organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2S,3′S,3a'R,5′R,7a'R)-5′-[(E)-5-(Furan-3-yl)-2-methyl­pent-1-en-1-yl]-3-hy­dr­oxy-3′,4,7′-tri­methyl-1′,2′,3′,3a',5′,7a'-hexa­hydro-5H-spiro­[furan-2,4′-inden]-5-one

CROSSMARK_Color_square_no_text.svg

aInstitute of Pharmaceutical Sciences, Department of Pharmaceutical Biology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, bDepartment of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and cInstitute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
*Correspondence e-mail: harald.gross@uni-tuebingen.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 19 November 2020; accepted 2 December 2020; online 11 December 2020)

The title compound, ircinianin, C25H32O4, belongs to the sesterterpene tetronic acid compound family and was isolated from the marine sponge Ircinia wistarii. These chemical scaffolds are pharmacologically relevant, since they represent a new class of glycine receptor modulators. The furan ring makes a dihedral angle of 35.14 (12)° to the 4-hy­droxy-3-methyl­furan-2(5H)-one ring. The crystal packing is characterized by inter­molecular O—H⋯O hydrogen bonds, which generate [010] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The genus Ircinia of the sea sponge family Irciniidae is a prolific source of natural products with a huge variety of different natural product classes like macrolides, alkaloids, steroids, peptides and terpenes (Coll et al., 1997[Coll, J. C., Kearns, P. S., Rideout, J. A. & Hooper, J. (1997). J. Nat. Prod. 60, 1178-1179.]; Kondo et al., 1992[Kondo, K., Shigemori, H., Kikuchi, Y., Ishibashi, M., Sasaki, T. & Kobayashi, J. (1992). J. Org. Chem. 57, 2480-2483.]; Kobayashi et al., 1995[Kobayashi, J., Shinonaga, H., Shigemori, H., Umeyama, A., Shoji, N. & Arihara, S. (1995). J. Nat. Prod. 58, 312-318.]; Mau et al., 1996[Mau, C. M. S., Nakao, Y., Yoshida, W. Y., Scheuer, P. J. & Kelly-Borges, M. (1996). J. Org. Chem. 61, 6302-6304.]; Chevallier et al., 2006[Chevallier, C., Bugni, T. S., Feng, X., Harper, M. K., Orendt, A. M. & Ireland, C. M. (2006). J. Org. Chem. 71, 2510-2513.]). Particularly, regarding the latter compound class, Ircinia spp. are known to produce unusual and rare terpenoids, especially sesterterpene tetronic acids in a linear and cyclic form, like ircinianin and its structural congeners (Hofheinz & Schönholzer, 1977[Hofheinz, W. & Schönholzer, P. (1977). Helv. Chim. Acta, 60, 1367-1370.]; Barrow et al., 1988[Barrow, C. J., Blunt, J. W., Munro, M. H. G. & Perry, N. B. (1988). J. Nat. Prod. 51, 1294-1298.]; Coll et al., 1997[Coll, J. C., Kearns, P. S., Rideout, J. A. & Hooper, J. (1997). J. Nat. Prod. 60, 1178-1179.]; Höller et al., 1997[Höller, U., König, G. M. & Wright, A. D. (1997). J. Nat. Prod. 60, 832-835.]; Balansa et al., 2013[Balansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Xiao, X., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2013). Org. Biomol. Chem. 11, 4695-4701.]; Balansa et al., 2010[Balansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2010). Bioorg. Med. Chem. 18, 2912-2919.]).

Balansa et al. (2013[Balansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Xiao, X., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2013). Org. Biomol. Chem. 11, 4695-4701.]) showed that these analogues exhibit a significant isoform-selective potentiation of glycine-gated chloride channel receptors (GlyRs). The compounds have therefore the potential to be developed either as mol­ecular tools to probe GlyR function or can serve as lead structures to treat GlyR-mediated neural disorders.

The title compound (Fig. 1[link]) is a polycyclic sesterterpene tetronic acid with a furan moiety. The furan ring makes a dihedral angle of 35.14 (12)° to the 4-hy­droxy-3-methyl­furan-2(5H)-one ring. In the crystal, the molecules are linked by O—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]), forming chains parallel to the b axis. The crystal structure of the title compound has already been reported in 1977 by researchers from the pharmaceutical company Hoffmann La Roche (Hofheinz & Schönholzer, 1977[Hofheinz, W. & Schönholzer, P. (1977). Helv. Chim. Acta, 60, 1367-1370.]; CCDC reference: 1180878). However, in this study the hydrogen atoms were not refined, and only the relative stereochemistry could be deduced. The absolute structure was so far solely determined by asymmetric total synthesis in 1997 (Uenishi et al., 1997[Uenishi, J., Kawahama, R. & Yonemitsu, O. (1997). J. Org. Chem. 62, 1691-1701.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O29—H29⋯O27i 0.84 (3) 1.80 (3) 2.6207 (18) 166 (3)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Partial packing diagram of the title compound. View along the a-axis.

Synthesis and crystallization

The title compound C25H32O4 was isolated from the marine sponge Ircinia wistarii. The sample (voucher number HER6) was collected from Wistarii Reef, Heron Island, Great Barrier Reef, Australia in July 1998 from a depth of 20 m. After collection, the material was stored in EtOH and kept frozen at 253 K until use.

The sponge material (800 g, wet weight) was cut into smaller pieces (2 × 2 cm) and was extracted with a solvent mixture of CHCl3/MeOH (1:1, v/v; 2 l of volume per extraction step) for three times (after 4, 8 and 20 h). The extraction solvent of each step was collected and combined. After filtration and evaporation to dryness, 25.46 g crude extract was obtained. The crude extract was redissolved in MeOH and fractioned by preparative reversed phase open column chromatography [Polygoprep 60–50 C18 (Macherey-Nagel) as stationary phase] using gravity and stepwise MeOH/H2O gradients with increasing lipophilicity and DCM. In total, eleven fractions were gained, and the ircinianin-enriched fraction (MeOH/H2O – 90:10) was identified by LC–MS. This fraction was then purified by reversed phase HPLC [Luna Omega 5 µm Polar C18 100 Å column, 250 × 4.6 mm, at 1.2 ml min−1 and UV detection at 215 nm with a 3 min gradient elution, from 20:80 to 55:45 ACN/H2O + 0.1% TFA, followed by ramping over 27 min to 90:10], yielding 140 mg of ircinianin, judged as pure based on total ion current profiles, ESI–MS and NMR spectrometry. Suitable crystals were prepared by slow evaporation at room temperature from a ACN/H2O (65:35) solution under atmospheric pressure.

Spectroscopic data of the title compound were in accordance with literature data (Balansa et al., 2013[Balansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Xiao, X., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2013). Org. Biomol. Chem. 11, 4695-4701.]). For ease of comparison with related compounds, the title compound was given in the NMR section the same numbering scheme as previously used in the literature (Balansa et al., 2013[Balansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Xiao, X., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2013). Org. Biomol. Chem. 11, 4695-4701.]):

1H NMR (400 MHz, MeOH-d4): δ 7.38 (H-1, t, 1.6), 7.26 (H-4, m), 6.30 (H-2, m), 5.11 (H-10, dd, 10.3, 1.1), 5.03 (H-12, m), 3.08 (H-11, dm, 10.3), 2.42 (H-15, m)A, 2.41 (H-5 br t, 7.5)A, 2.04 (H-7, m), 2.00 (H-17a, m), 1.89 (H-16a, m), 1.71 (H-14, m), 1.68 (H-6, m), 1.65 (H-18, m), 1.64 (H-25, s), 1.60 (H-20, m), 1.57 (H-9, d, 1.3), 1.33 (H-16b, m), 1.31 (H-17b, m), 0.92 (H-19, d, 6.3).

13C NMR (100 MHz, MeOH-d4): δ 179.2 (C-22, sC)B, 177.7 (C-24, s)B, 144.0 (C-1, d), 140.3 (C-4, d), 137.1 (C-13, s), 136.6 (C-8, s), 126.5 (C-3, s), 125.0 (C-10, d), 123.6 (C-12, d), 112.1 (C-2, d), 97.5 (C-23, s), 86.9 (C-21, s), 52.0 (C-20, d), 48.7 (C-11, d), 46.2 (C-15, d), 40.5 (C-7, t), 33.6 (C-17, t), 33.2 (C-18, d), 29.5 (C-6, t), 27.3 (C-16, t), 25.3 (C-5, t), 20.8 (C-14, q), 20.7 (C-19, q), 16.3 (C-9, q), 6.1 (C-25, q). [A Overlapping signals; B assignments inter­changeable; C implied multiplicities determined by DEPT (qC = s; CH = d; CH2 = t; CH3 = q).]

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in difference Fourier maps and were refined with isotropic displacement parameters.

Table 2
Experimental details

Crystal data
Chemical formula C25H32O4
Mr 396.50
Crystal system, space group Orthorhombic, P212121
Temperature (K) 120
a, b, c (Å) 10.8217 (2), 11.1644 (2), 18.2804 (5)
V3) 2208.60 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.63
Crystal size (mm) 0.91 × 0.08 × 0.08
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration
Tmin, Tmax 0.914, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 18913, 3945, 3849
Rint 0.018
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.08
No. of reflections 3945
No. of parameters 377
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.19, −0.20
Absolute structure Flack x determined using 1639 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.03 (9)
Computer programs: X-RED32 and X-AREA (Stoe & Cie, 2019[Stoe & Cie (2019). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: X-RED32 and X-AREA (Stoe & Cie, 2019); cell refinement: X-RED32 and X-AREA (Stoe & Cie, 2019); data reduction: X-RED32 and X-AREA (Stoe & Cie, 2019); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020).

(2S,3'S,3a'R,5'R,7a'R)-5'-[(E)-5-(Furan-3-yl)-2-methylpent-1-en-1-yl]-3-hydroxy-3',4,7'-trimethyl-1',2',3',3a',5',7a'-hexahydro-5H-spiro[furan-2,4'-inden]-5-one top
Crystal data top
C25H32O4Dx = 1.192 Mg m3
Mr = 396.50Cu Kα radiation, λ = 1.54186 Å
Orthorhombic, P212121Cell parameters from 58680 reflections
a = 10.8217 (2) Åθ = 2.4–68.0°
b = 11.1644 (2) ŵ = 0.63 mm1
c = 18.2804 (5) ÅT = 120 K
V = 2208.60 (8) Å3Coloumn, colourless
Z = 40.91 × 0.08 × 0.08 mm
F(000) = 856
Data collection top
Stoe IPDS 2T
diffractometer
3945 independent reflections
Radiation source: Incoatec microSource Cu3849 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.018
rotation method, ω scansθmax = 67.8°, θmin = 4.6°
Absorption correction: integrationh = 1212
Tmin = 0.914, Tmax = 0.990k = 1313
18913 measured reflectionsl = 1921
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.3312P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.19 e Å3
3945 reflectionsΔρmin = 0.20 e Å3
377 parametersAbsolute structure: Flack x determined using 1639 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.03 (9)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.49694 (18)0.41060 (15)0.47235 (10)0.0219 (4)
H10.428 (2)0.357 (2)0.4651 (13)0.030 (6)*
C20.56472 (18)0.37841 (17)0.54252 (10)0.0253 (4)
H20.513 (2)0.368 (2)0.5861 (13)0.025 (5)*
C30.68627 (19)0.36830 (17)0.55010 (10)0.0259 (4)
C40.76937 (17)0.38055 (17)0.48472 (10)0.0236 (4)
H40.786 (2)0.301 (2)0.4652 (13)0.030 (6)*
C50.89455 (18)0.4432 (2)0.49168 (11)0.0301 (4)
H5A0.954 (2)0.393 (2)0.5169 (13)0.029 (4)*
H5AB0.883 (2)0.521 (2)0.5200 (13)0.029 (4)*
C60.9310 (2)0.4654 (2)0.41093 (12)0.0380 (5)
H6A0.993 (3)0.406 (3)0.3941 (16)0.052 (5)*
H6AB0.967 (3)0.552 (3)0.4041 (16)0.052 (5)*
C70.81215 (17)0.45092 (17)0.36372 (10)0.0259 (4)
H70.815 (3)0.373 (2)0.3362 (15)0.042 (7)*
C80.70955 (17)0.44944 (16)0.42160 (10)0.0214 (4)
H80.694 (2)0.535 (2)0.4385 (12)0.024 (5)*
C90.58241 (17)0.39703 (15)0.40444 (10)0.0205 (4)
C100.44429 (17)0.53607 (16)0.48011 (10)0.0235 (4)
H100.500 (2)0.602 (2)0.4651 (13)0.030 (6)*
C110.33472 (19)0.56473 (18)0.50782 (10)0.0284 (4)
C120.2416 (2)0.4744 (2)0.53387 (18)0.0485 (6)
H12A0.181 (4)0.508 (5)0.553 (3)0.111 (9)*
H12B0.277 (5)0.402 (4)0.551 (3)0.111 (9)*
H12C0.208 (5)0.437 (4)0.482 (3)0.111 (9)*
C130.2955 (2)0.69443 (19)0.51459 (12)0.0333 (5)
H13A0.368 (3)0.746 (3)0.5061 (17)0.053 (6)*
H13B0.260 (3)0.702 (3)0.5669 (18)0.053 (6)*
C140.1950 (2)0.7288 (2)0.45910 (12)0.0347 (5)
H14A0.122 (3)0.665 (3)0.4642 (16)0.054 (6)*
H14B0.158 (3)0.819 (3)0.4699 (17)0.054 (6)*
C150.2427 (2)0.7328 (2)0.38087 (13)0.0426 (5)
H15A0.304 (3)0.814 (3)0.3804 (18)0.066 (6)*
H15B0.280 (3)0.652 (3)0.3716 (18)0.066 (6)*
C160.1423 (2)0.7499 (2)0.32518 (12)0.0363 (5)
C170.1271 (2)0.6877 (2)0.26257 (13)0.0422 (5)
H170.169 (2)0.617 (2)0.2377 (13)0.033 (6)*
O180.02589 (17)0.72790 (16)0.22460 (9)0.0467 (4)
C190.0236 (2)0.8178 (2)0.26580 (14)0.0444 (6)
H190.103 (3)0.863 (3)0.2478 (16)0.049 (8)*
C200.0435 (2)0.8351 (2)0.32708 (13)0.0404 (5)
H200.029 (3)0.894 (3)0.3654 (16)0.044 (7)*
C210.7463 (2)0.3359 (2)0.62195 (12)0.0371 (5)
H21A0.810 (3)0.393 (3)0.6351 (16)0.052 (5)*
H21B0.791 (3)0.266 (3)0.6173 (16)0.052 (5)*
H21C0.686 (3)0.331 (3)0.6612 (17)0.052 (5)*
C220.8012 (2)0.5468 (2)0.30527 (13)0.0395 (5)
H22A0.727 (3)0.533 (3)0.2718 (17)0.053 (4)*
H22B0.881 (3)0.544 (3)0.2759 (17)0.053 (4)*
H22C0.792 (3)0.626 (3)0.3312 (17)0.053 (4)*
O230.59733 (12)0.26878 (10)0.39111 (7)0.0211 (3)
C240.55392 (17)0.24167 (15)0.32376 (9)0.0217 (4)
C250.50545 (18)0.34673 (15)0.28756 (9)0.0228 (4)
C260.52443 (16)0.43886 (16)0.33396 (9)0.0209 (4)
O270.56032 (13)0.13752 (11)0.30220 (7)0.0271 (3)
C280.4465 (2)0.34514 (19)0.21335 (11)0.0321 (5)
H28A0.434 (4)0.417 (4)0.195 (2)0.077 (6)*
H28B0.375 (4)0.296 (3)0.215 (2)0.077 (6)*
H28C0.499 (4)0.307 (3)0.178 (2)0.077 (6)*
O290.50180 (13)0.55511 (11)0.32690 (7)0.0258 (3)
H290.481 (3)0.569 (3)0.2837 (18)0.048 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0240 (8)0.0201 (8)0.0215 (9)0.0012 (7)0.0001 (7)0.0006 (6)
C20.0310 (10)0.0253 (9)0.0196 (8)0.0011 (8)0.0014 (8)0.0005 (7)
C30.0316 (10)0.0257 (9)0.0205 (9)0.0010 (8)0.0017 (8)0.0013 (7)
C40.0266 (9)0.0231 (9)0.0212 (9)0.0005 (7)0.0032 (7)0.0007 (7)
C50.0255 (10)0.0339 (10)0.0310 (10)0.0016 (8)0.0049 (8)0.0019 (9)
C60.0274 (11)0.0511 (14)0.0356 (11)0.0073 (10)0.0008 (9)0.0015 (10)
C70.0269 (9)0.0252 (9)0.0255 (9)0.0016 (7)0.0036 (7)0.0008 (7)
C80.0256 (9)0.0180 (8)0.0206 (8)0.0008 (7)0.0006 (7)0.0005 (7)
C90.0273 (9)0.0147 (8)0.0195 (8)0.0010 (6)0.0015 (7)0.0012 (6)
C100.0263 (9)0.0218 (8)0.0224 (8)0.0006 (7)0.0033 (7)0.0026 (7)
C110.0295 (10)0.0281 (9)0.0276 (9)0.0021 (8)0.0004 (7)0.0030 (8)
C120.0376 (12)0.0383 (13)0.0695 (18)0.0016 (10)0.0184 (12)0.0015 (12)
C130.0331 (10)0.0309 (11)0.0358 (11)0.0066 (9)0.0017 (9)0.0085 (8)
C140.0321 (10)0.0346 (11)0.0374 (11)0.0067 (9)0.0001 (9)0.0071 (9)
C150.0372 (12)0.0515 (14)0.0393 (12)0.0121 (11)0.0019 (10)0.0029 (11)
C160.0388 (12)0.0351 (10)0.0351 (11)0.0006 (9)0.0030 (9)0.0030 (9)
C170.0490 (13)0.0400 (12)0.0377 (12)0.0029 (11)0.0054 (10)0.0032 (10)
O180.0504 (10)0.0526 (10)0.0371 (8)0.0140 (8)0.0016 (7)0.0023 (7)
C190.0394 (13)0.0498 (14)0.0439 (13)0.0018 (10)0.0021 (10)0.0103 (11)
C200.0414 (12)0.0399 (12)0.0398 (12)0.0038 (10)0.0014 (10)0.0006 (10)
C210.0370 (12)0.0530 (14)0.0214 (10)0.0089 (11)0.0025 (9)0.0007 (9)
C220.0391 (12)0.0416 (12)0.0378 (12)0.0005 (10)0.0090 (9)0.0124 (10)
O230.0291 (7)0.0148 (6)0.0192 (6)0.0009 (5)0.0029 (5)0.0005 (4)
C240.0255 (9)0.0200 (8)0.0196 (8)0.0018 (7)0.0004 (7)0.0013 (6)
C250.0275 (9)0.0202 (9)0.0207 (8)0.0004 (7)0.0027 (7)0.0003 (7)
C260.0240 (8)0.0180 (8)0.0208 (8)0.0007 (7)0.0008 (7)0.0011 (7)
O270.0388 (7)0.0178 (6)0.0247 (6)0.0005 (5)0.0051 (6)0.0038 (5)
C280.0453 (12)0.0258 (10)0.0251 (9)0.0035 (9)0.0114 (9)0.0027 (8)
O290.0379 (7)0.0177 (6)0.0217 (6)0.0035 (5)0.0040 (6)0.0013 (5)
Geometric parameters (Å, º) top
C1—C101.519 (2)C13—H13A0.98 (3)
C1—C21.521 (2)C13—H13B1.03 (3)
C1—C91.555 (2)C14—C151.521 (3)
C1—H10.96 (2)C14—H14A1.07 (3)
C2—C31.327 (3)C14—H14B1.10 (3)
C2—H20.98 (2)C15—C161.502 (3)
C3—C41.502 (3)C15—H15A1.12 (3)
C3—C211.509 (3)C15—H15B1.01 (3)
C4—C51.530 (3)C16—C171.349 (3)
C4—C81.530 (2)C16—C201.431 (3)
C4—H40.97 (2)C17—O181.372 (3)
C5—C61.548 (3)C17—H171.01 (3)
C5—H5A0.97 (2)O18—C191.365 (3)
C5—H5AB1.02 (3)C19—C201.349 (3)
C6—C71.557 (3)C19—H191.05 (3)
C6—H6A0.99 (3)C20—H200.98 (3)
C6—H6AB1.05 (3)C21—H21A0.97 (3)
C7—C221.517 (3)C21—H21B0.92 (3)
C7—C81.534 (2)C21—H21C0.97 (3)
C7—H71.00 (3)C22—H22A1.02 (3)
C8—C91.528 (3)C22—H22B1.02 (3)
C8—H81.02 (2)C22—H22C1.01 (3)
C9—O231.4613 (19)O23—C241.352 (2)
C9—C261.507 (2)C24—O271.230 (2)
C10—C111.329 (3)C24—C251.445 (2)
C10—H100.99 (3)C25—C261.349 (3)
C11—C121.503 (3)C25—C281.499 (2)
C11—C131.514 (3)C26—O291.327 (2)
C12—H12A0.83 (5)C28—H28A0.88 (4)
C12—H12B0.95 (5)C28—H28B0.95 (4)
C12—H12C1.10 (5)C28—H28C0.96 (4)
C13—C141.536 (3)O29—H290.84 (3)
C10—C1—C2108.67 (15)C11—C13—C14112.56 (17)
C10—C1—C9112.79 (14)C11—C13—H13A108.7 (19)
C2—C1—C9111.31 (15)C14—C13—H13A108.3 (19)
C10—C1—H1107.0 (14)C11—C13—H13B105.1 (17)
C2—C1—H1110.1 (14)C14—C13—H13B108.9 (17)
C9—C1—H1106.9 (14)H13A—C13—H13B113 (3)
C3—C2—C1125.88 (17)C15—C14—C13112.82 (19)
C3—C2—H2117.9 (14)C15—C14—H14A110.7 (16)
C1—C2—H2116.2 (14)C13—C14—H14A107.4 (17)
C2—C3—C4120.16 (17)C15—C14—H14B105.3 (16)
C2—C3—C21122.54 (19)C13—C14—H14B111.4 (16)
C4—C3—C21117.16 (17)H14A—C14—H14B109 (2)
C3—C4—C5120.37 (16)C16—C15—C14113.3 (2)
C3—C4—C8113.11 (16)C16—C15—H15A108.9 (17)
C5—C4—C8101.99 (15)C14—C15—H15A103.4 (17)
C3—C4—H4108.6 (14)C16—C15—H15B107 (2)
C5—C4—H4106.4 (14)C14—C15—H15B105.6 (19)
C8—C4—H4105.2 (14)H15A—C15—H15B119 (3)
C4—C5—C6102.69 (16)C17—C16—C20105.8 (2)
C4—C5—H5A111.3 (14)C17—C16—C15126.7 (2)
C6—C5—H5A112.2 (14)C20—C16—C15127.5 (2)
C4—C5—H5AB108.8 (13)C16—C17—O18111.0 (2)
C6—C5—H5AB112.4 (13)C16—C17—H17136.5 (14)
H5A—C5—H5AB109.3 (19)O18—C17—H17112.5 (14)
C5—C6—C7107.52 (16)C19—O18—C17105.96 (18)
C5—C6—H6A111.3 (17)C20—C19—O18110.6 (2)
C7—C6—H6A108.5 (18)C20—C19—H19129.1 (17)
C5—C6—H6AB110.9 (16)O18—C19—H19120.3 (16)
C7—C6—H6AB109.8 (16)C19—C20—C16106.7 (2)
H6A—C6—H6AB109 (2)C19—C20—H20127.2 (17)
C22—C7—C8115.92 (17)C16—C20—H20126.1 (17)
C22—C7—C6112.42 (18)C3—C21—H21A111.3 (18)
C8—C7—C6102.52 (15)C3—C21—H21B110.5 (19)
C22—C7—H7104.9 (16)H21A—C21—H21B102 (3)
C8—C7—H7111.4 (16)C3—C21—H21C111.6 (18)
C6—C7—H7109.8 (16)H21A—C21—H21C109 (2)
C9—C8—C4110.08 (15)H21B—C21—H21C112 (3)
C9—C8—C7120.96 (15)C7—C22—H22A111.9 (17)
C4—C8—C7102.67 (15)C7—C22—H22B106.6 (17)
C9—C8—H8105.9 (12)H22A—C22—H22B110 (2)
C4—C8—H8108.2 (12)C7—C22—H22C107.2 (18)
C7—C8—H8108.6 (12)H22A—C22—H22C110 (2)
O23—C9—C26101.95 (13)H22B—C22—H22C111 (3)
O23—C9—C8108.06 (14)C24—O23—C9109.44 (13)
C26—C9—C8115.58 (15)O27—C24—O23118.94 (16)
O23—C9—C1107.11 (13)O27—C24—C25129.87 (17)
C26—C9—C1113.87 (14)O23—C24—C25111.19 (14)
C8—C9—C1109.53 (14)C26—C25—C24106.00 (15)
C11—C10—C1126.34 (18)C26—C25—C28130.00 (17)
C11—C10—H10118.1 (14)C24—C25—C28124.01 (16)
C1—C10—H10115.5 (14)O29—C26—C25131.03 (16)
C10—C11—C12123.88 (19)O29—C26—C9117.58 (15)
C10—C11—C13120.76 (19)C25—C26—C9111.38 (15)
C12—C11—C13115.36 (19)C25—C28—H28A114 (3)
C11—C12—H12A111 (3)C25—C28—H28B109 (2)
C11—C12—H12B114 (3)H28A—C28—H28B114 (3)
H12A—C12—H12B125 (4)C25—C28—H28C111 (2)
C11—C12—H12C102 (3)H28A—C28—H28C104 (3)
H12A—C12—H12C106 (4)H28B—C28—H28C103 (3)
H12B—C12—H12C95 (3)C26—O29—H29109 (2)
C10—C1—C2—C3109.2 (2)C1—C10—C11—C122.5 (3)
C9—C1—C2—C315.6 (3)C1—C10—C11—C13177.95 (18)
C1—C2—C3—C44.4 (3)C10—C11—C13—C14107.9 (2)
C1—C2—C3—C21180.00 (19)C12—C11—C13—C1471.7 (3)
C2—C3—C4—C5142.7 (2)C11—C13—C14—C1569.9 (3)
C21—C3—C4—C541.5 (3)C13—C14—C15—C16172.2 (2)
C2—C3—C4—C821.9 (3)C14—C15—C16—C17133.3 (2)
C21—C3—C4—C8162.28 (18)C14—C15—C16—C2046.9 (3)
C3—C4—C5—C6165.52 (18)C20—C16—C17—O180.3 (3)
C8—C4—C5—C639.4 (2)C15—C16—C17—O18179.6 (2)
C4—C5—C6—C716.7 (2)C16—C17—O18—C190.5 (3)
C5—C6—C7—C22137.51 (19)C17—O18—C19—C200.5 (3)
C5—C6—C7—C812.3 (2)O18—C19—C20—C160.4 (3)
C3—C4—C8—C950.8 (2)C17—C16—C20—C190.1 (3)
C5—C4—C8—C9178.42 (14)C15—C16—C20—C19179.9 (2)
C3—C4—C8—C7179.09 (15)C26—C9—O23—C240.34 (18)
C5—C4—C8—C748.36 (17)C8—C9—O23—C24122.55 (15)
C22—C7—C8—C977.3 (2)C1—C9—O23—C24119.52 (15)
C6—C7—C8—C9159.85 (17)C9—O23—C24—O27178.94 (16)
C22—C7—C8—C4159.65 (18)C9—O23—C24—C250.9 (2)
C6—C7—C8—C436.81 (18)O27—C24—C25—C26177.91 (19)
C4—C8—C9—O2354.40 (18)O23—C24—C25—C262.0 (2)
C7—C8—C9—O2365.0 (2)O27—C24—C25—C282.5 (3)
C4—C8—C9—C26167.82 (14)O23—C24—C25—C28177.65 (18)
C7—C8—C9—C2648.4 (2)C24—C25—C26—O29177.21 (18)
C4—C8—C9—C161.96 (18)C28—C25—C26—O293.2 (4)
C7—C8—C9—C1178.59 (15)C24—C25—C26—C92.2 (2)
C10—C1—C9—O23163.92 (14)C28—C25—C26—C9177.4 (2)
C2—C1—C9—O2373.62 (17)O23—C9—C26—O29177.86 (14)
C10—C1—C9—C2652.0 (2)C8—C9—C26—O2961.0 (2)
C2—C1—C9—C26174.48 (14)C1—C9—C26—O2967.2 (2)
C10—C1—C9—C879.12 (18)O23—C9—C26—C251.60 (19)
C2—C1—C9—C843.34 (18)C8—C9—C26—C25118.51 (17)
C2—C1—C10—C1188.2 (2)C1—C9—C26—C25113.39 (17)
C9—C1—C10—C11147.88 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O29—H29···O27i0.84 (3)1.80 (3)2.6207 (18)166 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

We gratefully thank Anthony D. Wright for collecting the animal material by SCUBA diving and for providing the sponge sample to the Department of Pharmaceutical Biology, Eberhard Karls University, Tübingen.

References

First citationBalansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2010). Bioorg. Med. Chem. 18, 2912–2919.  CrossRef CAS PubMed Google Scholar
First citationBalansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Xiao, X., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2013). Org. Biomol. Chem. 11, 4695–4701.  CrossRef CAS PubMed Google Scholar
First citationBarrow, C. J., Blunt, J. W., Munro, M. H. G. & Perry, N. B. (1988). J. Nat. Prod. 51, 1294–1298.  CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChevallier, C., Bugni, T. S., Feng, X., Harper, M. K., Orendt, A. M. & Ireland, C. M. (2006). J. Org. Chem. 71, 2510–2513.  CrossRef PubMed CAS Google Scholar
First citationColl, J. C., Kearns, P. S., Rideout, J. A. & Hooper, J. (1997). J. Nat. Prod. 60, 1178–1179.  CrossRef CAS Google Scholar
First citationHofheinz, W. & Schönholzer, P. (1977). Helv. Chim. Acta, 60, 1367–1370.  CSD CrossRef CAS PubMed Google Scholar
First citationHöller, U., König, G. M. & Wright, A. D. (1997). J. Nat. Prod. 60, 832–835.  Google Scholar
First citationKobayashi, J., Shinonaga, H., Shigemori, H., Umeyama, A., Shoji, N. & Arihara, S. (1995). J. Nat. Prod. 58, 312–318.  CrossRef CAS PubMed Google Scholar
First citationKondo, K., Shigemori, H., Kikuchi, Y., Ishibashi, M., Sasaki, T. & Kobayashi, J. (1992). J. Org. Chem. 57, 2480–2483.  CrossRef CAS Google Scholar
First citationMau, C. M. S., Nakao, Y., Yoshida, W. Y., Scheuer, P. J. & Kelly-Borges, M. (1996). J. Org. Chem. 61, 6302–6304.  CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2019). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUenishi, J., Kawahama, R. & Yonemitsu, O. (1997). J. Org. Chem. 62, 1691–1701.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds