organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2E)-2-(3,4-Di­meth­­oxy­benzyl­­idene)-3,4-di­hydro­naphthalen-1(2H)-one

aPG and Research Department of Physics, Queen Mary's College, Affiliated to University of Madras, Chennai-4, Tamil Nadu, India, and bDepartment of Chemistry, Madras Christian College, Affiliated to University of Madras, Chennai-59, Tamil Nadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 March 2021; accepted 24 March 2021; online 26 March 2021)

In the title chalcone derivative, C19H18O3, the cyclo­hexa­none ring adopts a distorted half-chair conformation and the dihedral angle between the aromatic rings is 52.20 (15)°. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into C(12) [001] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcone derivatives exhibit various biological activities (Tajuddeen et al., 2018[Tajuddeen, N., Isah, M. B., Suleiman, M. A., van Heerden, F. R. & Ibrahim, M. A. (2018). Int. J. Antimicrob. Agents, 51, 311-318.]) and those that crystallize in non-centrosymmetric space groups are candidates for non-linear optical materials (Shettigar et al., 2006[Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565-3567.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound, C19H18O3, (I), (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at 30% probability level. Hydrogen atoms are shown as arbitrary spheres.

The geometrical data for (I) are similar to those in related structures (Biruntha et al., 2018[Biruntha, K., Reuben Jonathan, D., Mohamooda Sumaya, U., Dravida Thendral, E. R. A. & Usha, G. (2018). IUCrData, 3, x180829.]; Baydere et al., 2019[Baydere, C., Taşçı, M., Dege, N., Arslan, M., Atalay, Y. & Golenya, I. A. (2019). Acta Cryst. E75, 746-750.]). The C5–C10 cyclo­hexa­none ring adopts a distorted half-chair conformation with C9 and C10 deviating from C5–C8 (r.m.s. deviation = 0.086 Å) by −0.381 (3) and 0.285 (4) Å, respectively. The dihedral angle between the C1–C6 and C12–C17 aromatic rings is 52.20 (15)° and the C atoms of both meth­oxy groups lie close to the C12–C17 plane [deviations = 0.057 (4) for C18 and 0.148 (6) Å for C19].

In the crystal, weak C2—H2⋯O3 hydrogen bonds link the mol­ecules into C(12) zigzag chains propagating in the [001] direction with adjacent mol­ecules related by a 21 screw axis (Table 1[link], Fig. 2[link]). The chains pack without any identifiable directional inter­actions between them beyond van der Waals contacts.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.52 3.385 (4) 155
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing of the mol­ecules along the c axis with C—H⋯O inter­actions running in a zigzag head-to-tail fashion, viewed along the a axis. The hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity.

Synthesis and crystallization

The title compound was prepared by a Claisen–Schmidt condensation (Dong et al., 2008[Dong, F., Jian, C., Zhenghao, F., Kai, G. & Zuliang, L. (2008). Catal. Commun. 9, 1924-1927.]): equimolar qu­anti­ties of 3,4-dimeth­oxy benzaldehyde (2.51 g, 0.015 mol) and α-tetra­lone (2.0 ml, 0.015 mol) were dissolved in ethanol in a 250 ml conical flask and stirred for 15 min. Freshly prepared 10% NaOH solution was added to the mixture and stirred again for 1 h. This mixture was kept at room temperature for 24 h and then poured into ice-cold water. A yellow precipitate formed, which was washed with distilled water to remove any traces of NaOH. The filtered, dried crude product was recrystallized three times from acetone solution. After four days, yellow blocks of (I) were harvested (yield 78%; m.p. 110°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H18O3
Mr 294.33
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 7.9229 (15), 9.4474 (19), 20.875 (4)
V3) 1562.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Bruker 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.985, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 34283, 3886, 3101
Rint 0.043
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.180, 1.04
No. of reflections 3886
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.23
Absolute structure Flack x determined using 1195 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.5 (3)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

(2E)-2-(3,4-Dimethoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one top
Crystal data top
C19H18O3Dx = 1.251 Mg m3
Mr = 294.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9801 reflections
a = 7.9229 (15) Åθ = 2.9–28.2°
b = 9.4474 (19) ŵ = 0.08 mm1
c = 20.875 (4) ÅT = 296 K
V = 1562.5 (5) Å3Block, yellow
Z = 40.20 × 0.15 × 0.15 mm
F(000) = 624
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
3101 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
ω and φ scanθmax = 28.3°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker 2016)
h = 1010
Tmin = 0.985, Tmax = 0.987k = 1212
34283 measured reflectionsl = 2227
3886 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1074P)2 + 0.3866P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.057(Δ/σ)max < 0.001
wR(F2) = 0.180Δρmax = 0.24 e Å3
S = 1.04Δρmin = 0.23 e Å3
3886 reflectionsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
200 parametersExtinction coefficient: 0.35 (3)
0 restraintsAbsolute structure: Flack x determined using 1195 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.5 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were fixed geometrically and treated as riding atoms, with C—H = 0.93–0.97 Å and Uiso(H)= 1.2Ueq(C) or 1.5Ueq(C-methyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.6008 (3)0.1479 (3)0.28091 (12)0.0624 (7)
O30.8450 (3)0.0282 (3)0.26479 (12)0.0649 (7)
O10.9071 (4)0.4782 (3)0.59032 (11)0.0649 (7)
C130.7334 (4)0.2526 (3)0.37495 (14)0.0458 (6)
H130.6443790.3152560.3810660.055*
C140.7278 (4)0.1574 (3)0.32452 (14)0.0464 (7)
C160.9976 (4)0.0639 (3)0.35657 (16)0.0519 (7)
H161.0872210.0017460.3503670.062*
C150.8614 (4)0.0615 (3)0.31555 (14)0.0479 (7)
C80.8296 (4)0.4838 (3)0.48040 (13)0.0441 (6)
C171.0009 (4)0.1591 (3)0.40715 (15)0.0503 (7)
H171.0921600.1580700.4351490.060*
C60.8282 (4)0.7030 (3)0.55210 (13)0.0446 (6)
C120.8722 (4)0.2556 (3)0.41712 (14)0.0449 (6)
C50.8007 (4)0.7892 (3)0.49871 (15)0.0475 (7)
C110.8832 (4)0.3505 (3)0.47233 (14)0.0471 (7)
H110.9364990.3116040.5079160.057*
C70.8610 (4)0.5492 (3)0.54443 (13)0.0467 (7)
C100.8113 (5)0.7267 (3)0.43275 (15)0.0533 (7)
H10A0.9277750.7285100.4184780.064*
H10B0.7456070.7843170.4034410.064*
C90.7464 (4)0.5751 (3)0.43063 (15)0.0510 (7)
H9A0.6253760.5750240.4375960.061*
H9B0.7677370.5355520.3885150.061*
C10.8256 (4)0.7620 (4)0.61349 (16)0.0545 (8)
H10.8445470.7044420.6488990.065*
C40.7687 (4)0.9330 (4)0.50842 (18)0.0566 (8)
H40.7487990.9914560.4733850.068*
C20.7953 (5)0.9042 (4)0.62230 (18)0.0616 (9)
H20.7943000.9426880.6633140.074*
C30.7665 (5)0.9893 (4)0.5695 (2)0.0636 (9)
H30.7453321.0853750.5750980.076*
C180.4641 (5)0.2440 (5)0.2858 (2)0.0755 (12)
H18A0.3842950.2254120.2522490.113*
H18B0.4100510.2326750.3266350.113*
H18C0.5054370.3391610.2818400.113*
C190.9838 (8)0.1150 (5)0.2497 (3)0.0900 (15)
H19A0.9566070.1728410.2133690.135*
H19B1.0796820.0568560.2398720.135*
H19C1.0096560.1744400.2857130.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0552 (13)0.0737 (15)0.0584 (13)0.0130 (12)0.0132 (11)0.0127 (12)
O30.0695 (15)0.0658 (14)0.0595 (13)0.0162 (13)0.0077 (12)0.0208 (11)
O10.0899 (18)0.0574 (13)0.0472 (12)0.0076 (13)0.0097 (12)0.0031 (10)
C130.0449 (14)0.0442 (13)0.0484 (15)0.0035 (12)0.0014 (11)0.0008 (12)
C140.0465 (15)0.0472 (15)0.0454 (14)0.0009 (12)0.0005 (12)0.0013 (12)
C160.0543 (17)0.0452 (15)0.0563 (17)0.0087 (13)0.0016 (14)0.0000 (13)
C150.0529 (16)0.0449 (14)0.0459 (14)0.0044 (13)0.0002 (13)0.0013 (11)
C80.0437 (14)0.0459 (14)0.0426 (13)0.0015 (11)0.0025 (11)0.0006 (11)
C170.0541 (16)0.0430 (14)0.0539 (16)0.0053 (13)0.0081 (14)0.0004 (13)
C60.0434 (14)0.0482 (14)0.0423 (14)0.0036 (12)0.0044 (11)0.0030 (11)
C120.0480 (14)0.0404 (13)0.0464 (14)0.0012 (12)0.0010 (12)0.0017 (11)
C50.0449 (14)0.0449 (14)0.0526 (16)0.0019 (12)0.0001 (13)0.0000 (12)
C110.0514 (15)0.0444 (14)0.0455 (14)0.0000 (13)0.0021 (12)0.0013 (11)
C70.0485 (15)0.0494 (15)0.0422 (14)0.0006 (13)0.0013 (12)0.0038 (11)
C100.0654 (19)0.0499 (15)0.0447 (15)0.0008 (15)0.0005 (14)0.0048 (12)
C90.0573 (17)0.0487 (15)0.0468 (15)0.0033 (14)0.0040 (14)0.0023 (13)
C10.0555 (17)0.0594 (18)0.0485 (16)0.0067 (15)0.0053 (14)0.0046 (14)
C40.0534 (16)0.0466 (15)0.070 (2)0.0028 (14)0.0008 (15)0.0021 (15)
C20.060 (2)0.063 (2)0.062 (2)0.0014 (16)0.0079 (16)0.0173 (16)
C30.0573 (18)0.0519 (17)0.082 (2)0.0048 (15)0.0002 (18)0.0172 (17)
C180.059 (2)0.094 (3)0.074 (2)0.026 (2)0.0121 (18)0.008 (2)
C190.093 (3)0.095 (3)0.082 (3)0.033 (3)0.007 (2)0.036 (2)
Geometric parameters (Å, º) top
O2—C141.360 (4)C5—C41.397 (4)
O2—C181.417 (4)C5—C101.500 (4)
O3—C151.363 (4)C11—H110.9300
O3—C191.407 (5)C10—C91.523 (4)
O1—C71.225 (4)C10—H10A0.9700
C13—C141.385 (4)C10—H10B0.9700
C13—C121.409 (4)C9—H9A0.9700
C13—H130.9300C9—H9B0.9700
C14—C151.406 (4)C1—C21.377 (5)
C16—C151.378 (5)C1—H10.9300
C16—C171.388 (4)C4—C31.381 (5)
C16—H160.9300C4—H40.9300
C8—C111.340 (4)C2—C31.384 (6)
C8—C71.493 (4)C2—H20.9300
C8—C91.502 (4)C3—H30.9300
C17—C121.383 (4)C18—H18A0.9600
C17—H170.9300C18—H18B0.9600
C6—C51.397 (4)C18—H18C0.9600
C6—C11.398 (4)C19—H19A0.9600
C6—C71.485 (4)C19—H19B0.9600
C12—C111.463 (4)C19—H19C0.9600
C14—O2—C18118.3 (3)C5—C10—H10A109.2
C15—O3—C19117.5 (3)C9—C10—H10A109.2
C14—C13—C12120.9 (3)C5—C10—H10B109.2
C14—C13—H13119.6C9—C10—H10B109.2
C12—C13—H13119.6H10A—C10—H10B107.9
O2—C14—C13125.1 (3)C8—C9—C10111.8 (3)
O2—C14—C15115.2 (3)C8—C9—H9A109.2
C13—C14—C15119.7 (3)C10—C9—H9A109.2
C15—C16—C17119.9 (3)C8—C9—H9B109.2
C15—C16—H16120.1C10—C9—H9B109.2
C17—C16—H16120.1H9A—C9—H9B107.9
O3—C15—C16124.6 (3)C2—C1—C6121.0 (3)
O3—C15—C14115.6 (3)C2—C1—H1119.5
C16—C15—C14119.8 (3)C6—C1—H1119.5
C11—C8—C7116.6 (3)C3—C4—C5120.7 (3)
C11—C8—C9126.3 (3)C3—C4—H4119.6
C7—C8—C9117.0 (3)C5—C4—H4119.6
C12—C17—C16121.9 (3)C1—C2—C3119.3 (3)
C12—C17—H17119.1C1—C2—H2120.4
C16—C17—H17119.1C3—C2—H2120.4
C5—C6—C1119.8 (3)C4—C3—C2120.6 (3)
C5—C6—C7120.8 (2)C4—C3—H3119.7
C1—C6—C7119.5 (3)C2—C3—H3119.7
C17—C12—C13117.9 (3)O2—C18—H18A109.5
C17—C12—C11118.6 (3)O2—C18—H18B109.5
C13—C12—C11123.5 (3)H18A—C18—H18B109.5
C4—C5—C6118.6 (3)O2—C18—H18C109.5
C4—C5—C10121.7 (3)H18A—C18—H18C109.5
C6—C5—C10119.6 (3)H18B—C18—H18C109.5
C8—C11—C12131.0 (3)O3—C19—H19A109.5
C8—C11—H11114.5O3—C19—H19B109.5
C12—C11—H11114.5H19A—C19—H19B109.5
O1—C7—C6120.2 (3)O3—C19—H19C109.5
O1—C7—C8121.5 (3)H19A—C19—H19C109.5
C6—C7—C8118.2 (2)H19B—C19—H19C109.5
C5—C10—C9112.2 (3)
C18—O2—C14—C131.5 (5)C17—C12—C11—C8147.4 (3)
C18—O2—C14—C15178.2 (3)C13—C12—C11—C835.7 (5)
C12—C13—C14—O2179.0 (3)C5—C6—C7—O1170.2 (3)
C12—C13—C14—C150.7 (4)C1—C6—C7—O19.5 (5)
C19—O3—C15—C166.3 (5)C5—C6—C7—C812.2 (4)
C19—O3—C15—C14173.1 (4)C1—C6—C7—C8168.1 (3)
C17—C16—C15—O3179.5 (3)C11—C8—C7—O111.9 (5)
C17—C16—C15—C141.1 (5)C9—C8—C7—O1170.1 (3)
O2—C14—C15—O30.4 (4)C11—C8—C7—C6170.6 (3)
C13—C14—C15—O3179.9 (3)C9—C8—C7—C67.4 (4)
O2—C14—C15—C16179.0 (3)C4—C5—C10—C9146.9 (3)
C13—C14—C15—C160.7 (5)C6—C5—C10—C935.0 (4)
C15—C16—C17—C121.6 (5)C11—C8—C9—C10138.6 (3)
C16—C17—C12—C131.6 (5)C7—C8—C9—C1039.2 (4)
C16—C17—C12—C11178.7 (3)C5—C10—C9—C852.3 (4)
C14—C13—C12—C171.1 (4)C5—C6—C1—C20.4 (5)
C14—C13—C12—C11178.1 (3)C7—C6—C1—C2179.9 (3)
C1—C6—C5—C40.9 (5)C6—C5—C4—C30.8 (5)
C7—C6—C5—C4179.4 (3)C10—C5—C4—C3177.3 (3)
C1—C6—C5—C10177.3 (3)C6—C1—C2—C30.3 (6)
C7—C6—C5—C102.4 (4)C5—C4—C3—C20.2 (5)
C7—C8—C11—C12179.4 (3)C1—C2—C3—C40.4 (6)
C9—C8—C11—C122.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.523.385 (4)155
Symmetry code: (i) x+3/2, y+1, z+1/2.
 

Acknowledgements

The authors thank the Central Instrumentation Facility (DST– FIST), Queen Mary's College (A), Chennai-4 for the research and computing facility and the SAIF, IIT, Madras, for the single-crystal X-ray diffraction data collection facility.

References

First citationBaydere, C., Taşçı, M., Dege, N., Arslan, M., Atalay, Y. & Golenya, I. A. (2019). Acta Cryst. E75, 746–750.  CSD CrossRef IUCr Journals Google Scholar
First citationBiruntha, K., Reuben Jonathan, D., Mohamooda Sumaya, U., Dravida Thendral, E. R. A. & Usha, G. (2018). IUCrData, 3, x180829.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, F., Jian, C., Zhenghao, F., Kai, G. & Zuliang, L. (2008). Catal. Commun. 9, 1924–1927.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.  Web of Science CrossRef CAS Google Scholar
First citationTajuddeen, N., Isah, M. B., Suleiman, M. A., van Heerden, F. R. & Ibrahim, M. A. (2018). Int. J. Antimicrob. Agents, 51, 311–318.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds