organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-[2-(3,4-Di­meth­­oxy­phen­yl)-2-(phenyl­sulfan­yl)eth­yl]-2-(2-fluoro­phen­yl)acetamide

crossmark logo

aTecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química. Apartado Postal 1166, Tijuana, B.C., Mexico
*Correspondence e-mail: gaguirre@tectijuana.mx

Edited by J. Simpson, University of Otago, New Zealand (Received 4 December 2020; accepted 23 December 2020; online 5 January 2021)

The title compound, C24H24FNO3S, is an inter­mediate in the synthesis of fluorine containing iso­quinoline alkaloids, which crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule in the asymmetric unit. The structure presents a racemic mixture of enanti­omers. The C—S—C—C torsion angle between the benzene ring system and the sulfonyl benzene ring is −178.5 (1)°. In the crystal, N—H⋯O hydrogen bonds between neighbouring mol­ecules form chains of mol­ecules along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Sulfur- and fluorine-containing mol­ecules play important roles in medicinal chemistry. Sulfur-containing compounds often show a variety of biological activities and serve important functions in applications in the pharmaceutical industry (Bernardi et al., 1985[Bernardi, F., Csizmadia, I. G. & Mangini, A. (1985). Organic Sulfur Chemistry: Theoretical and Experimental Advances. Amsterdam; New York: Elsevier Science Publishers.]). A variety of sulfur-containing mol­ecules have been isolated from natural sources and play major roles in drug discovery and development. The role of fluorine in drug design and development is expanding rapidly, as more is learned about the unique properties associated with this unusual element and how to deploy it in the pharmaceutical industry. The introduction of fluorine into a mol­ecule can influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties (Gillis et al., 2015[Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. (2015). J. Med. Chem. 58, 8315-8359.]). Various sulfur- and fluorine-containing mol­ecules have been studied for their applications in medicinal chemistry, with those containing a sulfone group emerging with promising results. Some examples are the recently reported thio­chroman-4-one derivatives (Vargas et al., 2017[Vargas, E., Echeverri, F., Vélez, I., Robledo, S. & Quiñones, W. (2017). Molecules, 22, 2041-2057.]), in which structure–activity relationships have been studied and it has been found that the vinyl sulfone and fluorine moieties play important roles in the biological activity of the mol­ecules (Fig. 1[link]). The literature also reveals that these types of compounds also serve as neuroprotective agents (Woo et al., 2014[Woo, S. Y., Kim, J. H., Moon, M. K., Han, S.-H., Yeon, S. K., Choi, J. W., Jang, B. K., Song, H. J., Kang, Y. G., Kim, J. W., Lee, J., Kim, D. J., Hwang, O. & Park, K. D. (2014). J. Med. Chem. 57, 1473-1487.]), exhibit anti­tuberculosis activity (Tiwari et al., 2015[Tiwari, R., Miller, P. A., Cho, S., Franzblau, S. G. & Miller, M. J. (2015). ACS Med. Chem. Lett. 6, 128-133.]) and inhibit prostate cancer (Goa & Spencer, 1998[Goa, K. L. & Spencer, C. M. (1998). Drugs Aging, 12, 401-422.]).

[Figure 1]
Figure 1
Structure–activity relationships of thio­chroman-4-one derivatives

Continuing our inter­est in developing new sulfur- and fluorine-containing C17 S1 C7 C1biologically active alkaloids, we report here the synthesis and characterization of the title compound (Fig. 2[link]) as a racemic mixture. The torsion angle between the benzene ring system and the sulfonyl benzene ring is −178.5 (1)°. The C11—C10—C9 angle [117.8 (2)°] is slightly widened in comparison to an sp3-hybridized carbon atom; this is probably due to an attractive inter­action between the fluorine on the benzene ring and the hydrogen atoms on the benzyl carbon. In the crystal, N—H⋯O hydrogen bonds between neighbouring mol­ecules form chains of mol­ecules along the a-axis direction (Table 1[link]; Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 2.46 3.207 (2) 145
N1—H1⋯O5i 0.86 2.50 2.945 (3) 113
Symmetry code: (i) [x-1, y, z].
[Figure 2]
Figure 2
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 3]
Figure 3
Crystal packing of the title compound viewed along the c axis. Inter­molecular hydrogen bonds are shown as dashed blue lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Synthesis and crystallization

The title compound was synthesized by the oxidation of N-(2-(3,4-di­meth­oxy­phen­yl)-2-(phenyl­thio)­eth­yl)-2-(2-fluoro­phen­yl)acetamide (0.229 g, 0.54 mmol) treated with NaIO4 (0.264, 1.23 mmol) in water (6 ml). The reaction mixture was stirred for 2 h in reflux and then was allowed to cool down at room temperature prior to extractions with DCM (3 × 20 ml). The solvent in the combined organic layer was removed under vacuum and purified by flash chromatography on silica gel (DCM/MeOH 95:5) to give a pale-yellow solid in 67% yield (0.163 g, 0.36 mmol).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H24FNO5S
Mr 457.50
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.3751 (3), 9.7640 (4), 15.3592 (5)
α, β, γ (°) 97.676 (3), 93.885 (3), 115.319 (4)
V3) 1114.18 (8)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.68
Crystal size (mm) 0.21 × 0.12 × 0.07
 
Data collection
Diffractometer Rigaku SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.816, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14171, 4663, 4030
Rint 0.022
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.151, 1.08
No. of reflections 4663
No. of parameters 291
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.30
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SIR2004 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

N-[2-(3,4-Dimethoxyphenyl)-2-(phenylsulfanyl)ethyl]-2-(2-fluorophenyl)acetamide top
Crystal data top
C24H24FNO5SZ = 2
Mr = 457.50F(000) = 480
Triclinic, P1Dx = 1.364 Mg m3
a = 8.3751 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.7640 (4) ÅCell parameters from 6250 reflections
c = 15.3592 (5) Åθ = 2.9–76.6°
α = 97.676 (3)°µ = 1.68 mm1
β = 93.885 (3)°T = 293 K
γ = 115.319 (4)°Irregular, translucent intense colourless
V = 1114.18 (8) Å30.21 × 0.12 × 0.07 mm
Data collection top
Rigaku SuperNova, Dual, Cu at zero, AtlasS2
diffractometer
4663 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source4030 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 5.1980 pixels mm-1θmax = 76.8°, θmin = 2.9°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1212
Tmin = 0.816, Tmax = 1.000l = 1917
14171 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0751P)2 + 0.4124P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4663 reflectionsΔρmax = 0.37 e Å3
291 parametersΔρmin = 0.30 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H atoms were placed in calculated positions and treated as riding: C—H = 0.95–0.99 A° with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(C) for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39652 (6)0.22548 (6)0.61360 (4)0.04490 (17)
F10.6743 (4)0.9600 (3)0.84275 (19)0.1440 (11)
O10.4440 (2)0.1166 (2)0.64885 (15)0.0685 (5)
O20.4379 (2)0.2591 (2)0.52804 (11)0.0733 (6)
O30.6887 (3)0.5399 (3)0.93514 (12)0.0724 (5)
O41.24722 (18)0.61837 (19)0.69344 (11)0.0505 (4)
O51.09028 (19)0.4413 (2)0.80129 (10)0.0524 (4)
N10.4765 (2)0.5359 (2)0.83493 (12)0.0482 (4)
H10.4218050.5869980.8181200.058*
C10.7007 (2)0.4691 (2)0.69245 (13)0.0387 (4)
C20.7860 (3)0.5660 (3)0.63531 (15)0.0480 (5)
H20.7209850.5963060.5973780.058*
C30.9689 (3)0.6187 (3)0.63396 (15)0.0493 (5)
H31.0245580.6838680.5950530.059*
C41.0682 (2)0.5755 (2)0.68960 (14)0.0416 (4)
C50.9826 (3)0.4781 (2)0.74848 (13)0.0401 (4)
C60.8009 (2)0.4252 (2)0.74868 (13)0.0400 (4)
H60.7445320.3590230.7870080.048*
C70.5010 (2)0.4060 (2)0.69177 (13)0.0395 (4)
H70.4644250.4780890.6679970.047*
C80.4351 (3)0.3881 (3)0.78194 (14)0.0443 (5)
H8A0.3070580.3248900.7730900.053*
H8B0.4905850.3362170.8132640.053*
C90.5952 (3)0.5977 (3)0.90877 (15)0.0517 (5)
C100.6108 (4)0.7481 (3)0.95980 (18)0.0684 (7)
H10A0.5993100.7365631.0211420.082*
H10B0.7302260.8271650.9588920.082*
C110.4797 (4)0.8064 (3)0.92863 (16)0.0598 (6)
C120.5128 (6)0.9088 (4)0.8713 (2)0.0853 (10)
C130.3893 (8)0.9597 (4)0.8421 (2)0.1011 (14)
H130.4162681.0301050.8036850.121*
C140.2253 (7)0.9011 (5)0.8724 (3)0.1040 (13)
H140.1399730.9319910.8536580.125*
C150.1876 (6)0.8014 (5)0.9281 (3)0.0930 (11)
H150.0767390.7627400.9477680.112*
C160.3134 (4)0.7560 (4)0.9562 (2)0.0728 (8)
H160.2853730.6877870.9958740.087*
C170.1652 (3)0.1620 (2)0.61424 (14)0.0426 (4)
C180.0725 (3)0.0374 (3)0.65450 (19)0.0578 (6)
H180.1308050.0134770.6794290.069*
C190.1083 (4)0.0101 (3)0.6570 (2)0.0741 (8)
H190.1719430.0928940.6843080.089*
C200.1935 (3)0.0647 (3)0.6194 (2)0.0682 (7)
H200.3152070.0312270.6205240.082*
C210.1021 (3)0.1872 (4)0.58042 (19)0.0648 (7)
H210.1610590.2382110.5562820.078*
C220.0794 (3)0.2369 (3)0.57638 (16)0.0552 (6)
H220.1416130.3192610.5485620.066*
C231.0135 (3)0.3553 (4)0.86799 (19)0.0692 (8)
H23A0.9276900.2531930.8405420.104*
H23B0.9554500.4051340.9024630.104*
H23C1.1054250.3495130.9059720.104*
C241.3384 (3)0.7113 (3)0.6318 (2)0.0645 (7)
H24A1.2871980.6567720.5723780.097*
H24B1.4623040.7338610.6408090.097*
H24C1.3269570.8057230.6406870.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0308 (2)0.0492 (3)0.0513 (3)0.0168 (2)0.00980 (19)0.0007 (2)
F10.155 (2)0.1078 (18)0.128 (2)0.0098 (17)0.0651 (18)0.0350 (16)
O10.0445 (9)0.0507 (9)0.1138 (16)0.0277 (8)0.0078 (9)0.0042 (9)
O20.0508 (10)0.0919 (14)0.0495 (10)0.0093 (9)0.0176 (8)0.0057 (9)
O30.0679 (12)0.0981 (15)0.0585 (11)0.0487 (11)0.0068 (9)0.0035 (10)
O40.0292 (7)0.0595 (9)0.0602 (9)0.0132 (6)0.0144 (6)0.0205 (7)
O50.0329 (7)0.0771 (11)0.0533 (9)0.0249 (7)0.0114 (6)0.0270 (8)
N10.0403 (9)0.0568 (11)0.0489 (10)0.0267 (8)0.0018 (7)0.0023 (8)
C10.0294 (9)0.0432 (10)0.0413 (10)0.0145 (8)0.0053 (7)0.0057 (8)
C20.0393 (10)0.0534 (12)0.0534 (12)0.0199 (9)0.0061 (9)0.0189 (10)
C30.0398 (11)0.0536 (12)0.0552 (12)0.0164 (9)0.0138 (9)0.0239 (10)
C40.0288 (9)0.0451 (10)0.0465 (11)0.0115 (8)0.0105 (8)0.0080 (8)
C50.0311 (9)0.0493 (11)0.0390 (10)0.0166 (8)0.0069 (7)0.0088 (8)
C60.0316 (9)0.0484 (11)0.0404 (10)0.0161 (8)0.0112 (7)0.0121 (8)
C70.0314 (9)0.0442 (10)0.0438 (10)0.0180 (8)0.0066 (7)0.0062 (8)
C80.0333 (9)0.0504 (11)0.0499 (11)0.0197 (8)0.0105 (8)0.0045 (9)
C90.0410 (11)0.0665 (14)0.0448 (12)0.0226 (10)0.0062 (9)0.0053 (10)
C100.0630 (16)0.0700 (17)0.0566 (15)0.0229 (13)0.0015 (12)0.0123 (12)
C110.0762 (17)0.0491 (13)0.0452 (12)0.0237 (12)0.0045 (11)0.0052 (10)
C120.112 (3)0.0577 (16)0.0650 (18)0.0184 (17)0.0204 (17)0.0056 (13)
C130.174 (5)0.0602 (19)0.067 (2)0.053 (2)0.006 (2)0.0107 (15)
C140.144 (4)0.094 (3)0.085 (3)0.075 (3)0.010 (3)0.011 (2)
C150.099 (3)0.106 (3)0.087 (2)0.063 (2)0.0086 (19)0.001 (2)
C160.082 (2)0.0758 (19)0.0651 (17)0.0404 (16)0.0142 (14)0.0053 (14)
C170.0301 (9)0.0480 (11)0.0444 (11)0.0151 (8)0.0050 (8)0.0017 (8)
C180.0417 (12)0.0467 (12)0.0840 (17)0.0176 (10)0.0137 (11)0.0130 (12)
C190.0440 (13)0.0555 (15)0.115 (2)0.0125 (11)0.0274 (14)0.0172 (15)
C200.0325 (11)0.0645 (16)0.096 (2)0.0165 (11)0.0112 (12)0.0084 (14)
C210.0452 (13)0.0781 (18)0.0735 (17)0.0341 (13)0.0057 (11)0.0041 (14)
C220.0416 (11)0.0683 (15)0.0540 (13)0.0228 (11)0.0021 (9)0.0127 (11)
C230.0491 (13)0.102 (2)0.0669 (16)0.0323 (14)0.0147 (12)0.0473 (16)
C240.0403 (12)0.0674 (16)0.0872 (19)0.0164 (11)0.0290 (12)0.0344 (14)
Geometric parameters (Å, º) top
S1—O11.4378 (19)C10—H10B0.9700
S1—O21.4264 (18)C10—C111.515 (4)
S1—C71.813 (2)C11—C121.372 (4)
S1—C171.765 (2)C11—C161.382 (4)
F1—C121.353 (5)C12—C131.398 (6)
O3—C91.221 (3)C13—H130.9300
O4—C41.367 (2)C13—C141.385 (6)
O4—C241.428 (3)C14—H140.9300
O5—C51.363 (2)C14—C151.332 (6)
O5—C231.423 (3)C15—H150.9300
N1—H10.8600C15—C161.371 (5)
N1—C81.443 (3)C16—H160.9300
N1—C91.338 (3)C17—C181.386 (3)
C1—C21.380 (3)C17—C221.377 (3)
C1—C61.394 (3)C18—H180.9300
C1—C71.513 (2)C18—C191.387 (3)
C2—H20.9300C19—H190.9300
C2—C31.394 (3)C19—C201.371 (4)
C3—H30.9300C20—H200.9300
C3—C41.379 (3)C20—C211.358 (4)
C4—C51.403 (3)C21—H210.9300
C5—C61.383 (3)C21—C221.393 (3)
C6—H60.9300C22—H220.9300
C7—H70.9800C23—H23A0.9600
C7—C81.530 (3)C23—H23B0.9600
C8—H8A0.9700C23—H23C0.9600
C8—H8B0.9700C24—H24A0.9600
C9—C101.518 (4)C24—H24B0.9600
C10—H10A0.9700C24—H24C0.9600
O1—S1—C7107.85 (11)C11—C10—H10B107.9
O1—S1—C17107.54 (11)C12—C11—C10124.0 (3)
O2—S1—O1119.44 (13)C12—C11—C16115.0 (3)
O2—S1—C7107.41 (11)C16—C11—C10121.0 (3)
O2—S1—C17108.68 (11)F1—C12—C11116.5 (4)
C17—S1—C7105.03 (9)F1—C12—C13120.1 (4)
C4—O4—C24117.09 (18)C11—C12—C13123.3 (4)
C5—O5—C23117.34 (16)C12—C13—H13121.3
C8—N1—H1118.2C14—C13—C12117.4 (3)
C9—N1—H1118.2C14—C13—H13121.3
C9—N1—C8123.6 (2)C13—C14—H14119.4
C2—C1—C6118.69 (18)C15—C14—C13121.2 (4)
C2—C1—C7120.93 (18)C15—C14—H14119.4
C6—C1—C7120.33 (17)C14—C15—H15120.2
C1—C2—H2119.7C14—C15—C16119.6 (4)
C1—C2—C3120.55 (19)C16—C15—H15120.2
C3—C2—H2119.7C11—C16—H16118.3
C2—C3—H3119.6C15—C16—C11123.5 (3)
C4—C3—C2120.83 (19)C15—C16—H16118.3
C4—C3—H3119.6C18—C17—S1118.95 (18)
O4—C4—C3125.98 (18)C22—C17—S1120.22 (17)
O4—C4—C5115.10 (18)C22—C17—C18120.8 (2)
C3—C4—C5118.92 (18)C17—C18—H18120.5
O5—C5—C4115.25 (17)C17—C18—C19119.0 (2)
O5—C5—C6124.92 (18)C19—C18—H18120.5
C6—C5—C4119.83 (18)C18—C19—H19120.0
C1—C6—H6119.4C20—C19—C18120.1 (3)
C5—C6—C1121.17 (18)C20—C19—H19120.0
C5—C6—H6119.4C19—C20—H20119.6
S1—C7—H7107.1C21—C20—C19120.7 (2)
C1—C7—S1107.66 (13)C21—C20—H20119.6
C1—C7—H7107.1C20—C21—H21119.8
C1—C7—C8116.05 (16)C20—C21—C22120.5 (2)
C8—C7—S1111.53 (14)C22—C21—H21119.8
C8—C7—H7107.1C17—C22—C21118.9 (2)
N1—C8—C7111.25 (18)C17—C22—H22120.5
N1—C8—H8A109.4C21—C22—H22120.5
N1—C8—H8B109.4O5—C23—H23A109.5
C7—C8—H8A109.4O5—C23—H23B109.5
C7—C8—H8B109.4O5—C23—H23C109.5
H8A—C8—H8B108.0H23A—C23—H23B109.5
O3—C9—N1123.5 (2)H23A—C23—H23C109.5
O3—C9—C10120.3 (2)H23B—C23—H23C109.5
N1—C9—C10116.2 (2)O4—C24—H24A109.5
C9—C10—H10A107.9O4—C24—H24B109.5
C9—C10—H10B107.9O4—C24—H24C109.5
H10A—C10—H10B107.2H24A—C24—H24B109.5
C11—C10—C9117.8 (2)H24A—C24—H24C109.5
C11—C10—H10A107.9H24B—C24—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.463.207 (2)145
N1—H1···O5i0.862.502.945 (3)113
Symmetry code: (i) x1, y, z.
 

Funding information

This work was supported by Consejo Nacional de Ciencia y Tecnología grants (Nos. 6576.18-P, INFR-2011-3-173395, INFRA-2014-224405).

References

First citationBernardi, F., Csizmadia, I. G. & Mangini, A. (1985). Organic Sulfur Chemistry: Theoretical and Experimental Advances. Amsterdam; New York: Elsevier Science Publishers.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. (2015). J. Med. Chem. 58, 8315–8359.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGoa, K. L. & Spencer, C. M. (1998). Drugs Aging, 12, 401–422.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiwari, R., Miller, P. A., Cho, S., Franzblau, S. G. & Miller, M. J. (2015). ACS Med. Chem. Lett. 6, 128–133.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVargas, E., Echeverri, F., Vélez, I., Robledo, S. & Quiñones, W. (2017). Molecules, 22, 2041–2057.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoo, S. Y., Kim, J. H., Moon, M. K., Han, S.-H., Yeon, S. K., Choi, J. W., Jang, B. K., Song, H. J., Kang, Y. G., Kim, J. W., Lee, J., Kim, D. J., Hwang, O. & Park, K. D. (2014). J. Med. Chem. 57, 1473–1487.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds