organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(Naphthalen-2-yl­­oxy)-N′-[2-(naphthalen-2-yl­­oxy)acet­yl]acetohydrazide monohydrate

CROSSMARK_Color_square_no_text.svg

aCornea Research Chair, Department of Optometry, College of Applied, Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bApplied Organic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt, cDepartment of Chemistry, College of Science and Humanities, Shaqra University, Al-Dawadmi 11911, Saudi Arabia, dDepartment of Chemistry, College of Science, Al-Nahrain University, Baghdad, 64021, Iraq, and eSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 24 March 2021; accepted 25 March 2021; online 31 March 2021)

The title compound, C24H20N2O4·H2O, crystallizes with half a mol­ecule of 2-(naphthalen-2-yl­oxy)-N′-[2-(naphthalen-2-yl­oxy)acet­yl]acetohydrazide and half a water mol­ecule in the asymmetric unit. In the crystal, mol­ecules form planes parallel to (011). Two mol­ecules are connected by water mol­ecules via O—H⋯O and N—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Di­acyl­hydrazines can be used as environmentally friendly insecticides against lepidopteran larvae and ground-dwelling coleopterans (Morou et al., 2013[Morou, E., Lirakis, M., Pavlidi, N., Zotti, M., Nakagawa, Y., Smagghe, G., Vontas, J. & Swevers, L. (2013). Pest. Manag. Sci. 69, 827-833.]; Suzuki et al., 2017[Suzuki, T., Funar-Timofei, S., Bora, A., Crisan, L. & Borota, A. (2017). J. Toyo Univ., Nat. Sci, 61, 119-133.]; Wang et al., 2017[Wang, Y., Xu, F., Yu, G., Shi, J., Li, C., Dai, A., Liu, Z., Xu, J., Wang, F. & Wu, J. (2017). Chem. Cent. J. 11, 50.]). In addition, they are precursors in the synthesis of electroluminescent devices (Huang et al., 2009[Huang, S.-T., Liaw, D.-J., Hsieh, L.-G., Chang, C.-C., Leung, M.-K., Wang, K.-L., Chen, W.-T., Lee, K.-R., Lai, J.-Y., Chan, L.-H. & Chen, C.-T. (2009). J. Polym. Sci. A Polym. Chem. 47, 6231-6245.]; Wu & Chen, 2009[Wu, C.-S. & Chen, Y. (2009). Macromolecules, 42, 3729-3737.], 2010[Wu, C.-S. & Chen, Y. (2010). J. Polym. Sci. A Polym. Chem. 48, 5727-5736.]).

The asymmetric unit comprises half a mol­ecule of 2-(naphthalen-2-yl­oxy)-N′-[2-(naphthalen-2-yl­oxy)acet­yl]acetohydrazide and half a mol­ecule of water, both centred on the twofold rotation axis parallel to the c axis. An ORTEP representation is shown in Fig. 1[link]. Similar to 2-[(naphthalen-2-yl)­oxy]acetamide (Huang et al., 2020[Huang, M., Qiu, R., Pan, Z., Tian, D., Tao, Y., Lin, J. & Luo, G. G. (2020). Eur. J. Inorg. Chem. 2020, 4313-4317.]), the 2-[(naphthalen-2-yl)­oxy]acetamidyl unit of the title compound is planar, and the twist angle between the two halves is 64.9 (1)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids.

In the crystal, the mol­ecules form planes parallel to (011) (Fig. 2[link]). Two 2-(naphthalen-2-yl­oxy)-N′-[2-(naphthalen-2-yl­oxy)acet­yl]acetohydrazide mol­ecules are connected by a water mol­ecule via O—H⋯O and N—H⋯O bonds (Fig. 3[link], Table 1[link]). One water mol­ecule donates O—H⋯O hydrogen bonds to two neighbouring mol­ecules (related by twofold rotation), leading to the formation of a helix parallel to the c axis (green dashed lines in Fig. 3[link]). The same pair of mol­ecules is also connected by N—H⋯O bonds, resulting in a second parallel helical arrangement (red dashed lines in Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 2.19 2.954 (6) 149
O3—H1O⋯O2i 0.92 (6) 1.87 (6) 2.796 (5) 177 (6)
Symmetry code: (i) x, y+1, z+1.
[Figure 2]
Figure 2
The crystal structure viewed down the b axis.
[Figure 3]
Figure 3
A segment of the crystal structure showing O—H⋯O hydrogen bonds as green dashed lines and N—H⋯O inter­actions as red dashed lines.

Synthesis and crystallization

A mixture of ethyl 2-cyano-3-eth­oxy­acrylate (0.34 g, 2.0 mmol) and 2-(naphthalen-2-yl­oxy)acetohydrazide (0.43 g, 2.0 mmol) in dry ethanol (10 mL) was heated with stirring under reflux for 2 h. The solid formed on cooling to room temperature. It was collected by filtration, washed with ethanol, dried and recrystallized from di­methyl­formamide to give colourless crystals, m.p. > 300°C (lit. m.p. > 300°C; Abdel-Wahab et al., 2017[Abdel-Wahab, B. F., Alotaibi, M. H. & El-Hiti, G. A. (2017). Lett. Org. Chem. 14, 591-596.]) of the title compound in 76% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H20N2O4·H2O
Mr 418.43
Crystal system, space group Orthorhombic, P21212
Temperature (K) 293
a, b, c (Å) 37.196 (4), 4.8441 (4), 5.5840 (4)
V3) 1006.12 (15)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.80
Crystal size (mm) 0.37 × 0.05 × 0.02
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.687, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7482, 2079, 1456
Rint 0.063
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.172, 1.05
No. of reflections 2079
No. of parameters 145
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.19
Absolute structure Flack x determined using 424 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.1 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and CHEMDRAW Ultra (Cambridge Soft, 2016[Cambridge Soft (2016). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2016).

2-(Naphthalen-2-yloxy)-N'-[2-(naphthalen-2-yloxy)acetyl]acetohydrazide monohydrate top
Crystal data top
C24H20N2O4·H2ODx = 1.381 Mg m3
Mr = 418.43Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P21212Cell parameters from 1274 reflections
a = 37.196 (4) Åθ = 4.7–73.7°
b = 4.8441 (4) ŵ = 0.80 mm1
c = 5.5840 (4) ÅT = 293 K
V = 1006.12 (15) Å3Needle, colourless
Z = 20.37 × 0.05 × 0.02 mm
F(000) = 440
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
diffractometer
1456 reflections with I > 2σ(I)
ω scansRint = 0.063
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
θmax = 76.9°, θmin = 4.8°
Tmin = 0.687, Tmax = 1.000h = 4744
7482 measured reflectionsk = 65
2079 independent reflectionsl = 46
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.4016P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.172(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.31 e Å3
2079 reflectionsΔρmin = 0.19 e Å3
145 parametersAbsolute structure: Flack x determined using 424 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.1 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The coordinates for the water hydrogen atom was refined freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model. All Uiso(H) were constrained to be 1.2 times Ueq(C,N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39660 (13)0.5528 (10)0.8789 (8)0.0464 (10)
C20.39748 (15)0.7245 (12)1.0831 (9)0.0555 (12)
H20.4168070.7172181.1885280.067*
C30.36943 (15)0.9021 (12)1.1238 (9)0.0571 (13)
H30.3701401.0168951.2571830.068*
C40.33940 (14)0.9153 (10)0.9681 (9)0.0501 (11)
C50.31024 (16)1.0968 (12)1.0072 (11)0.0616 (14)
H50.3103361.2107021.1412160.074*
C60.28194 (15)1.1080 (12)0.8520 (11)0.0635 (14)
H60.2628651.2276100.8805910.076*
C70.28187 (15)0.9368 (12)0.6482 (12)0.0642 (14)
H70.2626740.9441440.5417100.077*
C80.30967 (15)0.7608 (12)0.6059 (10)0.0595 (13)
H80.3091500.6491890.4704170.071*
C90.33923 (14)0.7443 (11)0.7632 (9)0.0480 (11)
C100.36861 (14)0.5619 (11)0.7222 (9)0.0488 (11)
H100.3686690.4485740.5878340.059*
C110.42712 (13)0.2082 (10)0.6538 (9)0.0499 (11)
H11A0.4272370.3192350.5093070.060*
H11B0.4056200.0948280.6518480.060*
C120.45969 (14)0.0248 (10)0.6558 (8)0.0477 (10)
O20.46226 (11)0.1567 (8)0.5050 (8)0.0639 (10)
O30.5000000.5000001.1908 (10)0.0627 (14)
O10.42622 (10)0.3845 (8)0.8567 (7)0.0549 (9)
N10.48388 (11)0.0727 (9)0.8289 (7)0.0494 (9)
H10.4795010.1922850.9389480.059*
H1O0.4869 (17)0.609 (14)1.295 (11)0.069 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (3)0.044 (2)0.045 (2)0.004 (2)0.0000 (19)0.0022 (18)
C20.061 (3)0.055 (3)0.050 (3)0.003 (2)0.009 (2)0.000 (2)
C30.068 (3)0.056 (3)0.047 (3)0.008 (2)0.004 (2)0.011 (2)
C40.057 (3)0.043 (2)0.050 (3)0.004 (2)0.004 (2)0.002 (2)
C50.074 (3)0.053 (3)0.058 (3)0.010 (3)0.011 (3)0.003 (3)
C60.057 (3)0.058 (3)0.075 (4)0.013 (3)0.007 (3)0.004 (3)
C70.055 (3)0.060 (3)0.078 (4)0.007 (3)0.006 (3)0.008 (3)
C80.056 (3)0.057 (3)0.066 (3)0.003 (2)0.009 (2)0.006 (2)
C90.052 (3)0.042 (2)0.050 (2)0.001 (2)0.0030 (19)0.0036 (19)
C100.056 (3)0.044 (2)0.046 (2)0.004 (2)0.0023 (19)0.0042 (18)
C110.055 (3)0.047 (2)0.048 (3)0.003 (2)0.003 (2)0.003 (2)
C120.055 (3)0.045 (2)0.042 (2)0.001 (2)0.001 (2)0.0014 (19)
O20.068 (2)0.060 (2)0.063 (2)0.0081 (19)0.003 (2)0.0190 (19)
O30.075 (4)0.060 (3)0.053 (3)0.015 (3)0.0000.000
O10.0528 (19)0.0537 (19)0.058 (2)0.0103 (15)0.0078 (16)0.0032 (17)
N10.050 (2)0.054 (2)0.045 (2)0.0109 (18)0.0001 (18)0.0065 (18)
Geometric parameters (Å, º) top
C1—C101.361 (7)C7—H70.9300
C1—O11.376 (6)C8—C91.410 (7)
C1—C21.412 (7)C8—H80.9300
C2—C31.371 (8)C9—C101.424 (7)
C2—H20.9300C10—H100.9300
C3—C41.417 (7)C11—O11.419 (6)
C3—H30.9300C11—C121.502 (7)
C4—C91.413 (7)C11—H11A0.9700
C4—C51.413 (7)C11—H11B0.9700
C5—C61.364 (9)C12—O21.221 (6)
C5—H50.9300C12—N11.341 (6)
C6—C71.408 (9)O3—H1O0.92 (6)
C6—H60.9300N1—N1i1.391 (8)
C7—C81.361 (8)N1—H10.8600
C10—C1—O1125.0 (4)C7—C8—H8119.3
C10—C1—C2121.2 (5)C9—C8—H8119.3
O1—C1—C2113.8 (4)C8—C9—C4118.4 (5)
C3—C2—C1119.1 (5)C8—C9—C10122.3 (5)
C3—C2—H2120.5C4—C9—C10119.4 (5)
C1—C2—H2120.5C1—C10—C9120.3 (5)
C2—C3—C4121.8 (5)C1—C10—H10119.9
C2—C3—H3119.1C9—C10—H10119.9
C4—C3—H3119.1O1—C11—C12111.7 (4)
C9—C4—C5119.1 (5)O1—C11—H11A109.3
C9—C4—C3118.3 (5)C12—C11—H11A109.3
C5—C4—C3122.6 (5)O1—C11—H11B109.3
C6—C5—C4121.3 (5)C12—C11—H11B109.3
C6—C5—H5119.4H11A—C11—H11B107.9
C4—C5—H5119.4O2—C12—N1124.7 (5)
C5—C6—C7119.4 (5)O2—C12—C11118.9 (5)
C5—C6—H6120.3N1—C12—C11116.4 (4)
C7—C6—H6120.3C1—O1—C11116.6 (4)
C8—C7—C6120.5 (5)C12—N1—N1i119.4 (4)
C8—C7—H7119.7C12—N1—H1120.3
C6—C7—H7119.7N1i—N1—H1120.3
C7—C8—C9121.3 (5)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.192.954 (6)149
O3—H1O···O2ii0.92 (6)1.87 (6)2.796 (5)177 (6)
Symmetry code: (ii) x, y+1, z+1.
 

Funding information

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through the Vice Deanship of Scientific Research Chairs.

References

First citationAbdel-Wahab, B. F., Alotaibi, M. H. & El-Hiti, G. A. (2017). Lett. Org. Chem. 14, 591–596.  CAS Google Scholar
First citationCambridge Soft (2016). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, M., Qiu, R., Pan, Z., Tian, D., Tao, Y., Lin, J. & Luo, G. G. (2020). Eur. J. Inorg. Chem. 2020, 4313–4317.  CrossRef Google Scholar
First citationHuang, S.-T., Liaw, D.-J., Hsieh, L.-G., Chang, C.-C., Leung, M.-K., Wang, K.-L., Chen, W.-T., Lee, K.-R., Lai, J.-Y., Chan, L.-H. & Chen, C.-T. (2009). J. Polym. Sci. A Polym. Chem. 47, 6231–6245.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorou, E., Lirakis, M., Pavlidi, N., Zotti, M., Nakagawa, Y., Smagghe, G., Vontas, J. & Swevers, L. (2013). Pest. Manag. Sci. 69, 827–833.  CrossRef PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, T., Funar-Timofei, S., Bora, A., Crisan, L. & Borota, A. (2017). J. Toyo Univ., Nat. Sci, 61, 119–133.  Google Scholar
First citationWang, Y., Xu, F., Yu, G., Shi, J., Li, C., Dai, A., Liu, Z., Xu, J., Wang, F. & Wu, J. (2017). Chem. Cent. J. 11, 50.  CrossRef PubMed Google Scholar
First citationWu, C.-S. & Chen, Y. (2009). Macromolecules, 42, 3729–3737.  CrossRef Google Scholar
First citationWu, C.-S. & Chen, Y. (2010). J. Polym. Sci. A Polym. Chem. 48, 5727–5736.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds