metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4-Amino­pyridine-κN1)(2,2′-bi­pyridine-κ2N,N′)(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)ruthenium(II) bis­­(hexa­fluorido­phosphate) unknown solvate

aDepartment of Chemistry and Biochemistry, The College at Brockport, SUNY, Brockport, NY 14420, USA, bDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas 78209, USA, and cDepartment of Chemistry, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: creed@brockport.edu, rgarner@uiwtx.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 15 February 2021; accepted 17 March 2021; online 23 March 2021)

The title compound, [Ru(C5H6N2)(C10H8N2)(C15H11N3)](PF6)2 solvent, crystallizes in the triclinic space group P[\overline{1}] with one dicationic Ru complex, two PF6 anions, and undefined solvent in the asymmetric unit. The cation and anions are linked via N—H⋯F hydrogen bonding. One PF6 anion is disordered over two positions, with occupancies 0.634 (8) and 0.366 (8). The solvent, which is located in channels in the crystal, is highly disordered. Reflection contributions from the solvent were added to the calculated structure factors using the SQUEEZE routine [Spek (2015) Acta Cryst. C71, 9–18] of the program PLATON, which determined there to be 59 electrons in 264 Å3 treated this way per unit cell. Because the exact identity and amount of solvent were unknown, no solvent was included in the atom list or mol­ecular formula.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The reported complex was explored previously to determine the impact of pyridine substitution on mol­ecular excited states (Vu et al., 2016[Vu, A. T., Santos, D. A., Hale, J. G. & Garner, R. N. (2016). Inorg. Chim. Acta, 450, 23-29.]). The complex (Fig. 1[link]) has the expected structure, very similar to the unsubstituted pyridine analog (Hecker et al., 1991[Hecker, C. R., Fanwick, P. E. & McMillin, D. R. (1991). Inorg. Chem. 30, 659-666.]). All Ru—N bond lengths fall within the expected range (Table 1[link]), with the longest Ru—N bond occurring to the amino­pyridine and the shortest to the terpyridine central nitro­gen. The bi­pyridine Ru—N bond cis to the amino­pyridine is elongated due to steric inter­actions with the pyridine ring. In the crystal, N—H⋯F hydrogen bonding links the cation to the anions (Table 2[link] and Fig. 2[link]).

Table 1
Selected bond lengths (Å)

Ru1—N1 2.080 (2) Ru1—N4 2.093 (2)
Ru1—N2 1.962 (2) Ru1—N5 2.058 (2)
Ru1—N3 2.079 (2) Ru1—N6 2.113 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7A⋯F11 0.90 (5) 2.12 (5) 3.008 (5) 169 (4)
N7—H7A⋯F11′ 0.90 (5) 2.07 (5) 2.901 (8) 154 (4)
N7—H7B⋯F1 0.85 (5) 2.26 (5) 3.061 (4) 159 (4)
N7—H7B⋯F3 0.85 (5) 2.47 (5) 3.156 (4) 139 (4)
[Figure 1]
Figure 1
Anisotropic displacement ellipsoid plot drawn at the 50% probability level. Only the major component of the disordered PF6 anion and only the NH2 hydrogen atoms are displayed. Highly disordered solvent, located in channels parallel to [10[\overline{1}]], is not shown (see Refinement details).
[Figure 2]
Figure 2
Anisotropic displacement ellipsoid plot drawn at the 50% probability level. Only the major component of the disordered PF6 anion and only the NH2 hydrogen atoms are displayed. To one anion the N—H⋯F hydrogen bonding is bifurcated (see Table 2[link] for additional metrical details).

Synthesis and crystallization

The complex was synthesized according to previously published procedures (Vu et al. 2016[Vu, A. T., Santos, D. A., Hale, J. G. & Garner, R. N. (2016). Inorg. Chim. Acta, 450, 23-29.]). Single crystals suitable for X-ray diffraction were obtained by dissolving the complex in a 1:1 ratio, by volume, of acetonitrile and methanol. A few drops of chloroform were added to this mixture. The solvent mixture was then layered with half as much diethyl ether. The solution was stored in a 248 K freezer in an open test tube for two weeks until small needle-shaped dark-red crystals formed.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hexa­fluorido­phosphate anion P2/F7⋯F12 is modeled as disordered over two positions [occupancies: 0.634 (8) for P2/F7⋯F12 and 0.366 (8) for P2′/F7′⋯F12′]. Analogous bond lengths and angles were restrained to be similar. Anisotropic displacement parameters for proximal atoms were restrained to be similar and restrained toward the expected motion relative to bond direction.

Table 3
Experimental details

Crystal data
Chemical formula [Ru(C5H6N2)(C10H8N2)(C15H11N3)](PF6)2
Mr 874.58
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 11.6594 (4), 13.4335 (2), 13.7219 (3)
α, β, γ (°) 64.764 (2), 69.337 (3), 86.320 (2)
V3) 1809.56 (9)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.21
Crystal size (mm) 0.21 × 0.05 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Oxford, England.])
Tmin, Tmax 0.604, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 37534, 7587, 6954
Rint 0.069
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.09
No. of reflections 7587
No. of parameters 535
No. of restraints 57
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.89, −1.46
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Oxford, England.]), ShelXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), andOLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Reflection contributions from highly disordered solvent, located in channels parallel to [10[\overline{1}]], were added to the calculated structure factors using the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) of the program PLATON, which determined there to be 59 electrons in 264 Å3 treated this way per unit cell. Because the exact identity and amount of solvent were unknown, no solvent was included in the atom list or mol­ecular formula. Thus, all calculated qu­anti­ties that derive from the mol­ecular formula [e.g., F(000), density, mol­ecular weight, etc.] are known to be inaccurate.

The maximum residual peak of 0.89 e Å−3 and the deepest hole of −1.46 e Å−3 are found 1.07 and 0.83 Å from atoms N3 and Ru1, respectively.

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(4-Aminopyridine-κN1)(2,2'-bipyridine-κ2N,N')(2,2':6',2''-terpyridine-κ3N,N',N'')ruthenium(II) bis(hexafluoridophosphate) unknown solvate top
Crystal data top
[Ru(C5H6N2)(C10H8N2)(C15H11N3)](PF6)2Z = 2
Mr = 874.58F(000) = 872
Triclinic, P1Dx = 1.605 Mg m3
a = 11.6594 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.4335 (2) ÅCell parameters from 21227 reflections
c = 13.7219 (3) Åθ = 3.7–77.5°
α = 64.764 (2)°µ = 5.21 mm1
β = 69.337 (3)°T = 100 K
γ = 86.320 (2)°Needle, red
V = 1809.56 (9) Å30.21 × 0.05 × 0.04 mm
Data collection top
Rigaku Oxford Diffraction XtaLAB Synergy, Dualflex, HyPix
diffractometer
7587 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source6954 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.069
ω scansθmax = 77.9°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1414
Tmin = 0.604, Tmax = 1.000k = 1616
37534 measured reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.081P)2 + 0.8329P]
where P = (Fo2 + 2Fc2)/3
7587 reflections(Δ/σ)max = 0.001
535 parametersΔρmax = 0.89 e Å3
57 restraintsΔρmin = 1.46 e Å3
Special details top

Refinement. Reflection contributions from highly disordered solvent were fixed and added to the calculated structure factors using the SQUEEZE routine of program Platon (Spek, 2015), which determined there to be 59 electrons in 264 Å3 treated this way per unit cell. Because the exact identity and amount of solvent were unknown, no solvent was included in the atom list or molecular formula. Thus all calculated quantities that derive from the molecular formula (e.g., F(000), density, molecular weight, etc.) are known to be incorrect.

Hexafluorophophate anion P2/F7-F12 is modeled as disordered over two positions (0.634 (8):0.366 (8)). Analogous bond lengths and angles were restrained to be similar. Anisotropic displacement parameters for proximal atoms were restrained to be similar and restrained toward the expected motion relative to bond direction.

The NH2 hydrogen atoms were located in a difference Fourier map and refined freely. The remaining hydrogen atoms were given riding models: C—H = 0.93 Å and Uiso(H) = 1.2Ueq(carrier C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.37269 (2)0.38839 (2)0.81766 (2)0.02018 (9)
P11.10072 (8)0.73218 (7)0.26920 (7)0.02873 (18)
P20.7331 (5)1.0900 (5)0.3394 (5)0.0252 (5)0.634 (8)
F70.7674 (5)1.1703 (4)0.2054 (4)0.0474 (13)0.634 (8)
F80.6970 (5)1.0075 (4)0.4726 (3)0.0460 (12)0.634 (8)
F90.6916 (7)1.1905 (6)0.3720 (8)0.0407 (16)0.634 (8)
F100.8698 (3)1.1133 (5)0.3305 (5)0.0496 (13)0.634 (8)
F110.7770 (5)0.9895 (3)0.3067 (4)0.0411 (10)0.634 (8)
F120.5973 (3)1.0663 (3)0.3487 (4)0.0398 (10)0.634 (8)
P2'0.7491 (9)1.0940 (9)0.3397 (9)0.0252 (5)0.366 (8)
F7'0.7352 (9)1.1218 (10)0.2193 (8)0.050 (2)0.366 (8)
F8'0.7637 (9)1.0637 (9)0.4585 (6)0.064 (3)0.366 (8)
F9'0.6634 (14)1.1874 (13)0.3561 (16)0.057 (4)0.366 (8)
F10'0.8666 (7)1.1817 (8)0.2721 (7)0.053 (2)0.366 (8)
F11'0.8379 (11)1.0021 (6)0.3211 (7)0.063 (3)0.366 (8)
F12'0.6336 (9)1.0051 (9)0.4044 (8)0.075 (4)0.366 (8)
F11.0213 (2)0.65559 (17)0.40258 (17)0.0374 (4)
F21.1806 (2)0.80744 (19)0.13693 (18)0.0517 (6)
F31.0644 (2)0.83963 (17)0.29106 (19)0.0451 (5)
F41.2197 (2)0.7291 (2)0.3027 (2)0.0479 (5)
F51.1364 (2)0.62302 (17)0.24975 (18)0.0409 (5)
F60.9824 (2)0.7333 (2)0.2368 (2)0.0475 (5)
N10.2568 (2)0.4706 (2)0.7296 (2)0.0218 (5)
N20.2868 (2)0.46862 (19)0.9086 (2)0.0218 (5)
N30.4523 (2)0.3333 (2)0.9430 (2)0.0220 (5)
N40.4476 (2)0.2897 (2)0.7314 (2)0.0224 (5)
N50.2485 (2)0.2490 (2)0.9140 (2)0.0228 (5)
N60.5148 (2)0.5200 (2)0.7125 (2)0.0221 (5)
N70.8026 (3)0.7730 (2)0.4900 (2)0.0323 (6)
H7A0.788 (4)0.839 (4)0.443 (4)0.045 (12)*
H7B0.874 (5)0.756 (4)0.462 (4)0.039 (11)*
C10.2434 (3)0.4657 (2)0.6385 (3)0.0254 (6)
H10.2914600.4209040.6074390.030*
C20.1609 (3)0.5247 (3)0.5887 (3)0.0306 (6)
H20.1537000.5192340.5257530.037*
C30.0893 (3)0.5919 (3)0.6342 (3)0.0307 (6)
H30.0344050.6331830.6014180.037*
C40.1007 (3)0.5969 (3)0.7288 (3)0.0275 (6)
H40.0527550.6410320.7609240.033*
C50.1837 (3)0.5359 (2)0.7757 (2)0.0236 (6)
C60.2013 (3)0.5350 (2)0.8771 (2)0.0229 (5)
C70.1376 (3)0.5906 (2)0.9419 (3)0.0275 (6)
H70.0799620.6375590.9201370.033*
C80.1610 (3)0.5754 (3)1.0395 (3)0.0286 (6)
H80.1189280.6122391.0834670.034*
C90.2473 (3)0.5051 (3)1.0718 (3)0.0274 (6)
H90.2621880.4936521.1378170.033*
C100.3104 (3)0.4525 (2)1.0044 (2)0.0234 (5)
C110.4040 (3)0.3739 (2)1.0248 (2)0.0230 (5)
C120.4403 (3)0.3416 (2)1.1177 (3)0.0275 (6)
H120.4058430.3693431.1721970.033*
C130.5288 (3)0.2674 (3)1.1306 (3)0.0305 (6)
H130.5534850.2446451.1936960.037*
C140.5795 (3)0.2280 (3)1.0476 (3)0.0294 (6)
H140.6401210.1796101.0531910.035*
C150.5383 (3)0.2622 (2)0.9562 (3)0.0253 (6)
H150.5716220.2345760.9014360.030*
C160.5486 (3)0.3166 (3)0.6349 (2)0.0262 (6)
H160.5895130.3872740.5993410.031*
C170.5944 (3)0.2441 (3)0.5865 (3)0.0303 (6)
H170.6651950.2654260.5204690.036*
C180.5334 (3)0.1395 (3)0.6375 (3)0.0341 (7)
H180.5627270.0889740.6069930.041*
C190.4278 (3)0.1115 (3)0.7348 (3)0.0332 (7)
H190.3846250.0419560.7698320.040*
C200.3864 (3)0.1874 (2)0.7802 (2)0.0258 (6)
C210.2743 (3)0.1641 (2)0.8831 (3)0.0259 (6)
C220.2002 (3)0.0650 (3)0.9452 (3)0.0328 (7)
H220.2196540.0080420.9224820.039*
C230.0973 (3)0.0506 (3)1.0408 (3)0.0341 (7)
H230.0471010.0160871.0837610.041*
C240.0702 (3)0.1377 (3)1.0714 (3)0.0342 (7)
H240.0010500.1306831.1351260.041*
C250.1470 (3)0.2343 (3)1.0063 (3)0.0305 (6)
H250.1279370.2925191.0271420.037*
C260.4942 (3)0.6264 (2)0.6595 (3)0.0248 (6)
H260.4128470.6423860.6724010.030*
C270.5858 (3)0.7132 (2)0.5873 (3)0.0263 (6)
H270.5653080.7848560.5543180.032*
C280.7101 (3)0.6927 (2)0.5640 (2)0.0251 (6)
C290.7319 (3)0.5828 (2)0.6237 (2)0.0241 (6)
H290.8122230.5649800.6151310.029*
C300.6346 (3)0.5016 (2)0.6948 (2)0.0218 (5)
H300.6521580.4298260.7329770.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02185 (13)0.01787 (13)0.01976 (13)0.00208 (8)0.00411 (9)0.00992 (9)
P10.0302 (4)0.0258 (4)0.0281 (4)0.0078 (3)0.0069 (3)0.0133 (3)
P20.0259 (14)0.0224 (5)0.0259 (4)0.0062 (8)0.0056 (7)0.0125 (3)
F70.053 (3)0.037 (2)0.0266 (17)0.016 (2)0.0008 (17)0.0028 (18)
F80.056 (3)0.045 (2)0.0261 (17)0.0199 (19)0.0098 (16)0.0117 (15)
F90.040 (3)0.030 (2)0.057 (4)0.0088 (19)0.012 (2)0.028 (2)
F100.0279 (18)0.064 (3)0.068 (3)0.0084 (18)0.0137 (18)0.041 (3)
F110.055 (3)0.0336 (19)0.043 (2)0.0238 (19)0.0195 (19)0.0247 (15)
F120.0327 (18)0.039 (2)0.052 (2)0.0043 (14)0.0122 (15)0.0257 (18)
P2'0.0259 (14)0.0224 (5)0.0259 (4)0.0062 (8)0.0056 (7)0.0125 (3)
F7'0.052 (5)0.063 (6)0.042 (4)0.014 (4)0.023 (4)0.025 (5)
F8'0.068 (6)0.092 (7)0.029 (3)0.036 (5)0.019 (4)0.025 (4)
F9'0.056 (8)0.059 (7)0.060 (6)0.039 (6)0.020 (5)0.034 (4)
F10'0.046 (4)0.051 (5)0.056 (5)0.021 (3)0.001 (3)0.030 (4)
F11'0.072 (6)0.033 (4)0.043 (4)0.028 (4)0.008 (4)0.004 (3)
F12'0.063 (6)0.074 (6)0.059 (5)0.034 (5)0.024 (4)0.034 (5)
F10.0420 (11)0.0331 (10)0.0298 (9)0.0064 (8)0.0089 (8)0.0107 (8)
F20.0529 (14)0.0400 (12)0.0336 (10)0.0117 (10)0.0055 (9)0.0085 (9)
F30.0476 (13)0.0297 (10)0.0489 (12)0.0081 (9)0.0023 (10)0.0215 (9)
F40.0347 (11)0.0551 (14)0.0661 (14)0.0075 (10)0.0201 (10)0.0358 (12)
F50.0560 (13)0.0330 (10)0.0431 (11)0.0180 (9)0.0223 (10)0.0231 (9)
F60.0473 (13)0.0495 (13)0.0487 (12)0.0148 (10)0.0271 (11)0.0175 (10)
N10.0215 (11)0.0203 (11)0.0208 (11)0.0004 (9)0.0053 (9)0.0081 (9)
N20.0223 (12)0.0184 (11)0.0212 (11)0.0011 (9)0.0038 (9)0.0087 (9)
N30.0223 (12)0.0198 (11)0.0222 (11)0.0036 (9)0.0055 (9)0.0098 (9)
N40.0251 (12)0.0195 (11)0.0231 (11)0.0032 (9)0.0066 (9)0.0115 (9)
N50.0258 (12)0.0178 (11)0.0196 (11)0.0023 (9)0.0035 (9)0.0065 (9)
N60.0242 (12)0.0172 (11)0.0208 (11)0.0016 (9)0.0037 (9)0.0077 (9)
N70.0269 (14)0.0248 (13)0.0331 (14)0.0013 (11)0.0031 (11)0.0077 (11)
C10.0249 (14)0.0240 (14)0.0253 (13)0.0012 (11)0.0053 (11)0.0114 (11)
C20.0287 (16)0.0364 (17)0.0266 (14)0.0019 (13)0.0094 (12)0.0132 (13)
C30.0280 (15)0.0338 (16)0.0280 (14)0.0027 (12)0.0106 (12)0.0110 (13)
C40.0223 (14)0.0300 (15)0.0282 (15)0.0032 (11)0.0057 (11)0.0137 (12)
C50.0210 (13)0.0228 (13)0.0252 (13)0.0013 (10)0.0044 (11)0.0118 (11)
C60.0214 (13)0.0213 (13)0.0238 (13)0.0029 (10)0.0044 (10)0.0108 (11)
C70.0276 (15)0.0229 (14)0.0304 (15)0.0052 (11)0.0071 (12)0.0132 (12)
C80.0333 (16)0.0257 (15)0.0281 (14)0.0075 (12)0.0071 (12)0.0167 (12)
C90.0308 (16)0.0273 (15)0.0243 (14)0.0031 (12)0.0080 (12)0.0130 (12)
C100.0270 (14)0.0205 (13)0.0227 (13)0.0026 (11)0.0070 (11)0.0109 (11)
C110.0269 (14)0.0187 (12)0.0213 (13)0.0001 (11)0.0044 (11)0.0098 (10)
C120.0311 (16)0.0244 (14)0.0275 (14)0.0041 (12)0.0084 (12)0.0136 (12)
C130.0301 (16)0.0316 (16)0.0297 (15)0.0081 (13)0.0109 (12)0.0138 (13)
C140.0324 (16)0.0233 (14)0.0320 (15)0.0087 (12)0.0117 (13)0.0122 (12)
C150.0258 (14)0.0194 (13)0.0264 (14)0.0038 (11)0.0043 (11)0.0104 (11)
C160.0319 (15)0.0256 (14)0.0219 (13)0.0004 (12)0.0052 (11)0.0141 (11)
C170.0301 (16)0.0340 (16)0.0269 (14)0.0021 (12)0.0043 (12)0.0180 (13)
C180.0406 (19)0.0294 (16)0.0353 (16)0.0036 (13)0.0066 (14)0.0223 (14)
C190.0411 (18)0.0268 (15)0.0318 (15)0.0002 (13)0.0061 (14)0.0179 (13)
C200.0294 (15)0.0237 (14)0.0247 (13)0.0026 (11)0.0068 (12)0.0132 (11)
C210.0295 (15)0.0214 (13)0.0261 (14)0.0021 (11)0.0070 (12)0.0121 (11)
C220.0355 (17)0.0260 (15)0.0340 (16)0.0007 (13)0.0071 (13)0.0144 (13)
C230.0308 (17)0.0282 (16)0.0343 (16)0.0057 (13)0.0056 (13)0.0091 (13)
C240.0260 (16)0.0334 (17)0.0330 (16)0.0041 (13)0.0009 (12)0.0136 (14)
C250.0282 (16)0.0300 (16)0.0275 (14)0.0017 (12)0.0008 (12)0.0144 (12)
C260.0242 (14)0.0203 (13)0.0275 (14)0.0030 (11)0.0062 (11)0.0109 (11)
C270.0276 (15)0.0215 (13)0.0259 (14)0.0045 (11)0.0070 (11)0.0092 (11)
C280.0278 (15)0.0239 (14)0.0239 (13)0.0032 (11)0.0077 (11)0.0119 (11)
C290.0254 (14)0.0221 (14)0.0237 (13)0.0060 (11)0.0066 (11)0.0111 (11)
C300.0224 (13)0.0197 (12)0.0215 (12)0.0024 (10)0.0043 (10)0.0103 (10)
Geometric parameters (Å, º) top
Ru1—N12.080 (2)C4—H40.9300
Ru1—N21.962 (2)C4—C51.381 (4)
Ru1—N32.079 (2)C5—C61.472 (4)
Ru1—N42.093 (2)C6—C71.389 (4)
Ru1—N52.058 (2)C7—H70.9300
Ru1—N62.113 (2)C7—C81.388 (5)
P1—F11.608 (2)C8—H80.9300
P1—F21.596 (2)C8—C91.391 (4)
P1—F31.598 (2)C9—H90.9300
P1—F41.601 (2)C9—C101.380 (4)
P1—F51.604 (2)C10—C111.482 (4)
P1—F61.589 (2)C11—C121.372 (4)
P2—F71.597 (6)C12—H120.9300
P2—F81.591 (6)C12—C131.391 (4)
P2—F91.593 (7)C13—H130.9300
P2—F101.596 (6)C13—C141.388 (4)
P2—F111.598 (6)C14—H140.9300
P2—F121.585 (6)C14—C151.386 (4)
P2'—F7'1.596 (11)C15—H150.9300
P2'—F8'1.573 (11)C16—H160.9300
P2'—F9'1.595 (11)C16—C171.383 (4)
P2'—F10'1.583 (11)C17—H170.9300
P2'—F11'1.606 (11)C17—C181.381 (5)
P2'—F12'1.577 (11)C18—H180.9300
N1—C11.342 (4)C18—C191.383 (5)
N1—C51.375 (4)C19—H190.9300
N2—C61.356 (4)C19—C201.387 (4)
N2—C101.362 (4)C20—C211.474 (4)
N3—C111.382 (4)C21—C221.381 (4)
N3—C151.345 (4)C22—H220.9300
N4—C161.348 (4)C22—C231.379 (5)
N4—C201.361 (4)C23—H230.9300
N5—C211.359 (4)C23—C241.388 (5)
N5—C251.343 (4)C24—H240.9300
N6—C261.350 (4)C24—C251.372 (5)
N6—C301.356 (4)C25—H250.9300
N7—H7A0.90 (5)C26—H260.9300
N7—H7B0.85 (5)C26—C271.382 (4)
N7—C281.342 (4)C27—H270.9300
C1—H10.9300C27—C281.405 (4)
C1—C21.388 (5)C28—C291.408 (4)
C2—H20.9300C29—H290.9300
C2—C31.384 (5)C29—C301.378 (4)
C3—H30.9300C30—H300.9300
C3—C41.380 (4)
N1—Ru1—N499.51 (9)C3—C2—H2120.5
N1—Ru1—N692.43 (9)C2—C3—H3120.5
N2—Ru1—N179.62 (10)C4—C3—C2119.1 (3)
N2—Ru1—N379.70 (10)C4—C3—H3120.5
N2—Ru1—N4173.73 (9)C3—C4—H4120.2
N2—Ru1—N595.58 (10)C3—C4—C5119.7 (3)
N2—Ru1—N690.50 (10)C5—C4—H4120.2
N3—Ru1—N1159.27 (10)N1—C5—C4121.6 (3)
N3—Ru1—N4100.87 (9)N1—C5—C6114.8 (2)
N3—Ru1—N689.24 (10)C4—C5—C6123.5 (3)
N4—Ru1—N695.74 (10)N2—C6—C5113.4 (2)
N5—Ru1—N191.01 (10)N2—C6—C7119.7 (3)
N5—Ru1—N389.51 (10)C7—C6—C5126.8 (3)
N5—Ru1—N478.20 (10)C6—C7—H7120.4
N5—Ru1—N6173.47 (9)C8—C7—C6119.2 (3)
F2—P1—F1179.44 (13)C8—C7—H7120.4
F2—P1—F390.87 (12)C7—C8—H8119.9
F2—P1—F490.07 (14)C7—C8—C9120.2 (3)
F2—P1—F590.13 (12)C9—C8—H8119.9
F3—P1—F189.52 (11)C8—C9—H9120.4
F3—P1—F490.55 (13)C10—C9—C8119.1 (3)
F3—P1—F5178.96 (12)C10—C9—H9120.4
F4—P1—F189.52 (13)N2—C10—C9120.0 (3)
F4—P1—F589.14 (12)N2—C10—C11112.7 (2)
F5—P1—F189.48 (11)C9—C10—C11127.3 (3)
F6—P1—F190.00 (12)N3—C11—C10115.0 (2)
F6—P1—F290.40 (14)C12—C11—N3121.4 (3)
F6—P1—F390.18 (13)C12—C11—C10123.6 (3)
F6—P1—F4179.12 (13)C11—C12—H12120.0
F6—P1—F590.12 (13)C11—C12—C13120.0 (3)
F7—P2—F1189.3 (4)C13—C12—H12120.0
F8—P2—F7178.4 (5)C12—C13—H13120.6
F8—P2—F990.4 (5)C14—C13—C12118.8 (3)
F8—P2—F1090.4 (4)C14—C13—H13120.6
F8—P2—F1189.6 (4)C13—C14—H14120.6
F9—P2—F790.7 (5)C15—C14—C13118.8 (3)
F9—P2—F1090.3 (4)C15—C14—H14120.6
F9—P2—F11179.0 (5)N3—C15—C14123.0 (3)
F10—P2—F790.8 (4)N3—C15—H15118.5
F10—P2—F1188.7 (4)C14—C15—H15118.5
F12—P2—F789.4 (4)N4—C16—H16118.5
F12—P2—F889.5 (4)N4—C16—C17123.1 (3)
F12—P2—F989.8 (4)C17—C16—H16118.5
F12—P2—F10179.8 (6)C16—C17—H17120.5
F12—P2—F1191.1 (3)C18—C17—C16119.0 (3)
F7'—P2'—F11'88.4 (7)C18—C17—H17120.5
F8'—P2'—F7'178.6 (9)C17—C18—H18120.7
F8'—P2'—F9'90.1 (8)C17—C18—C19118.7 (3)
F8'—P2'—F10'91.5 (7)C19—C18—H18120.7
F8'—P2'—F11'90.3 (7)C18—C19—H19120.0
F8'—P2'—F12'89.5 (8)C18—C19—C20119.9 (3)
F9'—P2'—F7'91.3 (8)C20—C19—H19120.0
F9'—P2'—F11'178.7 (11)N4—C20—C19121.5 (3)
F10'—P2'—F7'88.9 (7)N4—C20—C21115.3 (2)
F10'—P2'—F9'90.3 (9)C19—C20—C21123.2 (3)
F10'—P2'—F11'88.5 (7)N5—C21—C20114.5 (3)
F12'—P2'—F7'90.0 (7)N5—C21—C22121.5 (3)
F12'—P2'—F9'91.0 (9)C22—C21—C20124.0 (3)
F12'—P2'—F10'178.3 (9)C21—C22—H22120.0
F12'—P2'—F11'90.2 (7)C23—C22—C21119.9 (3)
C1—N1—Ru1128.8 (2)C23—C22—H22120.0
C1—N1—C5117.9 (2)C22—C23—H23120.7
C5—N1—Ru1113.24 (18)C22—C23—C24118.5 (3)
C6—N2—Ru1118.85 (19)C24—C23—H23120.7
C6—N2—C10121.7 (2)C23—C24—H24120.5
C10—N2—Ru1119.36 (19)C25—C24—C23119.0 (3)
C11—N3—Ru1113.22 (19)C25—C24—H24120.5
C15—N3—Ru1128.9 (2)N5—C25—C24123.2 (3)
C15—N3—C11117.9 (2)N5—C25—H25118.4
C16—N4—Ru1127.1 (2)C24—C25—H25118.4
C16—N4—C20117.8 (2)N6—C26—H26117.8
C20—N4—Ru1115.11 (19)N6—C26—C27124.4 (3)
C21—N5—Ru1116.80 (19)C27—C26—H26117.8
C25—N5—Ru1125.2 (2)C26—C27—H27120.1
C25—N5—C21117.9 (3)C26—C27—C28119.8 (3)
C26—N6—Ru1123.5 (2)C28—C27—H27120.1
C26—N6—C30115.5 (2)N7—C28—C27122.1 (3)
C30—N6—Ru1120.99 (19)N7—C28—C29121.9 (3)
H7A—N7—H7B113 (4)C27—C28—C29116.0 (3)
C28—N7—H7A121 (3)C28—C29—H29119.9
C28—N7—H7B119 (3)C30—C29—C28120.1 (3)
N1—C1—H1118.6C30—C29—H29119.9
N1—C1—C2122.7 (3)N6—C30—C29123.9 (3)
C2—C1—H1118.6N6—C30—H30118.0
C1—C2—H2120.5C29—C30—H30118.0
C3—C2—C1119.0 (3)
Ru1—N1—C1—C2179.3 (2)C5—C6—C7—C8176.2 (3)
Ru1—N1—C5—C4180.0 (2)C6—N2—C10—C90.6 (4)
Ru1—N1—C5—C60.0 (3)C6—N2—C10—C11178.0 (3)
Ru1—N2—C6—C50.8 (3)C6—C7—C8—C90.0 (5)
Ru1—N2—C6—C7178.6 (2)C7—C8—C9—C101.1 (5)
Ru1—N2—C10—C9177.5 (2)C8—C9—C10—N20.8 (5)
Ru1—N2—C10—C111.0 (3)C8—C9—C10—C11179.1 (3)
Ru1—N3—C11—C103.0 (3)C9—C10—C11—N3179.8 (3)
Ru1—N3—C11—C12176.3 (2)C9—C10—C11—C120.6 (5)
Ru1—N3—C15—C14176.8 (2)C10—N2—C6—C5176.2 (3)
Ru1—N4—C16—C17177.3 (2)C10—N2—C6—C71.7 (4)
Ru1—N4—C20—C19177.7 (2)C10—C11—C12—C13180.0 (3)
Ru1—N4—C20—C212.5 (3)C11—N3—C15—C140.2 (4)
Ru1—N5—C21—C202.7 (3)C11—C12—C13—C140.5 (5)
Ru1—N5—C21—C22177.0 (2)C12—C13—C14—C151.4 (5)
Ru1—N5—C25—C24176.6 (3)C13—C14—C15—N31.0 (5)
Ru1—N6—C26—C27177.8 (2)C15—N3—C11—C10179.6 (3)
Ru1—N6—C30—C29177.3 (2)C15—N3—C11—C121.2 (4)
N1—C1—C2—C30.2 (5)C16—N4—C20—C191.8 (4)
N1—C5—C6—N20.5 (4)C16—N4—C20—C21178.0 (3)
N1—C5—C6—C7178.2 (3)C16—C17—C18—C190.6 (5)
N2—C6—C7—C81.4 (5)C17—C18—C19—C201.0 (5)
N2—C10—C11—N31.4 (4)C18—C19—C20—N40.3 (5)
N2—C10—C11—C12177.9 (3)C18—C19—C20—C21179.5 (3)
N3—C11—C12—C130.8 (5)C19—C20—C21—N5179.7 (3)
N4—C16—C17—C181.0 (5)C19—C20—C21—C220.7 (5)
N4—C20—C21—N50.1 (4)C20—N4—C16—C172.2 (4)
N4—C20—C21—C22179.5 (3)C20—C21—C22—C23179.7 (3)
N5—C21—C22—C230.1 (5)C21—N5—C25—C241.2 (5)
N6—C26—C27—C280.9 (5)C21—C22—C23—C240.7 (5)
N7—C28—C29—C30176.9 (3)C22—C23—C24—C250.5 (5)
C1—N1—C5—C41.5 (4)C23—C24—C25—N50.4 (5)
C1—N1—C5—C6178.5 (2)C25—N5—C21—C20179.4 (3)
C1—C2—C3—C41.1 (5)C25—N5—C21—C221.0 (5)
C2—C3—C4—C50.6 (5)C26—N6—C30—C293.1 (4)
C3—C4—C5—N10.6 (5)C26—C27—C28—N7176.5 (3)
C3—C4—C5—C6179.4 (3)C26—C27—C28—C294.0 (4)
C4—C5—C6—N2179.5 (3)C27—C28—C29—C303.6 (4)
C4—C5—C6—C71.8 (5)C28—C29—C30—N60.0 (4)
C5—N1—C1—C21.0 (4)C30—N6—C26—C272.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···F110.90 (5)2.12 (5)3.008 (5)169 (4)
N7—H7A···F110.90 (5)2.07 (5)2.901 (8)154 (4)
N7—H7B···F10.85 (5)2.26 (5)3.061 (4)159 (4)
N7—H7B···F30.85 (5)2.47 (5)3.156 (4)139 (4)
 

Acknowledgements

The authors would like to thank David A. Santos who contributed the initial preparation of the compound.

Funding information

The authors would like to thank the Constance and Miriam Jauchler Jones Endowed Chair, the Robert A. Welch Foundation (BN-0032), the University of the Incarnate Word and SUNY Brockport for support of this research. The authors acknowledge the X-ray Crystallographic Facility at the University of Rochester for X-ray data (CHE-1725028). Instrument upgrade and local outreach was made possible through NSF grant CHE-0342508.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHecker, C. R., Fanwick, P. E. & McMillin, D. R. (1991). Inorg. Chem. 30, 659–666.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVu, A. T., Santos, D. A., Hale, J. G. & Garner, R. N. (2016). Inorg. Chim. Acta, 450, 23–29.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds