodide counter-anions and water molecules. Numerical details of the hydrogen-bonding interactions up to D⋯A distances of 3.7 Å are given in Table 1. A packing plot with a view along the crystallographic c direction is displayed in Fig. 2.
Synthesis and crystallization
Under Schlenk conditions the starting material, viz. the cluster compound [Ta6I14], was produced analogously to a literature procedure (Bauer et al., 1965) and subsequently finely ground under protective gas by means of a ball mill. The obtained powder was pyrophoric in air. 400 mg (139.75 µmol) of [Ta6I14] were stirred under argon in an intensely degassed solution of 30 ml (1.67 mol) water and 30 ml (0.40 mol) acetone at room temperature for one day. After filtration, an intense green solution was obtained. The solvent was slowly evaporated in air at room temperature. After several days, black single crystals had formed, which were washed several times with water. 180 mg (59.16 µmol, yield: 45%) of [Ta6I12(H2O)6]I2·4H2O were obtained. NMR, IR and elemental analysis confirmed the composition determined by the X-ray structural analysis. Details of the complementary analytical methods are given in the supplementary information.
Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed on idealized positions and refined using a riding model with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 2
|
Structural data
CCDC reference: 2072508
https://doi.org/10.1107/S2414314621003047/wm4145sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621003047/wm4145Isup2.hkl
Supporting Information. DOI: https://doi.org/10.1107/S2414314621003047/wm4145sup3.pdf
Data collection: APEX2 (Bruker, 2017); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2019).[Ta6I12(H2O)6]I2·4H2O | Z = 1 |
Mr = 3042.46 | F(000) = 1280 |
Triclinic, P1 | Dx = 5.505 Mg m−3 |
a = 10.009 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.118 (2) Å | Cell parameters from 9987 reflections |
c = 10.498 (2) Å | θ = 2.3–32.8° |
α = 117.451 (4)° | µ = 29.32 mm−1 |
β = 97.465 (4)° | T = 123 K |
γ = 96.344 (4)° | Block, black |
V = 917.7 (2) Å3 | 0.04 × 0.03 × 0.03 mm |
Bruker APEXII CCD diffractometer | 5081 reflections with I > 2σ(I) |
Radiation source: microfocus sealed tube | Rint = 0.057 |
φ and ω scans | θmax = 31.0°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −14→14 |
k = −14→14 | |
39077 measured reflections | l = −15→15 |
5847 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.051 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0139P)2 + 1.4885P] where P = (Fo2 + 2Fc2)/3 |
5847 reflections | (Δ/σ)max = 0.001 |
136 parameters | Δρmax = 1.93 e Å−3 |
0 restraints | Δρmin = −1.52 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydrogen atoms were placed on idealized positions and refined using a riding model with Uiso(H) = 1.5Ueq(O). |
x | y | z | Uiso*/Ueq | ||
Ta1 | 0.59756 (2) | 0.32569 (3) | 0.37992 (2) | 0.00826 (5) | |
Ta2 | 0.38779 (2) | 0.47496 (3) | 0.30732 (2) | 0.00757 (5) | |
Ta3 | 0.65272 (2) | 0.65637 (3) | 0.49926 (2) | 0.00823 (5) | |
I1 | 0.42859 (4) | 0.06430 (4) | 0.34481 (4) | 0.01322 (8) | |
I2 | 0.47893 (4) | 0.23469 (4) | 0.08727 (4) | 0.01115 (7) | |
I3 | 0.82943 (4) | 0.47721 (4) | 0.34401 (4) | 0.01372 (8) | |
I4 | 0.55445 (4) | 0.66827 (4) | 0.24333 (4) | 0.01211 (7) | |
I5 | 0.77566 (4) | 0.30105 (4) | 0.59483 (4) | 0.01271 (8) | |
I6 | 0.85016 (4) | 0.73689 (4) | 0.75183 (4) | 0.01137 (7) | |
I7 | 0.07640 (4) | 0.11686 (4) | 0.77730 (4) | 0.01530 (8) | |
O1 | 0.7026 (5) | 0.1315 (5) | 0.2412 (5) | 0.0188 (9) | |
H1A | 0.6296 | 0.0645 | 0.1957 | 0.028* | |
H1B | 0.7414 | 0.1157 | 0.3085 | 0.028* | |
O2 | 0.2672 (4) | 0.4452 (5) | 0.0938 (4) | 0.0153 (9) | |
H2A | 0.2195 | 0.3610 | 0.0260 | 0.023* | |
H2B | 0.2511 | 0.5200 | 0.0820 | 0.023* | |
O3 | 0.8193 (5) | 0.8295 (5) | 0.4994 (5) | 0.022 (1) | |
H3A | 0.8500 | 0.9175 | 0.5723 | 0.032* | |
H3B | 0.8760 | 0.8111 | 0.4425 | 0.032* | |
O4 | 0.8053 (5) | 0.1201 (6) | 0.0131 (6) | 0.031 (1) | |
H4A | 0.8386 | 0.1350 | 0.0984 | 0.047* | |
H4B | 0.7796 | 0.0248 | −0.0424 | 0.047* | |
O5 | 0.1291 (6) | 0.6203 (6) | 0.0313 (6) | 0.037 (1) | |
H5A | 0.0548 | 0.6462 | 0.0566 | 0.055* | |
H5B | 0.1667 | 0.6835 | 0.0082 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ta1 | 0.0091 (1) | 0.0076 (1) | 0.0067 (1) | 0.00218 (8) | 0.00069 (8) | 0.00236 (9) |
Ta2 | 0.0082 (1) | 0.0071 (1) | 0.0065 (1) | 0.00093 (8) | 0.00006 (8) | 0.00295 (9) |
Ta3 | 0.0086 (1) | 0.0078 (1) | 0.0069 (1) | −0.00055 (8) | 0.00034 (8) | 0.00315 (9) |
I1 | 0.0187 (2) | 0.0072 (2) | 0.0119 (2) | 0.0013 (1) | 0.0001 (1) | 0.0041 (1) |
I2 | 0.0136 (2) | 0.0110 (2) | 0.0069 (2) | 0.0035 (1) | 0.0012 (1) | 0.0027 (1) |
I3 | 0.0095 (2) | 0.0174 (2) | 0.0116 (2) | 0.0018 (1) | 0.0037 (1) | 0.0047 (2) |
I4 | 0.0149 (2) | 0.0117 (2) | 0.0096 (2) | −0.0014 (1) | 0.0003 (1) | 0.0064 (2) |
I5 | 0.0136 (2) | 0.0130 (2) | 0.0104 (2) | 0.0060 (1) | 0.0002 (1) | 0.0045 (2) |
I6 | 0.0088 (2) | 0.0122 (2) | 0.0102 (2) | −0.0013 (1) | −0.0010 (1) | 0.0045 (2) |
I7 | 0.0144 (2) | 0.0138 (2) | 0.0140 (2) | −0.0006 (2) | 0.0002 (1) | 0.0051 (2) |
O1 | 0.021 (2) | 0.015 (2) | 0.014 (2) | 0.010 (2) | 0.001 (2) | 0.001 (2) |
O2 | 0.021 (2) | 0.013 (2) | 0.009 (2) | 0.005 (2) | −0.002 (2) | 0.004 (2) |
O3 | 0.021 (2) | 0.022 (2) | 0.014 (2) | −0.010 (2) | 0.002 (2) | 0.006 (2) |
O4 | 0.031 (3) | 0.028 (3) | 0.021 (3) | 0.005 (2) | 0.006 (2) | 0.002 (2) |
O5 | 0.057 (4) | 0.042 (3) | 0.029 (3) | 0.032 (3) | 0.017 (3) | 0.025 (3) |
Ta1—O1 | 2.303 (4) | Ta3—I4 | 2.7996 (6) |
Ta1—I3 | 2.8022 (5) | Ta3—I6 | 2.8090 (6) |
Ta1—I2 | 2.8104 (6) | Ta3—I1i | 2.8141 (6) |
Ta1—I5 | 2.8110 (5) | Ta3—Ta1i | 2.9380 (5) |
Ta1—I1 | 2.8181 (6) | Ta3—Ta2i | 2.9386 (5) |
Ta1—Ta2i | 2.9281 (5) | I1—Ta3i | 2.8140 (6) |
Ta1—Ta3 | 2.9352 (6) | I5—Ta2i | 2.8245 (5) |
Ta1—Ta2 | 2.9354 (4) | I6—Ta2i | 2.8131 (5) |
Ta1—Ta3i | 2.9379 (5) | O1—H1A | 0.8500 |
Ta2—O2 | 2.273 (4) | O1—H1B | 0.8501 |
Ta2—I4 | 2.8001 (5) | O2—H2A | 0.8500 |
Ta2—I6i | 2.8131 (5) | O2—H2B | 0.8500 |
Ta2—I2 | 2.8175 (5) | O3—H3A | 0.8500 |
Ta2—I5i | 2.8245 (5) | O3—H3B | 0.8501 |
Ta2—Ta1i | 2.9281 (5) | O4—H4A | 0.8501 |
Ta2—Ta3 | 2.9303 (5) | O4—H4B | 0.8499 |
Ta2—Ta3i | 2.9386 (5) | O5—H5A | 0.8501 |
Ta3—O3 | 2.281 (4) | O5—H5B | 0.8500 |
Ta3—I3 | 2.7936 (5) | ||
O1—Ta1—I3 | 76.7 (1) | Ta3—Ta2—Ta1 | 60.05 (1) |
O1—Ta1—I2 | 75.0 (1) | O2—Ta2—Ta3i | 135.2 (1) |
I3—Ta1—I2 | 87.76 (2) | I4—Ta2—Ta3i | 148.61 (1) |
O1—Ta1—I5 | 77.5 (1) | I6i—Ta2—Ta3i | 58.42 (1) |
I3—Ta1—I5 | 86.83 (2) | I2—Ta2—Ta3i | 99.08 (2) |
I2—Ta1—I5 | 152.47 (1) | I5i—Ta2—Ta3i | 99.76 (1) |
O1—Ta1—I1 | 76.5 (1) | Ta1i—Ta2—Ta3i | 60.04 (1) |
I3—Ta1—I1 | 153.17 (1) | Ta3—Ta2—Ta3i | 90.19 (1) |
I2—Ta1—I1 | 86.94 (1) | Ta1—Ta2—Ta3i | 60.02 (1) |
I5—Ta1—I1 | 85.83 (2) | O3—Ta3—I3 | 77.0 (1) |
O1—Ta1—Ta2i | 136.4 (1) | O3—Ta3—I4 | 76.5 (1) |
I3—Ta1—Ta2i | 99.12 (1) | I3—Ta3—I4 | 86.67 (2) |
I2—Ta1—Ta2i | 148.59 (1) | O3—Ta3—I6 | 76.7 (1) |
I5—Ta1—Ta2i | 58.92 (1) | I3—Ta3—I6 | 85.83 (2) |
I1—Ta1—Ta2i | 99.05 (1) | I4—Ta3—I6 | 153.15 (2) |
O1—Ta1—Ta3 | 134.9 (1) | O3—Ta3—I1i | 76.0 (1) |
I3—Ta1—Ta3 | 58.22 (1) | I3—Ta3—I1i | 152.98 (2) |
I2—Ta1—Ta3 | 99.81 (1) | I4—Ta3—I1i | 87.12 (2) |
I5—Ta1—Ta3 | 100.16 (1) | I6—Ta3—I1i | 87.96 (2) |
I1—Ta1—Ta3 | 148.59 (1) | O3—Ta3—Ta2 | 135.0 (1) |
Ta2i—Ta1—Ta3 | 60.156 (9) | I3—Ta3—Ta2 | 99.94 (2) |
O1—Ta1—Ta2 | 133.6 (1) | I4—Ta3—Ta2 | 58.46 (1) |
I3—Ta1—Ta2 | 99.61 (2) | I6—Ta3—Ta2 | 148.36 (1) |
I2—Ta1—Ta2 | 58.68 (1) | I1i—Ta3—Ta2 | 99.10 (2) |
I5—Ta1—Ta2 | 148.84 (1) | O3—Ta3—Ta1 | 135.5 (1) |
I1—Ta1—Ta2 | 99.98 (2) | I3—Ta3—Ta1 | 58.51 (1) |
Ta2i—Ta1—Ta2 | 89.92 (1) | I4—Ta3—Ta1 | 98.94 (1) |
Ta3—Ta1—Ta2 | 59.89 (1) | I6—Ta3—Ta1 | 98.98 (1) |
O1—Ta1—Ta3i | 134.9 (1) | I1i—Ta3—Ta1 | 148.52 (1) |
I3—Ta1—Ta3i | 148.32 (1) | Ta2—Ta3—Ta1 | 60.059 (9) |
I2—Ta1—Ta3i | 99.26 (2) | O3—Ta3—Ta1i | 134.6 (1) |
I5—Ta1—Ta3i | 99.46 (2) | I3—Ta3—Ta1i | 148.40 (1) |
I1—Ta1—Ta3i | 58.49 (1) | I4—Ta3—Ta1i | 99.99 (2) |
Ta2i—Ta1—Ta3i | 59.94 (1) | I6—Ta3—Ta1i | 99.87 (2) |
Ta3—Ta1—Ta3i | 90.11 (1) | I1i—Ta3—Ta1i | 58.63 (1) |
Ta2—Ta1—Ta3i | 60.04 (1) | Ta2—Ta3—Ta1i | 59.86 (1) |
O2—Ta2—I4 | 76.1 (1) | Ta1—Ta3—Ta1i | 89.89 (1) |
O2—Ta2—I6i | 76.8 (1) | O3—Ta3—Ta2i | 135.2 (1) |
I4—Ta2—I6i | 152.96 (1) | I3—Ta3—Ta2i | 99.07 (1) |
O2—Ta2—I2 | 75.7 (1) | I4—Ta3—Ta2i | 148.25 (1) |
I4—Ta2—I2 | 86.51 (2) | I6—Ta3—Ta2i | 58.56 (1) |
I6i—Ta2—I2 | 86.90 (2) | I1i—Ta3—Ta2i | 100.00 (2) |
O2—Ta2—I5i | 77.3 (1) | Ta2—Ta3—Ta2i | 89.81 (1) |
I4—Ta2—I5i | 87.40 (2) | Ta1—Ta3—Ta2i | 59.80 (1) |
I6i—Ta2—I5i | 86.68 (2) | Ta1i—Ta3—Ta2i | 59.935 (9) |
I2—Ta2—I5i | 153.00 (1) | Ta3i—I1—Ta1 | 62.88 (1) |
O2—Ta2—Ta1i | 135.8 (1) | Ta1—I2—Ta2 | 62.88 (1) |
I4—Ta2—Ta1i | 100.22 (2) | Ta3—I3—Ta1 | 63.28 (1) |
I6i—Ta2—Ta1i | 99.05 (1) | Ta3—I4—Ta2 | 63.11 (1) |
I2—Ta2—Ta1i | 148.52 (1) | Ta1—I5—Ta2i | 62.61 (1) |
I5i—Ta2—Ta1i | 58.47 (1) | Ta3—I6—Ta2i | 63.03 (1) |
O2—Ta2—Ta3 | 134.6 (1) | Ta1—O1—H1A | 96.4 |
I4—Ta2—Ta3 | 58.44 (1) | Ta1—O1—H1B | 99.0 |
I6i—Ta2—Ta3 | 148.60 (1) | H1A—O1—H1B | 107.7 |
I2—Ta2—Ta3 | 99.77 (2) | Ta2—O2—H2A | 123.6 |
I5i—Ta2—Ta3 | 99.33 (2) | Ta2—O2—H2B | 122.5 |
Ta1i—Ta2—Ta3 | 60.20 (1) | H2A—O2—H2B | 112.6 |
O2—Ta2—Ta1 | 134.1 (1) | Ta3—O3—H3A | 123.3 |
I4—Ta2—Ta1 | 98.93 (2) | Ta3—O3—H3B | 126.6 |
I6i—Ta2—Ta1 | 99.84 (2) | H3A—O3—H3B | 107.7 |
I2—Ta2—Ta1 | 58.44 (1) | H4A—O4—H4B | 107.7 |
I5i—Ta2—Ta1 | 148.55 (1) | H5A—O5—H5B | 107.7 |
Ta1i—Ta2—Ta1 | 90.08 (1) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···I1 | 0.85 | 2.71 | 3.196 (5) | 118 |
O1—H1B···I5 | 0.85 | 2.66 | 3.226 (4) | 126 |
O2—H2B···O5 | 0.85 | 1.85 | 2.618 (6) | 150 |
O2—H2A···I7ii | 0.85 | 2.70 | 3.534 (4) | 169 |
O3—H3B···I7i | 0.85 | 2.80 | 3.455 (4) | 135 |
O3—H3A···I7iii | 0.85 | 2.75 | 3.488 (4) | 146 |
O4—H4A···O1 | 0.85 | 2.16 | 2.685 (7) | 120 |
O4—H4B···I6iv | 0.85 | 2.95 | 3.695 (5) | 148 |
O5—H5B···O4v | 0.85 | 2.09 | 2.894 (8) | 157 |
O5—H5A···I7vi | 0.85 | 2.82 | 3.563 (5) | 147 |
O4—H4A···I3 | 0.85 | 3.25 | 3.633 (5) | 111 |
O4—H4B···I1vii | 0.85 | 3.23 | 3.656 (5) | 113 |
O4—H4A···I6viii | 0.85 | 3.13 | 3.670 (5) | 124 |
O5—H5B···I3v | 0.85 | 3.29 | 3.688 (5) | 112 |
O1—H1A···I2vii | 0.85 | 3.05 | 3.745 (4) | 140 |
O4—H4B···I2vii | 0.85 | 3.29 | 3.945 (5) | 135 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z−1; (iii) x+1, y+1, z; (iv) x, y−1, z−1; (v) −x+1, −y+1, −z; (vi) −x, −y+1, −z+1; (vii) −x+1, −y, −z; (viii) −x+2, −y+1, −z+1. |
Acknowledgements
We gratefully acknowledge the maintenance of the XRD equipment through Dr Alexander Villinger (University of Rostock).
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. KO1616-8-2).
References
Bauer, D., von Schnering, H. G. & Schäfer, H. (1965). J. Less-Common Met. 8, 388–401. CrossRef Google Scholar
Brandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cotton, F. A. (1964). Inorg. Chem. 3, 1217–1220. CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Schäfer, H., Plautz, B. & Plautz, H. (1972). Z. Anorg. Allg. Chem. 392, 10–22. Google Scholar
Shamshurin, M. V., Mikhaylov, M. A., Sukhikh, T., Benassi, E., Tarkova, A. R., Prokhorikhin, A. A., Kretov, E. I., Shestopalov, M. A., Abramov, P. A. & Sokolov, M. N. (2019). Inorg. Chem. 58, 9028–9035. CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Simon, A. (1988). Angew. Chem. 100, 163–188. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.