organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

7,8-Di­methyl-11H-indeno­[1,2-b]quinoxalin-11-one

CROSSMARK_Color_square_no_text.svg

aTargeted MRI Contrast Agents Laboratory of Jiangsu Province, Nanjing Polytechnic Institute, Nanjing 210048, People's Republic of China, and bSchool of Biology and Environment, Nanjing Polytechnic Institute, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 21 December 2020; accepted 6 January 2021; online 8 January 2021)

In the title compound, C17H12N2O, the mean planes of the indene ring and quinoxaline system (r.m.s. deviations = 0.0131 and 0.0082 Å) are approximately parallel to one another, making a dihedral angle of 1.2 (5)°. This means that the indeno­[1,2-b]quinoxaline ring is almost in the same plane (r.m.s. deviation = 0.0181 Å).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoxaline based N-heteroacenes show a narrow band-gap, high thermal stability and aligned film morphology and can be applied as the hole-transport layers in quantum dot light-emitting diodes (QLEDs) (Bai et al., 2015[Bai, L., Yang, X., Ang, C. Y., Nguyen, K. T., Ding, T., Bose, P., Gao, Q., Mandal, A. K., Sun, X. W., Demir, H. V. & Zhao, Y. (2015). Nanoscale. 7, 11531-11535.]). As part of our work in this area, we now report the synthesis and crystal structure of the title indeno­[1,2-b]quinoxaline derivative.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The indene ring and quinoxaline system are nearly parallel to one another [dihedral angle = 1.2 (5)°]. This means that the indeno­[1,2-b]quinoxaline ring (N1–N2/C1–C15) is almost in the same plane (r.m.s. deviation = 0.0181 Å), which contains the two methyl groups. The packing is shown in Fig. 2[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A packing diagram of the title compound.

One similar structure has been reported previously (11,11-diphenyl-11H-indeno­[1,2-b]quinoxaline; Chen et al., 2020[Chen, L., Hu, J., Wu, L.-L. & Sun, H.-S. (2020). IUCrData, 5, x201213.]). In that structure, the indeno­[1,2-b]quinoxaline ring (r.m.s. deviations = 0.1197 Å) is twisted with respect to the two benzene ring systems by 70.0 (4) and 67.6 (3)°, respectively.

Synthesis and crystallization

A mixture of 1H-indene-1,2,3-trione (3.20 g, 20 mmol) and 4,5-di­methyl­benzene-1,2-di­amine (2.72 g, 20 mmol) in ethanol (100 ml) was heated to reflux under stirring for 5 h. 7,8-Dimethyl-11H-indeno­[1,2-b]quinoxalin-11-one was obtained as a yellow powder by filtering after cooling, yield 82%. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C17H12N2O
Mr 260.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 282
a, b, c (Å) 7.4548 (9), 22.976 (3), 8.3149 (10)
β (°) 115.866 (3)
V3) 1281.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.45 × 0.3 × 0.22
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.606, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10114, 3134, 2437
Rint 0.027
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.153, 1.05
No. of reflections 3134
No. of parameters 183
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.23
Computer programs: SMART and SAINT (Bruker, 2014[Bruker (2014). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

7,8-Dimethyl-11H-indeno[1,2-b]quinoxalin-11-one top
Crystal data top
C17H12N2OF(000) = 544
Mr = 260.29Dx = 1.349 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4548 (9) ÅCell parameters from 5967 reflections
b = 22.976 (3) Åθ = 2.7–28.4°
c = 8.3149 (10) ŵ = 0.09 mm1
β = 115.866 (3)°T = 282 K
V = 1281.5 (3) Å3Block, colorless
Z = 40.45 × 0.3 × 0.22 mm
Data collection top
Bruker SMART CCD 6000 area detector
diffractometer
3134 independent reflections
Radiation source: sealed X-ray tube2437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 5.6 pixels mm-1θmax = 28.4°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 3030
Tmin = 0.606, Tmax = 0.746l = 115
10114 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.7679P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3134 reflectionsΔρmax = 0.27 e Å3
183 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1899 (2)0.67104 (6)0.38760 (19)0.0613 (4)
N10.1135 (2)0.54175 (6)0.3195 (2)0.0400 (4)
N20.3665 (2)0.48258 (6)0.6458 (2)0.0417 (4)
C10.3614 (2)0.53906 (7)0.6270 (2)0.0348 (4)
C20.4780 (2)0.58312 (7)0.7599 (2)0.0366 (4)
C30.6183 (3)0.57743 (9)0.9349 (3)0.0483 (5)
H30.65050.54110.98920.058*
C40.7104 (3)0.62748 (10)1.0279 (3)0.0542 (5)
H40.80680.62441.14550.065*
C50.6616 (3)0.68157 (9)0.9493 (3)0.0517 (5)
H50.72570.71441.01460.062*
C60.5187 (3)0.68793 (8)0.7744 (3)0.0463 (5)
H60.48510.72450.72170.056*
C70.4275 (3)0.63822 (8)0.6807 (2)0.0381 (4)
C80.2716 (3)0.63268 (7)0.4928 (2)0.0400 (4)
C90.2358 (2)0.56799 (7)0.4648 (2)0.0362 (4)
C100.1132 (3)0.48201 (7)0.3342 (2)0.0381 (4)
C110.0140 (3)0.44895 (8)0.1861 (3)0.0448 (4)
H110.09430.46800.08020.054*
C120.0229 (3)0.38935 (8)0.1933 (3)0.0490 (5)
C130.1007 (3)0.36040 (8)0.3545 (3)0.0528 (5)
C140.2283 (3)0.39190 (8)0.4996 (3)0.0500 (5)
H140.31060.37230.60370.060*
C150.2382 (3)0.45313 (7)0.4951 (2)0.0389 (4)
C160.0931 (4)0.29501 (9)0.3674 (4)0.0773 (8)
H16A0.19010.28250.48300.116*
H16B0.12190.27750.27650.116*
H16C0.03750.28340.35110.116*
C170.1623 (4)0.35635 (10)0.0302 (4)0.0665 (7)
H17A0.22860.38310.06650.100*
H17B0.25950.33620.05600.100*
H17C0.08780.32870.00300.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0802 (11)0.0335 (7)0.0499 (8)0.0066 (7)0.0095 (7)0.0056 (6)
N10.0444 (8)0.0322 (7)0.0406 (8)0.0024 (6)0.0159 (7)0.0001 (6)
N20.0491 (9)0.0341 (7)0.0459 (9)0.0071 (6)0.0245 (7)0.0067 (6)
C10.0365 (8)0.0343 (8)0.0375 (9)0.0055 (6)0.0197 (7)0.0032 (7)
C20.0345 (8)0.0395 (9)0.0381 (9)0.0041 (7)0.0179 (7)0.0004 (7)
C30.0451 (10)0.0541 (11)0.0408 (10)0.0099 (8)0.0143 (8)0.0063 (8)
C40.0406 (10)0.0733 (14)0.0405 (10)0.0042 (9)0.0102 (8)0.0085 (10)
C50.0409 (10)0.0557 (12)0.0533 (12)0.0030 (8)0.0157 (9)0.0163 (9)
C60.0435 (10)0.0409 (10)0.0517 (11)0.0003 (8)0.0182 (9)0.0077 (8)
C70.0371 (9)0.0388 (9)0.0399 (9)0.0026 (7)0.0181 (8)0.0024 (7)
C80.0463 (10)0.0313 (8)0.0395 (9)0.0029 (7)0.0161 (8)0.0019 (7)
C90.0386 (8)0.0317 (8)0.0389 (9)0.0030 (6)0.0175 (7)0.0015 (7)
C100.0419 (9)0.0337 (8)0.0457 (10)0.0001 (7)0.0257 (8)0.0023 (7)
C110.0485 (10)0.0413 (10)0.0499 (11)0.0045 (8)0.0264 (9)0.0078 (8)
C120.0565 (11)0.0417 (10)0.0663 (13)0.0115 (8)0.0429 (11)0.0148 (9)
C130.0715 (13)0.0330 (9)0.0784 (15)0.0068 (9)0.0554 (12)0.0073 (9)
C140.0690 (13)0.0325 (9)0.0617 (12)0.0054 (8)0.0408 (11)0.0060 (8)
C150.0467 (9)0.0320 (8)0.0488 (10)0.0026 (7)0.0308 (8)0.0015 (7)
C160.114 (2)0.0324 (10)0.112 (2)0.0109 (12)0.0750 (19)0.0078 (12)
C170.0766 (15)0.0572 (13)0.0820 (17)0.0262 (11)0.0497 (14)0.0305 (12)
Geometric parameters (Å, º) top
O1—C81.203 (2)C8—C91.510 (2)
N1—C91.301 (2)C10—C111.405 (2)
N1—C101.378 (2)C10—C151.418 (3)
N2—C11.306 (2)C11—H110.9300
N2—C151.377 (2)C11—C121.374 (3)
C1—C21.471 (2)C12—C131.418 (3)
C1—C91.427 (2)C12—C171.505 (3)
C2—C31.378 (3)C13—C141.372 (3)
C2—C71.401 (2)C13—C161.509 (3)
C3—H30.9300C14—H140.9300
C3—C41.389 (3)C14—C151.410 (2)
C4—H40.9300C16—H16A0.9600
C4—C51.377 (3)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C5—C61.385 (3)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C6—C71.382 (2)C17—H17C0.9600
C7—C81.491 (2)
C9—N1—C10114.01 (15)N1—C10—C15121.59 (16)
C1—N2—C15114.02 (15)C11—C10—C15119.23 (16)
N2—C1—C2128.14 (16)C10—C11—H11119.1
N2—C1—C9123.29 (16)C12—C11—C10121.88 (19)
C9—C1—C2108.57 (14)C12—C11—H11119.1
C3—C2—C1130.93 (17)C11—C12—C13118.99 (18)
C3—C2—C7120.44 (17)C11—C12—C17119.4 (2)
C7—C2—C1108.62 (15)C13—C12—C17121.62 (19)
C2—C3—H3120.9C12—C13—C16120.3 (2)
C2—C3—C4118.18 (19)C14—C13—C12119.94 (17)
C4—C3—H3120.9C14—C13—C16119.7 (2)
C3—C4—H4119.4C13—C14—H14119.1
C5—C4—C3121.26 (19)C13—C14—C15121.82 (19)
C5—C4—H4119.4C15—C14—H14119.1
C4—C5—H5119.5N2—C15—C10122.55 (15)
C4—C5—C6121.09 (19)N2—C15—C14119.32 (17)
C6—C5—H5119.5C14—C15—C10118.13 (17)
C5—C6—H6121.0C13—C16—H16A109.5
C7—C6—C5117.92 (18)C13—C16—H16B109.5
C7—C6—H6121.0C13—C16—H16C109.5
C2—C7—C8110.02 (15)H16A—C16—H16B109.5
C6—C7—C2121.10 (17)H16A—C16—H16C109.5
C6—C7—C8128.89 (17)H16B—C16—H16C109.5
O1—C8—C7127.95 (16)C12—C17—H17A109.5
O1—C8—C9127.57 (17)C12—C17—H17B109.5
C7—C8—C9104.47 (14)C12—C17—H17C109.5
N1—C9—C1124.53 (15)H17A—C17—H17B109.5
N1—C9—C8127.17 (15)H17A—C17—H17C109.5
C1—C9—C8108.30 (14)H17B—C17—H17C109.5
N1—C10—C11119.18 (16)
O1—C8—C9—N12.1 (3)C6—C7—C8—C9178.41 (18)
O1—C8—C9—C1178.2 (2)C7—C2—C3—C41.4 (3)
N1—C10—C11—C12179.08 (17)C7—C8—C9—N1179.01 (17)
N1—C10—C15—N20.1 (3)C7—C8—C9—C10.66 (18)
N1—C10—C15—C14179.67 (16)C9—N1—C10—C11179.60 (16)
N2—C1—C2—C30.6 (3)C9—N1—C10—C150.4 (2)
N2—C1—C2—C7178.74 (17)C9—C1—C2—C3179.88 (18)
N2—C1—C9—N10.2 (3)C9—C1—C2—C70.79 (19)
N2—C1—C9—C8179.51 (16)C10—N1—C9—C10.3 (2)
C1—N2—C15—C100.3 (2)C10—N1—C9—C8179.93 (16)
C1—N2—C15—C14179.21 (16)C10—C11—C12—C130.4 (3)
C1—C2—C3—C4177.84 (18)C10—C11—C12—C17179.93 (17)
C1—C2—C7—C6178.38 (16)C11—C10—C15—N2179.92 (16)
C1—C2—C7—C81.22 (19)C11—C10—C15—C140.4 (2)
C2—C1—C9—N1179.72 (16)C11—C12—C13—C140.7 (3)
C2—C1—C9—C80.04 (18)C11—C12—C13—C16179.44 (19)
C2—C3—C4—C50.9 (3)C12—C13—C14—C151.3 (3)
C2—C7—C8—O1177.7 (2)C13—C14—C15—N2178.80 (17)
C2—C7—C8—C91.16 (19)C13—C14—C15—C100.8 (3)
C3—C2—C7—C61.0 (3)C15—N2—C1—C2179.95 (15)
C3—C2—C7—C8179.36 (16)C15—N2—C1—C90.5 (2)
C3—C4—C5—C60.0 (3)C15—C10—C11—C121.0 (3)
C4—C5—C6—C70.5 (3)C16—C13—C14—C15178.83 (19)
C5—C6—C7—C20.1 (3)C17—C12—C13—C14178.92 (18)
C5—C6—C7—C8179.59 (18)C17—C12—C13—C160.9 (3)
C6—C7—C8—O12.7 (3)
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Funding information

Funding for this research was provided by: Natural Science Foundation of Jiangsu Province (grant No. BK20181486); Natural Science Foundation of the Jiangsu Higher Education Institutions (grant No. 17KJB320001); Training program of Students innovation and entrepreneurship in Jiangsu Province (grant No. 202012920001Y); Qing Lan Project of Jiangsu Province.

References

First citationBai, L., Yang, X., Ang, C. Y., Nguyen, K. T., Ding, T., Bose, P., Gao, Q., Mandal, A. K., Sun, X. W., Demir, H. V. & Zhao, Y. (2015). Nanoscale. 7, 11531–11535.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2014). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Hu, J., Wu, L.-L. & Sun, H.-S. (2020). IUCrData, 5, x201213.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds