metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ2-chlorido-bis­­{chlorido­[2,4,6-tris­­(pyridin-2-yl)-1,3,5-triazine-κ3N2,N1,N6]nickel(II)}

CROSSMARK_Color_square_no_text.svg

aChonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 21 January 2021; accepted 26 January 2021; online 29 January 2021)

In the title compound, [Ni2Cl4(C18H12N6)2], the NiII ions are hexa-coordinated in a distorted octa­hedral coordination environment defined by three N atoms of the tridentate 2,4,6-tri-2-pyridyl-1,3,5-triazine ligand and three Cl anions in a meridional geometry. The two NiII ions are bridged by two Cl anionic ligands, thereby forming a dinuclear complex. A crystallographic centre of inversion is located at the centroid of the Ni2Cl2 ring.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

With reference to the title compound, [Ni2Cl4(tptz)2] (tptz = 2,4,6-tri-2-pyridyl-1,3,5-triazine), the crystal structures of related chlorido NiII complexes [NiCl2(tptz)(CH3OH)] (Hadadzadeh et al., 2012[Hadadzadeh, H., Maghami, M., Simpson, J., Khalaji, A. D. & Abdi, K. (2012). J. Chem. Crystallogr. 42, 656-667.]), [NiCl(H-tptz)(H2O)2]Cl2·2H2O (Zibaseresht & Hartshorn, 2005[Zibaseresht, R. & Hartshorn, R. M. (2005). Aust. J. Chem. 58, 345-353.]) and [NiCl2(py)(tptz)] (py = pyridine) (Ha, 2019[Ha, K. (2019). Z. Kristallogr. NCS 234, 775-776.]) have been determined previously.

In the complex, the two NiII cations are bridged by two chlorido ligands to form a dinuclear complex. A crystallographic centre of inversion is located at the centroid of the Ni2Cl2 ring. The asymmetric unit therefore contains one half of the complex (Fig. 1[link]). Each NiII atom is hexa-coordinated in a considerably distorted octa­hedral coordination environment defined by three N atoms of the tridentate tptz ligand, two bridging Cl ligands and one terminal Cl anion. The main contributions to the distortion are the tight N—Ni—N chelating angles [N1—Ni1—N4 = 76.96 (6)° and N1—Ni1—N6 = 77.52 (6)°] and the chlorido bridges, which result in a non-linear trans arrangement of the N4—Ni1—N6 and N1—Ni1—Cl axes [N4—Ni1—N6 = 154.46 (6)° and N1—Ni1—Cl1 = 169.87 (5)°]. On the other hand the Cl2—Ni1—Cl1i axis (symmetry code: (i) −x, −y + 1, −z) is almost linear [Cl2—Ni1—Cl1i = 176.25 (2)°]. The Ni—N(pyrid­yl) bonds [Ni1—N4/N6 = 2.130 (2) and 2.129 (2) Å] are slightly longer than the Ni—N(triazine) bond [Ni1—N1 = 1.970 (2) Å]. The three Ni—Cl bond lengths are somewhat different [Ni1—Cl1i = 2.5812 (5), Ni1—Cl1 = 2.3326 (5) and Ni1—Cl2 = 2.3538 (5) Å]. The two pyridyl rings that coordinat to the NiII atom are located approximately parallel to the respective triazine ring, making dihedral angles of 4.51 (6) and 4.95 (6)°, respectively. The dihedral angle between the non-coordinating pyridyl substituent and the triazine ring is 7.56 (6)°.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the atom labelling and displacement ellipsoids drawn at the 50% probability level for non-H atoms. Symmetry code: (i) −x, −y + 1, −z.

The complex displays numerous inter­molecular ππ inter­actions between adjacent six-membered rings. For Cg1 (the centroid of ring N5/C8–C12) and Cg2ii [the centroid of ring N6/C14–C18; symmetry code: (ii) x, −y + [{3\over 2}], z − [{1\over 2}]], the centroid–centroid distance is 4.138 (1) Å and the dihedral angle between the ring planes is 5.44 (10)°. In addition, the complex reveals inter­molecular C—H⋯Cl hydrogen bonds with distances of 2.773 (3)–3.605 (2) Å between the donor and acceptor atoms, to stabilize the crystal structure (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl2i 0.94 2.76 3.605 (2) 150
C15—H15⋯Cl2ii 0.94 2.57 3.471 (2) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal structure of the title compound showing ππ inter­actions as well as weak C–H⋯Cl hydrogen bonds.

Synthesis and crystallization

To a solution of NiCl2·6 H2O (0.2670 g, 1.123 mmol) in ethanol (30 ml) was added 2,4,6-tri-2-pyridyl-1,3,5-triazine (0.2814 g, 0.901 mmol). The solution was stirred for 12 h at room temperature. The formed precipitate was separated by filtration, washed with ethanol and acetone, and dried at 323 K, to give a pale-green powder (0.3363 g, 84%). Brown crystals suitable for X-ray analysis were obtained by slow evaporation from a dimethyl sulfoxide (DMSO) solution at 363 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The remaining maximum (0.33 e Å−3) and minimum (−0.20 e Å−3) electron density in the difference Fourier map are located 0.73 and 1.28 Å, respectively, from atoms C2 and C9.

Table 2
Experimental details

Crystal data
Chemical formula [Ni2Cl4(C18H12N6)2]
Mr 883.89
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 13.0130 (4), 12.8275 (4), 11.0153 (3)
β (°) 106.5083 (11)
V3) 1762.93 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.42
Crystal size (mm) 0.25 × 0.15 × 0.13
 
Data collection
Diffractometer PHOTON 100 CMOS detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.660, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 48040, 3487, 2828
Rint 0.059
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.06
No. of reflections 3487
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b).

Di-µ2-chlorido-bis{chlorido[2,4,6-tris(pyridin-2-yl)-1,3,5-triazine-κ3N2,N1,N6]nickel(II)} top
Crystal data top
[Ni2Cl4(C18H12N6)2]F(000) = 896
Mr = 883.89Dx = 1.665 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.0130 (4) ÅCell parameters from 9969 reflections
b = 12.8275 (4) Åθ = 2.3–28.2°
c = 11.0153 (3) ŵ = 1.42 mm1
β = 106.5083 (11)°T = 223 K
V = 1762.93 (9) Å3Block, brown
Z = 20.25 × 0.15 × 0.13 mm
Data collection top
PHOTON 100 CMOS detector
diffractometer
2828 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.059
φ and ω scansθmax = 26.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1616
Tmin = 0.660, Tmax = 0.745k = 1515
48040 measured reflectionsl = 1313
3487 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.698P]
where P = (Fo2 + 2Fc2)/3
3487 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms on C atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.94 Å and Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.14246 (2)0.51866 (2)0.04761 (2)0.02427 (9)
Cl10.01562 (4)0.48538 (4)0.14563 (4)0.02986 (13)
Cl20.29409 (4)0.52462 (4)0.02845 (5)0.03079 (13)
N10.22767 (13)0.54763 (12)0.22294 (15)0.0248 (4)
N20.32398 (14)0.48592 (13)0.42305 (15)0.0287 (4)
N30.29552 (13)0.66875 (13)0.38378 (15)0.0276 (4)
N40.18958 (13)0.36721 (12)0.12204 (15)0.0267 (4)
N50.42794 (15)0.52970 (14)0.66906 (16)0.0374 (4)
N60.13351 (12)0.68398 (12)0.05789 (14)0.0247 (4)
C10.26891 (15)0.47112 (15)0.30292 (18)0.0246 (4)
C20.24779 (16)0.36589 (15)0.24522 (18)0.0256 (4)
C30.28603 (17)0.27542 (16)0.3092 (2)0.0339 (5)
H30.32340.27690.39580.041*
C40.26843 (19)0.18244 (17)0.2435 (2)0.0409 (6)
H40.29300.11920.28480.049*
C50.21447 (19)0.18388 (17)0.1169 (2)0.0413 (6)
H50.20450.12190.06960.050*
C60.17494 (17)0.27710 (15)0.0595 (2)0.0324 (5)
H60.13640.27690.02680.039*
C70.33706 (15)0.58634 (16)0.45819 (18)0.0278 (4)
C80.39884 (16)0.61154 (17)0.59008 (19)0.0302 (5)
C90.42105 (16)0.71422 (18)0.6268 (2)0.0338 (5)
H90.39900.76890.56840.041*
C100.47666 (17)0.73425 (19)0.7519 (2)0.0394 (6)
H100.49370.80300.78020.047*
C110.50621 (18)0.6520 (2)0.8335 (2)0.0426 (6)
H110.54350.66350.91900.051*
C120.48059 (18)0.5520 (2)0.7888 (2)0.0438 (6)
H120.50150.49640.84620.053*
C130.23995 (15)0.64467 (15)0.26684 (18)0.0237 (4)
C140.18376 (15)0.72372 (15)0.17355 (18)0.0238 (4)
C150.18125 (16)0.82788 (15)0.2024 (2)0.0301 (5)
H150.21640.85280.28390.036*
C160.12571 (17)0.89494 (16)0.1083 (2)0.0350 (5)
H160.12120.96630.12550.042*
C170.07695 (17)0.85609 (16)0.0108 (2)0.0336 (5)
H170.04060.90090.07660.040*
C180.08231 (15)0.75012 (16)0.03215 (19)0.0287 (5)
H180.04850.72390.11340.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03109 (15)0.01883 (14)0.02120 (14)0.00130 (10)0.00470 (11)0.00041 (10)
Cl10.0330 (3)0.0344 (3)0.0216 (2)0.0031 (2)0.0068 (2)0.0029 (2)
Cl20.0314 (3)0.0313 (3)0.0298 (3)0.0037 (2)0.0088 (2)0.0046 (2)
N10.0300 (9)0.0208 (8)0.0235 (8)0.0015 (7)0.0073 (7)0.0012 (7)
N20.0311 (9)0.0288 (9)0.0254 (9)0.0020 (7)0.0066 (7)0.0031 (7)
N30.0288 (9)0.0281 (9)0.0239 (9)0.0008 (7)0.0044 (7)0.0001 (7)
N40.0331 (9)0.0217 (9)0.0280 (9)0.0003 (7)0.0130 (7)0.0009 (7)
N50.0392 (11)0.0432 (11)0.0257 (9)0.0010 (9)0.0028 (8)0.0043 (8)
N60.0283 (9)0.0215 (9)0.0246 (9)0.0013 (7)0.0079 (7)0.0015 (7)
C10.0256 (10)0.0243 (10)0.0249 (10)0.0028 (8)0.0088 (8)0.0034 (8)
C20.0301 (11)0.0237 (10)0.0260 (10)0.0024 (8)0.0129 (8)0.0027 (8)
C30.0400 (12)0.0304 (12)0.0350 (12)0.0078 (9)0.0165 (10)0.0107 (10)
C40.0541 (15)0.0222 (11)0.0527 (15)0.0098 (10)0.0253 (12)0.0115 (10)
C50.0569 (15)0.0214 (11)0.0533 (15)0.0005 (10)0.0280 (12)0.0030 (10)
C60.0440 (13)0.0241 (11)0.0332 (12)0.0018 (9)0.0177 (10)0.0026 (9)
C70.0258 (11)0.0324 (11)0.0257 (10)0.0007 (9)0.0081 (8)0.0014 (9)
C80.0259 (11)0.0396 (13)0.0252 (10)0.0003 (9)0.0073 (9)0.0018 (9)
C90.0294 (11)0.0392 (13)0.0307 (11)0.0010 (9)0.0051 (9)0.0000 (10)
C100.0309 (12)0.0491 (15)0.0368 (13)0.0024 (11)0.0075 (10)0.0112 (11)
C110.0362 (13)0.0603 (16)0.0269 (12)0.0022 (12)0.0019 (10)0.0053 (11)
C120.0429 (14)0.0539 (15)0.0289 (12)0.0010 (12)0.0012 (10)0.0068 (11)
C130.0239 (10)0.0241 (10)0.0242 (10)0.0001 (8)0.0083 (8)0.0012 (8)
C140.0252 (10)0.0213 (10)0.0262 (10)0.0006 (8)0.0092 (8)0.0001 (8)
C150.0347 (12)0.0236 (11)0.0322 (11)0.0021 (9)0.0095 (9)0.0030 (9)
C160.0401 (13)0.0187 (11)0.0492 (14)0.0022 (9)0.0174 (11)0.0017 (10)
C170.0349 (12)0.0252 (11)0.0414 (13)0.0069 (9)0.0119 (10)0.0106 (10)
C180.0298 (11)0.0291 (11)0.0277 (11)0.0039 (9)0.0090 (9)0.0058 (8)
Geometric parameters (Å, º) top
Ni1—N11.9700 (16)C4—C51.372 (3)
Ni1—N62.1286 (16)C4—H40.9400
Ni1—N42.1300 (16)C5—C61.382 (3)
Ni1—Cl12.3326 (5)C5—H50.9400
Ni1—Cl22.3538 (5)C6—H60.9400
Ni1—Cl1i2.5812 (5)C7—C81.482 (3)
Cl1—Ni1i2.5811 (5)C8—C91.384 (3)
N1—C11.326 (2)C9—C101.387 (3)
N1—C131.329 (2)C9—H90.9400
N2—C11.327 (3)C10—C111.368 (3)
N2—C71.342 (3)C10—H100.9400
N3—C131.322 (2)C11—C121.381 (3)
N3—C71.353 (3)C11—H110.9400
N4—C61.331 (3)C12—H120.9400
N4—C21.353 (2)C13—C141.481 (3)
N5—C121.333 (3)C14—C151.376 (3)
N5—C81.347 (3)C15—C161.382 (3)
N6—C181.331 (2)C15—H150.9400
N6—C141.355 (2)C16—C171.379 (3)
C1—C21.484 (3)C16—H160.9400
C2—C31.375 (3)C17—C181.385 (3)
C3—C41.380 (3)C17—H170.9400
C3—H30.9400C18—H180.9400
N1—Ni1—N677.52 (6)C4—C5—H5120.2
N1—Ni1—N476.96 (6)C6—C5—H5120.2
N6—Ni1—N4154.46 (6)N4—C6—C5122.3 (2)
N1—Ni1—Cl1169.87 (5)N4—C6—H6118.8
N6—Ni1—Cl1101.28 (4)C5—C6—H6118.8
N4—Ni1—Cl1103.65 (5)N2—C7—N3125.40 (18)
N1—Ni1—Cl292.73 (5)N2—C7—C8118.76 (18)
N6—Ni1—Cl292.90 (4)N3—C7—C8115.81 (18)
N4—Ni1—Cl289.31 (5)N5—C8—C9123.76 (19)
Cl1—Ni1—Cl297.384 (19)N5—C8—C7115.95 (18)
N1—Ni1—Cl1i83.52 (5)C9—C8—C7120.27 (19)
N6—Ni1—Cl1i86.30 (4)C8—C9—C10118.3 (2)
N4—Ni1—Cl1i89.84 (5)C8—C9—H9120.9
Cl1—Ni1—Cl1i86.370 (18)C10—C9—H9120.9
Cl2—Ni1—Cl1i176.246 (19)C11—C10—C9118.7 (2)
Ni1—Cl1—Ni1i93.631 (18)C11—C10—H10120.7
C1—N1—C13117.87 (17)C9—C10—H10120.7
C1—N1—Ni1121.36 (13)C10—C11—C12119.2 (2)
C13—N1—Ni1120.64 (13)C10—C11—H11120.4
C1—N2—C7114.41 (17)C12—C11—H11120.4
C13—N3—C7114.93 (17)N5—C12—C11123.8 (2)
C6—N4—C2117.72 (17)N5—C12—H12118.1
C6—N4—Ni1127.55 (14)C11—C12—H12118.1
C2—N4—Ni1114.53 (12)N3—C13—N1123.33 (18)
C12—N5—C8116.3 (2)N3—C13—C14122.80 (17)
C18—N6—C14117.79 (17)N1—C13—C14113.86 (16)
C18—N6—Ni1128.22 (13)N6—C14—C15123.07 (18)
C14—N6—Ni1113.93 (12)N6—C14—C13113.96 (16)
N1—C1—N2123.94 (18)C15—C14—C13122.96 (18)
N1—C1—C2113.45 (17)C14—C15—C16118.22 (19)
N2—C1—C2122.61 (17)C14—C15—H15120.9
N4—C2—C3122.83 (19)C16—C15—H15120.9
N4—C2—C1113.64 (16)C17—C16—C15119.33 (19)
C3—C2—C1123.51 (18)C17—C16—H16120.3
C2—C3—C4118.6 (2)C15—C16—H16120.3
C2—C3—H3120.7C16—C17—C18119.0 (2)
C4—C3—H3120.7C16—C17—H17120.5
C5—C4—C3118.8 (2)C18—C17—H17120.5
C5—C4—H4120.6N6—C18—C17122.54 (19)
C3—C4—H4120.6N6—C18—H18118.7
C4—C5—C6119.6 (2)C17—C18—H18118.7
C13—N1—C1—N21.8 (3)N2—C7—C8—C9174.92 (19)
Ni1—N1—C1—N2177.77 (14)N3—C7—C8—C96.9 (3)
C13—N1—C1—C2178.24 (16)N5—C8—C9—C100.2 (3)
Ni1—N1—C1—C22.3 (2)C7—C8—C9—C10178.34 (18)
C7—N2—C1—N11.2 (3)C8—C9—C10—C110.6 (3)
C7—N2—C1—C2178.72 (17)C9—C10—C11—C120.5 (3)
C6—N4—C2—C34.1 (3)C8—N5—C12—C110.4 (3)
Ni1—N4—C2—C3179.45 (15)C10—C11—C12—N50.0 (4)
C6—N4—C2—C1174.13 (17)C7—N3—C13—N11.9 (3)
Ni1—N4—C2—C11.2 (2)C7—N3—C13—C14176.77 (17)
N1—C1—C2—N40.6 (2)C1—N1—C13—N33.5 (3)
N2—C1—C2—N4179.51 (17)Ni1—N1—C13—N3179.50 (14)
N1—C1—C2—C3177.70 (18)C1—N1—C13—C14175.29 (16)
N2—C1—C2—C32.2 (3)Ni1—N1—C13—C140.7 (2)
N4—C2—C3—C43.0 (3)C18—N6—C14—C152.1 (3)
C1—C2—C3—C4175.10 (19)Ni1—N6—C14—C15175.50 (15)
C2—C3—C4—C50.6 (3)C18—N6—C14—C13179.03 (16)
C3—C4—C5—C62.9 (3)Ni1—N6—C14—C133.4 (2)
C2—N4—C6—C51.7 (3)N3—C13—C14—N6178.41 (17)
Ni1—N4—C6—C5176.33 (16)N1—C13—C14—N62.8 (2)
C4—C5—C6—N41.8 (3)N3—C13—C14—C152.7 (3)
C1—N2—C7—N33.0 (3)N1—C13—C14—C15176.14 (18)
C1—N2—C7—C8179.11 (17)N6—C14—C15—C160.7 (3)
C13—N3—C7—N21.5 (3)C13—C14—C15—C16179.52 (18)
C13—N3—C7—C8179.46 (17)C14—C15—C16—C171.3 (3)
C12—N5—C8—C90.3 (3)C15—C16—C17—C181.8 (3)
C12—N5—C8—C7177.95 (19)C14—N6—C18—C171.4 (3)
N2—C7—C8—N56.8 (3)Ni1—N6—C18—C17175.71 (15)
N3—C7—C8—N5171.38 (17)C16—C17—C18—N60.5 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl2ii0.942.763.605 (2)150
C15—H15···Cl2iii0.942.573.471 (2)162
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant No. 2018R1D1A1B07050550).

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHa, K. (2019). Z. Kristallogr. NCS 234, 775–776.  CAS Google Scholar
First citationHadadzadeh, H., Maghami, M., Simpson, J., Khalaji, A. D. & Abdi, K. (2012). J. Chem. Crystallogr. 42, 656–667.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZibaseresht, R. & Hartshorn, R. M. (2005). Aust. J. Chem. 58, 345–353.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds