metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[(2,2′-bi­pyridine-κ2N,N′)manganese(II)]-di-μ-bromido]

CROSSMARK_Color_square_no_text.svg

aChonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 18 January 2021; accepted 25 January 2021; online 29 January 2021)

In the polymeric title complex, [MnBr2(C10H8N2)]n, the MnII ion, situated on a twofold axis of symmetry, is six-coordinated in a distorted octa­hedral coordination geometry defined by two N atoms from the chelating 2,2′-bi­pyridine ligand and four bridging Br anions. The crystal reveals a one-dimensional Br-bridged chain along the c-axis direction with a zigzag topology. In the crystals, contacts between chains include ππ inter­actions between pyridyl rings [inter-centroid separation = 4.082 (1) Å]

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

With reference to the title complex, [MnBr2(bipy)]n (bipy = 2,2′-bi­pyridine), the crystal structures of related MnII complexes, namely [MnCl2(bipy)]n (Lubben et al., 1995[Lubben, M., Meetsma, A. & Feringa, B. L. (1995). Inorg. Chim. Acta, 230, 169-172.]) and [MnBr2(bipy)2] (Hwang & Ha, 2007[Hwang, I.-C. & Ha, K. (2007). Z. Krist. New Cryst. Struct. 222, 209-210.]) have been determined previously.

In the title complex, the central MnII cation is six-coordinated within a distorted octa­hedral coordination geometry defined by two N atoms from chelating bipy ligand and four bridging Br anions (Fig. 1[link]). The maximum deviation from the ideal octa­hedral angles is seen in the N1—Mn—N1i chelate angle of 73.08 (7)°; symmetry operation (i): −x, y, −z + [{1\over 2}]. The Mn ions are bridged by four bromido ligands to form a zigzag chain (glide symmetry) structure along the c-axis direction so the asymmetric unit of the polymer contains one half of the repeat unit, i.e. MnBr2(bipy); the MnII cation is situated on a twofold axis of symmetry. The Mn—Br bond lengths are somewhat different: the Mn—Br(trans to Br) distance of 2.7975 (2) Å is longer than the Mn—Br(trans to N) distance of 2.6373 (3) Å. The distance between adjacent Mn atoms is relatively short with the separation being 3.9656 (3) Å. The complex mol­ecules are stacked in columns along the a axis (Fig. 2[link]). In the columns, several inter­molecular ππ inter­actions between adjacent pyridine rings are present. The closest contact involves Cg1 (the centroid of ring N1,C1–C5) and Cg1ii [symmetry code: (ii) x, −y + 1, z + [{1\over 2}]], the centroid–centroid distance is 4.082 (1) Å and the dihedral angle between the ring planes is 8.79 (9)°.

[Figure 1]
Figure 1
Part of the coordination polymer formed by the title complex showing the atom labelling and displacement ellipsoids drawn at the 50% probability level for non-H atoms. Symmetry codes: (a) −x, y, −z + [{1\over 2}]; (b) −x, −y, −z; (c) x, −y, z − [{1\over 2}]; (d) x, −y, z + [{1\over 2}].
[Figure 2]
Figure 2
The packing in the crystal of the title complex, viewed approximately along the a axis.

Synthesis and crystallization

To a solution of [MnBr2(bipy)2] (0.2713 g, 0.515 mmol) in 2-meth­oxy­ethanol (30 ml) was added MnBr2·4H2O (0.1491 g, 0.520 mmol), followed by reflux for 2 h. After cooling, the formed precipitate was separated by filtration, washed with ethanol and ether, and dried at 323 K, to give a pale-yellow powder (0.2671 g). Pale-yellow crystals of the product suitable for X-ray analysis were obtained by slow evaporation from its 2-meth­oxy­ethanol solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [MnBr2(C10H8N2)]
Mr 370.94
Crystal system, space group Monoclinic, C2/c
Temperature (K) 223
a, b, c (Å) 17.3039 (9), 9.5255 (5), 7.1852 (3)
β (°) 109.0347 (15)
V3) 1119.57 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.28
Crystal size (mm) 0.29 × 0.14 × 0.05
 
Data collection
Diffractometer PHOTON 100 CMOS detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.373, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 14090, 1068, 1037
Rint 0.038
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.034, 1.11
No. of reflections 1068
No. of parameters 85
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.23, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b).

catena-Poly[[(2,2'-bipyridine-κ2N,N')manganese(II)]-di-µ-bromido] top
Crystal data top
[MnBr2(C10H8N2)]F(000) = 708
Mr = 370.94Dx = 2.201 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.3039 (9) ÅCell parameters from 9930 reflections
b = 9.5255 (5) Åθ = 3.6–26.0°
c = 7.1852 (3) ŵ = 8.28 mm1
β = 109.0347 (15)°T = 223 K
V = 1119.57 (10) Å3Block, pale yellow
Z = 40.29 × 0.14 × 0.05 mm
Data collection top
PHOTON 100 CMOS detector
diffractometer
1037 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.038
φ and ω scansθmax = 26.0°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2121
Tmin = 0.373, Tmax = 0.745k = 1111
14090 measured reflectionsl = 88
1068 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.013Hydrogen site location: difference Fourier map
wR(F2) = 0.034All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0095P)2 + 1.0722P]
where P = (Fo2 + 2Fc2)/3
1068 reflections(Δ/σ)max < 0.001
85 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were located from Fourier difference maps and refined isotropically; C—H = 0.93 (2)–0.97 (2) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.08813 (3)0.25000.02456 (9)
Br10.09377 (2)0.09461 (2)0.00183 (2)0.02780 (8)
N10.07232 (8)0.27734 (14)0.39308 (19)0.0259 (3)
C10.14754 (10)0.2716 (2)0.5270 (3)0.0339 (4)
C20.19474 (12)0.3903 (2)0.5944 (3)0.0411 (4)
C30.16249 (12)0.5191 (2)0.5240 (3)0.0416 (4)
C40.08538 (12)0.52703 (19)0.3900 (3)0.0354 (4)
C50.04134 (10)0.40425 (15)0.3247 (2)0.0251 (3)
H10.1647 (13)0.178 (3)0.573 (3)0.046 (6)*
H20.2483 (15)0.379 (2)0.692 (3)0.043 (6)*
H30.1942 (17)0.599 (2)0.561 (4)0.053 (7)*
H40.0607 (15)0.612 (2)0.333 (4)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02373 (17)0.02100 (17)0.02314 (17)0.0000.00031 (13)0.000
Br10.02714 (10)0.02824 (11)0.02510 (10)0.00752 (6)0.00451 (7)0.00407 (5)
N10.0229 (6)0.0269 (7)0.0271 (6)0.0011 (5)0.0070 (5)0.0057 (5)
C10.0246 (8)0.0390 (10)0.0346 (9)0.0008 (7)0.0047 (7)0.0101 (7)
C20.0284 (9)0.0578 (12)0.0360 (10)0.0106 (8)0.0091 (8)0.0203 (8)
C30.0470 (10)0.0427 (11)0.0395 (10)0.0210 (9)0.0203 (8)0.0179 (8)
C40.0487 (10)0.0276 (9)0.0365 (9)0.0090 (8)0.0227 (8)0.0072 (7)
C50.0299 (8)0.0251 (8)0.0262 (8)0.0030 (6)0.0173 (7)0.0040 (6)
Geometric parameters (Å, º) top
Mn1—N1i2.2433 (13)C1—C21.386 (3)
Mn1—N12.2433 (13)C1—H10.97 (2)
Mn1—Br1i2.6373 (3)C2—C31.375 (3)
Mn1—Br12.6373 (3)C2—H20.97 (2)
Mn1—Br1ii2.7975 (2)C3—C41.369 (3)
Mn1—Br1iii2.7975 (2)C3—H30.93 (2)
Br1—Mn1ii2.7975 (2)C4—C51.391 (2)
N1—C11.344 (2)C4—H40.95 (2)
N1—C51.348 (2)C5—C5i1.482 (3)
N1i—Mn1—N173.08 (7)C1—N1—Mn1124.10 (11)
N1i—Mn1—Br1i165.56 (4)C5—N1—Mn1117.21 (10)
N1—Mn1—Br1i95.29 (3)N1—C1—C2122.67 (18)
N1i—Mn1—Br195.29 (3)N1—C1—H1113.6 (13)
N1—Mn1—Br1165.56 (4)C2—C1—H1123.7 (13)
Br1i—Mn1—Br197.395 (13)C3—C2—C1118.50 (18)
N1i—Mn1—Br1ii92.32 (3)C3—C2—H2122.7 (13)
N1—Mn1—Br1ii85.65 (3)C1—C2—H2118.8 (13)
Br1i—Mn1—Br1ii95.344 (7)C4—C3—C2119.58 (17)
Br1—Mn1—Br1ii86.331 (6)C4—C3—H3120.3 (16)
N1i—Mn1—Br1iii85.65 (3)C2—C3—H3120.0 (16)
N1—Mn1—Br1iii92.31 (3)C3—C4—C5119.46 (18)
Br1i—Mn1—Br1iii86.331 (6)C3—C4—H4123.3 (15)
Br1—Mn1—Br1iii95.344 (7)C5—C4—H4117.1 (15)
Br1ii—Mn1—Br1iii177.470 (13)N1—C5—C4121.44 (16)
Mn1—Br1—Mn1ii93.669 (6)N1—C5—C5i116.04 (9)
C1—N1—C5118.32 (14)C4—C5—C5i122.51 (11)
C5—N1—C1—C21.2 (2)Mn1—N1—C5—C4173.49 (11)
Mn1—N1—C1—C2171.71 (13)C1—N1—C5—C5i179.20 (16)
N1—C1—C2—C31.3 (3)Mn1—N1—C5—C5i5.8 (2)
C1—C2—C3—C40.1 (3)C3—C4—C5—N11.2 (2)
C2—C3—C4—C51.1 (3)C3—C4—C5—C5i178.03 (18)
C1—N1—C5—C40.1 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z; (iii) x, y, z+1/2.
 

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant No. 2018R1D1A1B07050550).

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHwang, I.-C. & Ha, K. (2007). Z. Krist. New Cryst. Struct. 222, 209–210.  CAS Google Scholar
First citationLubben, M., Meetsma, A. & Feringa, B. L. (1995). Inorg. Chim. Acta, 230, 169–172.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds