metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Nitrato-κO)(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)palladium(II) nitrate

CROSSMARK_Color_square_no_text.svg

aChonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 22 January 2021; accepted 25 January 2021; online 29 January 2021)

The title complex, [Pd(NO3)(C15H11N3)]NO3, comprises a cationic PdII complex and a nitrate anion. In the complex, the PdII cation is four-coordinated in a distorted square-planar coordination geometry defined by the three N atoms of the tridentate 2,2′:6′,2′′-terpyridine ligand and one O atom from the NO3 anion. In the crystal, the complex mol­ecules are stacked in columns along the a axis being connected by ππ stacking [closest inter-centroid separation between pyridyl rings = 3.878 (3) Å]. The connections between columns and anions to sustain a three-dimensional architecture are C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

With reference to the title complex, [Pd(terpy)(NO3)](NO3) (terpy = 2,2′:6′,2"-terpyridine), the crystal structures of related PdII complexes [Pd(terpy)(pyridine)](ClO4)2 (Bugarčić et al., 2004[Bugarčić, D., Petrović, B. & Zangrando, E. (2004). Inorg. Chim. Acta, 357, 2650-2656.]), [Pd(terpy)(NO3)](NTf2) [NTf2 = bis­(tri­fluoro­methyl­sulfon­yl)amide anion; Illner et al., 2009[Illner, P., Puchta, R., Heinemann, F. W. & van Eldik, R. (2009). Dalton Trans. pp. 2795-2801.]) and [Pd2(terpy)2(NO3)]2(PF6)6·CH3CN (Mei et al., 2007[Mei, G.-Q., Huang, K.-L. & Huang, H.-P. (2007). Acta Cryst. E63, m2510-m2511.]) have been determined previously.

The title complex comprises a cationic PdII complex [Pd(terpy)(NO3)]+ and an NO3 anion (Fig. 1[link]). In the complex, the central PdII cation is four-coordinated in a distorted square-planar coordination geometry defined by the pyridyl N1, N2 and N3 atoms derived from the tridentate terpy ligand and the O1 atom from the nitrato ligand. The tight N—Pd—N chelating angles of <N1—Pd1—N2 = 81.26 (17)° and <N2—Pd1—N8 = 81.03 (16)° contribute to the distortion of the square-plane. The Pd—N [1.917 (4) to 2.030 (4) Å] and Pd—O [2.028 (3) Å] bond lengths are close. The pyridine rings of the terpy ligand are located approximately parallel to the least-squares plane of the PdN3O unit [maximum deviation = 0.023 (2) Å], with dihedral angles of 1.4 (2)° (ring N1/C1–C5), 3.1 (2)° (ring N2/C6–C10) and 3.0 (2)° (ring N3/C11–C15). In the crystal (Fig. 2[link]), the complex mol­ecules are stacked in columns along the a axis. Within the columns, numerous inter­molecular ππ inter­actions between adjacent pyridine rings are present. For Cg1 (the centroid of ring N2/C6–C10) and Cg2i [the centroid of ring N3/C11–C15; symmetry code: (i) x + 1, y, z], the centroid-centroid distance is 3.878 (3) Å and the dihedral angle between the ring planes is 3.2 (3)° (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The complex cations and anions form inter­molecular C—H⋯O hydrogen bonds (Table 1[link]) to stabilize the three-dimensional packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.94 2.55 3.419 (7) 153
C4—H4⋯O6ii 0.94 2.37 3.303 (7) 172
C7—H7⋯O6ii 0.94 2.30 3.231 (6) 171
C8—H8⋯O5iii 0.94 2.43 3.088 (6) 127
C9—H9⋯O6iv 0.94 2.35 3.254 (6) 160
C13—H13⋯O5v 0.94 2.46 3.402 (7) 176
C15—H15⋯O3vi 0.94 2.38 3.280 (7) 161
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) [-x+1, -y, z-{\script{1\over 2}}]; (iv) [-x, -y, z-{\script{1\over 2}}]; (v) [x-1, y, z-1]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title complex showing the atom labelling and displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2]
Figure 2
A view of the packing in the crystal of the title complex, viewed approximately along the a axis. Hydrogen-bonding inter­actions are drawn as dashed lines.

Synthesis and crystallization

To a solution of Pd(NO3)2·2H2O (0.1320 g, 0.495 mmol) in acetone (30 ml) was added 2,2′:6′,2"-terpyridine (0.1179 g, 0.505 mmol) followed by stirring for 3 h at room temperature. The formed precipitate was separated by filtration, washed with acetone and dried at 323 K to give a light-yellow powder (0.2123 g). Yellow crystals of the product suitable for X-ray analysis were obtained by slow evaporation of its CH3NO2 solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Pd(NO3)(C15H11N3)]NO3
Mr 463.69
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 223
a, b, c (Å) 6.2190 (2), 33.9728 (15), 7.4819 (3)
V3) 1580.75 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.22
Crystal size (mm) 0.21 × 0.14 × 0.06
 
Data collection
Diffractometer PHOTON 100 CMOS detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.688, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 41749, 3116, 2745
Rint 0.084
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.048, 1.09
No. of reflections 3116
No. of parameters 244
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.43
Absolute structure Flack x determined using 1141 quotients [(I+)−(I)]/[(I+)+(I)] Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.006 (16)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b).

(Nitrato-κO)(2,2':6',2''-terpyridine-κ3N,N',N'')palladium(II) nitrate top
Crystal data top
[Pd(C15H11N3)(NO3)]NO3Dx = 1.948 Mg m3
Mr = 463.69Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9942 reflections
a = 6.2190 (2) Åθ = 2.4–27.7°
b = 33.9728 (15) ŵ = 1.22 mm1
c = 7.4819 (3) ÅT = 223 K
V = 1580.75 (11) Å3Plate, yellow
Z = 40.21 × 0.14 × 0.06 mm
F(000) = 920
Data collection top
PHOTON 100 CMOS detector
diffractometer
2745 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.084
φ and ω scansθmax = 26.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 77
Tmin = 0.688, Tmax = 0.745k = 4142
41749 measured reflectionsl = 99
3116 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0152P)2 + 0.8349P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3116 reflectionsΔρmax = 0.34 e Å3
244 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack x determined using 1141 quotients [(I+)-(I-)]/[(I+)+(I-)] Parsons et al. (2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms on C atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C). The Flack parameter = 0.006 (16) after the final cycles of refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.22807 (4)0.15784 (2)0.48682 (9)0.02233 (10)
O10.1702 (6)0.21529 (10)0.4313 (4)0.0343 (10)
O20.2291 (7)0.19950 (12)0.1521 (6)0.0463 (10)
O30.1758 (7)0.26017 (11)0.2256 (6)0.0540 (13)
N10.4977 (6)0.16769 (12)0.6321 (6)0.0261 (10)
N20.2920 (6)0.10452 (11)0.5520 (5)0.0220 (9)
N30.0259 (6)0.13077 (12)0.3685 (5)0.0214 (9)
N40.1927 (7)0.22538 (14)0.2626 (7)0.0364 (12)
C10.5913 (9)0.20210 (16)0.6668 (8)0.0344 (13)
H10.53220.22520.61800.041*
C20.7726 (9)0.2048 (2)0.7722 (8)0.0450 (16)
H20.83070.22950.80150.054*
C30.8672 (9)0.17072 (19)0.8340 (8)0.0415 (15)
H30.99390.17190.90230.050*
C40.7740 (9)0.13467 (19)0.7944 (8)0.0323 (13)
H40.83780.11120.83430.039*
C50.5864 (9)0.13370 (17)0.6959 (7)0.0232 (12)
C60.4710 (8)0.09759 (15)0.6481 (6)0.0232 (11)
C70.5267 (8)0.05923 (15)0.6877 (7)0.0293 (13)
H70.64930.05360.75660.035*
C80.3979 (8)0.02930 (15)0.6235 (7)0.0308 (13)
H80.43540.00310.64810.037*
C90.2163 (7)0.03682 (14)0.5247 (7)0.0282 (16)
H90.12950.01610.48280.034*
C100.1642 (6)0.07567 (11)0.4881 (12)0.0219 (8)
C110.0190 (8)0.09089 (14)0.3876 (7)0.0222 (11)
C120.1803 (8)0.06726 (16)0.3173 (7)0.0285 (12)
H120.17450.03980.33000.034*
C130.3493 (8)0.08484 (17)0.2285 (7)0.0302 (13)
H130.45970.06940.17930.036*
C140.3552 (9)0.12527 (18)0.2122 (8)0.0266 (14)
H140.47060.13760.15350.032*
C150.1895 (8)0.14736 (16)0.2831 (8)0.0269 (12)
H150.19270.17490.27050.032*
O40.1900 (5)0.09192 (10)1.0047 (10)0.0396 (10)
O50.2336 (6)0.03043 (12)1.0689 (6)0.0505 (11)
O60.0235 (6)0.04770 (11)0.8974 (5)0.0425 (10)
N50.1345 (5)0.05686 (11)0.9909 (9)0.0287 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02599 (16)0.01582 (15)0.02517 (16)0.00131 (14)0.0033 (4)0.0007 (3)
O10.049 (2)0.0166 (18)0.037 (3)0.0048 (15)0.0099 (16)0.0013 (15)
O20.064 (3)0.036 (2)0.040 (2)0.010 (2)0.010 (2)0.000 (2)
O30.059 (3)0.020 (2)0.083 (3)0.003 (2)0.020 (2)0.021 (2)
N10.030 (2)0.025 (3)0.023 (2)0.0059 (18)0.0040 (19)0.0003 (19)
N20.0229 (19)0.019 (2)0.024 (2)0.0028 (17)0.0051 (17)0.0003 (16)
N30.025 (2)0.019 (2)0.020 (2)0.0004 (17)0.0018 (18)0.0021 (19)
N40.030 (2)0.026 (3)0.054 (3)0.007 (2)0.016 (2)0.011 (3)
C10.042 (3)0.024 (3)0.037 (3)0.002 (3)0.004 (3)0.000 (3)
C20.051 (4)0.047 (4)0.038 (3)0.021 (3)0.008 (3)0.002 (3)
C30.035 (3)0.063 (4)0.027 (3)0.014 (3)0.009 (3)0.003 (3)
C40.029 (3)0.044 (4)0.025 (3)0.003 (3)0.001 (3)0.006 (3)
C50.026 (3)0.026 (3)0.018 (3)0.000 (2)0.000 (2)0.003 (2)
C60.025 (3)0.027 (3)0.018 (3)0.003 (2)0.003 (2)0.005 (2)
C70.027 (3)0.029 (3)0.031 (3)0.003 (2)0.002 (2)0.009 (3)
C80.034 (3)0.020 (3)0.039 (3)0.008 (2)0.007 (3)0.012 (2)
C90.029 (2)0.019 (2)0.037 (5)0.0034 (19)0.008 (2)0.000 (2)
C100.0234 (19)0.018 (2)0.024 (2)0.0004 (15)0.000 (5)0.001 (4)
C110.026 (3)0.018 (3)0.022 (3)0.002 (2)0.006 (2)0.000 (2)
C120.028 (3)0.024 (3)0.033 (3)0.006 (2)0.007 (2)0.004 (2)
C130.024 (3)0.037 (4)0.030 (3)0.004 (2)0.003 (2)0.009 (3)
C140.021 (3)0.034 (4)0.024 (4)0.006 (3)0.004 (3)0.001 (3)
C150.029 (3)0.024 (3)0.027 (3)0.007 (2)0.003 (3)0.002 (2)
O40.0415 (17)0.0291 (18)0.048 (3)0.0045 (14)0.002 (3)0.003 (3)
O50.041 (2)0.042 (3)0.068 (3)0.011 (2)0.020 (2)0.013 (2)
O60.039 (2)0.039 (2)0.050 (2)0.0026 (18)0.0192 (19)0.002 (2)
N50.0249 (17)0.035 (2)0.027 (2)0.0011 (16)0.004 (4)0.007 (4)
Geometric parameters (Å, º) top
Pd1—N21.917 (4)C5—C61.466 (8)
Pd1—N12.026 (4)C6—C71.381 (7)
Pd1—O12.028 (3)C7—C81.380 (7)
Pd1—N32.030 (4)C7—H70.9400
O1—N41.315 (6)C8—C91.374 (7)
O2—N41.228 (6)C8—H80.9400
O3—N41.218 (6)C9—C101.386 (6)
N1—C11.332 (6)C9—H90.9400
N1—C51.366 (7)C10—C111.460 (7)
N2—C61.346 (6)C11—C121.388 (7)
N2—C101.349 (6)C12—C131.379 (7)
N3—C151.328 (6)C12—H120.9400
N3—C111.363 (6)C13—C141.379 (8)
C1—C21.379 (7)C13—H130.9400
C1—H10.9400C14—C151.381 (8)
C2—C31.379 (9)C14—H140.9400
C2—H20.9400C15—H150.9400
C3—C41.387 (8)O4—N51.245 (5)
C3—H30.9400O5—N51.236 (6)
C4—C51.380 (7)O6—N51.245 (5)
C4—H40.9400
N2—Pd1—N181.26 (17)N2—C6—C7119.1 (5)
N2—Pd1—O1176.54 (15)N2—C6—C5112.9 (4)
N1—Pd1—O195.62 (15)C7—C6—C5128.0 (5)
N2—Pd1—N381.03 (16)C8—C7—C6118.4 (5)
N1—Pd1—N3162.23 (16)C8—C7—H7120.8
O1—Pd1—N3102.04 (15)C6—C7—H7120.8
N4—O1—Pd1115.4 (3)C9—C8—C7121.8 (5)
C1—N1—C5119.8 (5)C9—C8—H8119.1
C1—N1—Pd1127.7 (4)C7—C8—H8119.1
C5—N1—Pd1112.5 (4)C8—C9—C10118.4 (5)
C6—N2—C10123.3 (4)C8—C9—H9120.8
C6—N2—Pd1118.2 (3)C10—C9—H9120.8
C10—N2—Pd1118.3 (3)N2—C10—C9118.9 (5)
C15—N3—C11119.8 (4)N2—C10—C11112.6 (4)
C15—N3—Pd1127.9 (3)C9—C10—C11128.4 (4)
C11—N3—Pd1112.4 (3)N3—C11—C12120.8 (5)
O3—N4—O2123.9 (5)N3—C11—C10115.5 (4)
O3—N4—O1117.5 (5)C12—C11—C10123.7 (4)
O2—N4—O1118.6 (4)C13—C12—C11118.9 (5)
N1—C1—C2121.9 (6)C13—C12—H12120.6
N1—C1—H1119.1C11—C12—H12120.6
C2—C1—H1119.1C12—C13—C14119.6 (5)
C1—C2—C3118.9 (6)C12—C13—H13120.2
C1—C2—H2120.5C14—C13—H13120.2
C3—C2—H2120.5C13—C14—C15119.1 (5)
C2—C3—C4119.5 (5)C13—C14—H14120.4
C2—C3—H3120.3C15—C14—H14120.4
C4—C3—H3120.3N3—C15—C14121.8 (5)
C5—C4—C3119.2 (6)N3—C15—H15119.1
C5—C4—H4120.4C14—C15—H15119.1
C3—C4—H4120.4O5—N5—O4121.2 (5)
N1—C5—C4120.5 (5)O5—N5—O6118.5 (4)
N1—C5—C6115.1 (5)O4—N5—O6120.3 (5)
C4—C5—C6124.3 (5)
Pd1—O1—N4—O3174.4 (3)C6—C7—C8—C90.9 (8)
Pd1—O1—N4—O25.6 (6)C7—C8—C9—C100.6 (8)
C5—N1—C1—C22.6 (8)C6—N2—C10—C91.0 (9)
Pd1—N1—C1—C2178.2 (4)Pd1—N2—C10—C9175.9 (5)
N1—C1—C2—C34.2 (9)C6—N2—C10—C11179.7 (4)
C1—C2—C3—C42.4 (9)Pd1—N2—C10—C114.8 (7)
C2—C3—C4—C50.9 (8)C8—C9—C10—N20.6 (9)
C1—N1—C5—C40.8 (8)C8—C9—C10—C11179.7 (6)
Pd1—N1—C5—C4178.5 (4)C15—N3—C11—C120.5 (7)
C1—N1—C5—C6179.4 (5)Pd1—N3—C11—C12179.3 (4)
Pd1—N1—C5—C60.2 (5)C15—N3—C11—C10178.3 (5)
C3—C4—C5—N12.5 (8)Pd1—N3—C11—C100.5 (6)
C3—C4—C5—C6179.0 (5)N2—C10—C11—N32.6 (8)
C10—N2—C6—C71.4 (8)C9—C10—C11—N3178.2 (6)
Pd1—N2—C6—C7176.3 (4)N2—C10—C11—C12176.1 (5)
C10—N2—C6—C5177.7 (5)C9—C10—C11—C123.0 (11)
Pd1—N2—C6—C52.8 (5)N3—C11—C12—C130.4 (8)
N1—C5—C6—N21.6 (6)C10—C11—C12—C13178.3 (5)
C4—C5—C6—N2179.8 (5)C11—C12—C13—C140.3 (8)
N1—C5—C6—C7177.4 (5)C12—C13—C14—C151.0 (8)
C4—C5—C6—C71.2 (8)C11—N3—C15—C140.1 (8)
N2—C6—C7—C81.3 (7)Pd1—N3—C15—C14178.4 (4)
C5—C6—C7—C8177.7 (5)C13—C14—C15—N30.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.942.553.419 (7)153
C4—H4···O6ii0.942.373.303 (7)172
C7—H7···O6ii0.942.303.231 (6)171
C8—H8···O5iii0.942.433.088 (6)127
C9—H9···O6iv0.942.353.254 (6)160
C13—H13···O5v0.942.463.402 (7)176
C15—H15···O3vi0.942.383.280 (7)161
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z1/2; (iv) x, y, z1/2; (v) x1, y, z1; (vi) x1/2, y+1/2, z.
 

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant No. 2018R1D1A1B07050550).

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBugarčić, D., Petrović, B. & Zangrando, E. (2004). Inorg. Chim. Acta, 357, 2650–2656.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIllner, P., Puchta, R., Heinemann, F. W. & van Eldik, R. (2009). Dalton Trans. pp. 2795–2801.  CrossRef Google Scholar
First citationMei, G.-Q., Huang, K.-L. & Huang, H.-P. (2007). Acta Cryst. E63, m2510–m2511.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds