organic compounds
(2S,3′S,3a'R,5′R,7a'R)-5′-[(E)-5-(Furan-3-yl)-2-methylpent-1-en-1-yl]-3-hydroxy-3′,4,7′-trimethyl-1′,2′,3′,3a',5′,7a'-hexahydro-5H-spiro[furan-2,4′-inden]-5-one
aInstitute of Pharmaceutical Sciences, Department of Pharmaceutical Biology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, bDepartment of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and cInstitute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
*Correspondence e-mail: harald.gross@uni-tuebingen.de
The title compound, ircinianin, C25H32O4, belongs to the sesterterpene tetronic acid compound family and was isolated from the marine sponge Ircinia wistarii. These chemical scaffolds are pharmacologically relevant, since they represent a new class of glycine receptor modulators. The furan ring makes a dihedral angle of 35.14 (12)° to the 4-hydroxy-3-methylfuran-2(5H)-one ring. The crystal packing is characterized by intermolecular O—H⋯O hydrogen bonds, which generate [010] chains.
Keywords: crystal structure; natural product; ircinianin.
CCDC reference: 2047802
Structure description
The genus Ircinia of the sea sponge family Irciniidae is a prolific source of natural products with a huge variety of different natural product classes like and (Coll et al., 1997; Kondo et al., 1992; Kobayashi et al., 1995; Mau et al., 1996; Chevallier et al., 2006). Particularly, regarding the latter compound class, Ircinia spp. are known to produce unusual and rare especially sesterterpene tetronic acids in a linear and cyclic form, like ircinianin and its structural congeners (Hofheinz & Schönholzer, 1977; Barrow et al., 1988; Coll et al., 1997; Höller et al., 1997; Balansa et al., 2013; Balansa et al., 2010).
Balansa et al. (2013) showed that these analogues exhibit a significant isoform-selective potentiation of glycine-gated chloride channel receptors (GlyRs). The compounds have therefore the potential to be developed either as molecular tools to probe GlyR function or can serve as lead structures to treat GlyR-mediated neural disorders.
The title compound (Fig. 1) is a polycyclic sesterterpene tetronic acid with a furan moiety. The furan ring makes a dihedral angle of 35.14 (12)° to the 4-hydroxy-3-methylfuran-2(5H)-one ring. In the crystal, the molecules are linked by O—H⋯O hydrogen bonds (Table 1, Fig. 2), forming chains parallel to the b axis. The of the title compound has already been reported in 1977 by researchers from the pharmaceutical company Hoffmann La Roche (Hofheinz & Schönholzer, 1977; CCDC reference: 1180878). However, in this study the hydrogen atoms were not refined, and only the relative stereochemistry could be deduced. The was so far solely determined by asymmetric total synthesis in 1997 (Uenishi et al., 1997).
Synthesis and crystallization
The title compound C25H32O4 was isolated from the marine sponge Ircinia wistarii. The sample (voucher number HER6) was collected from Wistarii Reef, Heron Island, Great Barrier Reef, Australia in July 1998 from a depth of 20 m. After collection, the material was stored in EtOH and kept frozen at 253 K until use.
The sponge material (800 g, wet weight) was cut into smaller pieces (2 × 2 cm) and was extracted with a solvent mixture of CHCl3/MeOH (1:1, v/v; 2 l of volume per extraction step) for three times (after 4, 8 and 20 h). The extraction solvent of each step was collected and combined. After filtration and evaporation to dryness, 25.46 g crude extract was obtained. The crude extract was redissolved in MeOH and fractioned by preparative reversed phase open [Polygoprep 60–50 C18 (Macherey-Nagel) as stationary phase] using gravity and stepwise MeOH/H2O gradients with increasing and DCM. In total, eleven fractions were gained, and the ircinianin-enriched fraction (MeOH/H2O – 90:10) was identified by LC–MS. This fraction was then purified by reversed phase HPLC [Luna Omega 5 µm Polar C18 100 Å column, 250 × 4.6 mm, at 1.2 ml min−1 and UV detection at 215 nm with a 3 min from 20:80 to 55:45 ACN/H2O + 0.1% TFA, followed by ramping over 27 min to 90:10], yielding 140 mg of ircinianin, judged as pure based on profiles, ESI–MS and NMR spectrometry. Suitable crystals were prepared by slow evaporation at room temperature from a ACN/H2O (65:35) solution under atmospheric pressure.
Spectroscopic data of the title compound were in accordance with literature data (Balansa et al., 2013). For ease of comparison with related compounds, the title compound was given in the NMR section the same numbering scheme as previously used in the literature (Balansa et al., 2013):
1H NMR (400 MHz, MeOH-d4): δ 7.38 (H-1, t, 1.6), 7.26 (H-4, m), 6.30 (H-2, m), 5.11 (H-10, dd, 10.3, 1.1), 5.03 (H-12, m), 3.08 (H-11, dm, 10.3), 2.42 (H-15, m)A, 2.41 (H-5 br t, 7.5)A, 2.04 (H-7, m), 2.00 (H-17a, m), 1.89 (H-16a, m), 1.71 (H-14, m), 1.68 (H-6, m), 1.65 (H-18, m), 1.64 (H-25, s), 1.60 (H-20, m), 1.57 (H-9, d, 1.3), 1.33 (H-16b, m), 1.31 (H-17b, m), 0.92 (H-19, d, 6.3).
13C NMR (100 MHz, MeOH-d4): δ 179.2 (C-22, sC)B, 177.7 (C-24, s)B, 144.0 (C-1, d), 140.3 (C-4, d), 137.1 (C-13, s), 136.6 (C-8, s), 126.5 (C-3, s), 125.0 (C-10, d), 123.6 (C-12, d), 112.1 (C-2, d), 97.5 (C-23, s), 86.9 (C-21, s), 52.0 (C-20, d), 48.7 (C-11, d), 46.2 (C-15, d), 40.5 (C-7, t), 33.6 (C-17, t), 33.2 (C-18, d), 29.5 (C-6, t), 27.3 (C-16, t), 25.3 (C-5, t), 20.8 (C-14, q), 20.7 (C-19, q), 16.3 (C-9, q), 6.1 (C-25, q). [A Overlapping signals; B assignments interchangeable; C implied multiplicities determined by DEPT (qC = s; CH = d; CH2 = t; CH3 = q).]
Refinement
Crystal data, data collection and structure . All hydrogen atoms were located in difference Fourier maps and were refined with isotropic displacement parameters.
details are summarized in Table 2Structural data
CCDC reference: 2047802
https://doi.org/10.1107/S2414314620015783/bt4103sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620015783/bt4103Isup2.hkl
Data collection: X-RED32 and X-AREA (Stoe & Cie, 2019); cell
X-RED32 and X-AREA (Stoe & Cie, 2019); data reduction: X-RED32 and X-AREA (Stoe & Cie, 2019); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020).C25H32O4 | Dx = 1.192 Mg m−3 |
Mr = 396.50 | Cu Kα radiation, λ = 1.54186 Å |
Orthorhombic, P212121 | Cell parameters from 58680 reflections |
a = 10.8217 (2) Å | θ = 2.4–68.0° |
b = 11.1644 (2) Å | µ = 0.63 mm−1 |
c = 18.2804 (5) Å | T = 120 K |
V = 2208.60 (8) Å3 | Coloumn, colourless |
Z = 4 | 0.91 × 0.08 × 0.08 mm |
F(000) = 856 |
Stoe IPDS 2T diffractometer | 3945 independent reflections |
Radiation source: Incoatec microSource Cu | 3849 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.018 |
rotation method, ω scans | θmax = 67.8°, θmin = 4.6° |
Absorption correction: integration | h = −12→12 |
Tmin = 0.914, Tmax = 0.990 | k = −13→13 |
18913 measured reflections | l = −19→21 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0583P)2 + 0.3312P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.086 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.19 e Å−3 |
3945 reflections | Δρmin = −0.20 e Å−3 |
377 parameters | Absolute structure: Flack x determined using 1639 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.03 (9) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.49694 (18) | 0.41060 (15) | 0.47235 (10) | 0.0219 (4) | |
H1 | 0.428 (2) | 0.357 (2) | 0.4651 (13) | 0.030 (6)* | |
C2 | 0.56472 (18) | 0.37841 (17) | 0.54252 (10) | 0.0253 (4) | |
H2 | 0.513 (2) | 0.368 (2) | 0.5861 (13) | 0.025 (5)* | |
C3 | 0.68627 (19) | 0.36830 (17) | 0.55010 (10) | 0.0259 (4) | |
C4 | 0.76937 (17) | 0.38055 (17) | 0.48472 (10) | 0.0236 (4) | |
H4 | 0.786 (2) | 0.301 (2) | 0.4652 (13) | 0.030 (6)* | |
C5 | 0.89455 (18) | 0.4432 (2) | 0.49168 (11) | 0.0301 (4) | |
H5A | 0.954 (2) | 0.393 (2) | 0.5169 (13) | 0.029 (4)* | |
H5AB | 0.883 (2) | 0.521 (2) | 0.5200 (13) | 0.029 (4)* | |
C6 | 0.9310 (2) | 0.4654 (2) | 0.41093 (12) | 0.0380 (5) | |
H6A | 0.993 (3) | 0.406 (3) | 0.3941 (16) | 0.052 (5)* | |
H6AB | 0.967 (3) | 0.552 (3) | 0.4041 (16) | 0.052 (5)* | |
C7 | 0.81215 (17) | 0.45092 (17) | 0.36372 (10) | 0.0259 (4) | |
H7 | 0.815 (3) | 0.373 (2) | 0.3362 (15) | 0.042 (7)* | |
C8 | 0.70955 (17) | 0.44944 (16) | 0.42160 (10) | 0.0214 (4) | |
H8 | 0.694 (2) | 0.535 (2) | 0.4385 (12) | 0.024 (5)* | |
C9 | 0.58241 (17) | 0.39703 (15) | 0.40444 (10) | 0.0205 (4) | |
C10 | 0.44429 (17) | 0.53607 (16) | 0.48011 (10) | 0.0235 (4) | |
H10 | 0.500 (2) | 0.602 (2) | 0.4651 (13) | 0.030 (6)* | |
C11 | 0.33472 (19) | 0.56473 (18) | 0.50782 (10) | 0.0284 (4) | |
C12 | 0.2416 (2) | 0.4744 (2) | 0.53387 (18) | 0.0485 (6) | |
H12A | 0.181 (4) | 0.508 (5) | 0.553 (3) | 0.111 (9)* | |
H12B | 0.277 (5) | 0.402 (4) | 0.551 (3) | 0.111 (9)* | |
H12C | 0.208 (5) | 0.437 (4) | 0.482 (3) | 0.111 (9)* | |
C13 | 0.2955 (2) | 0.69443 (19) | 0.51459 (12) | 0.0333 (5) | |
H13A | 0.368 (3) | 0.746 (3) | 0.5061 (17) | 0.053 (6)* | |
H13B | 0.260 (3) | 0.702 (3) | 0.5669 (18) | 0.053 (6)* | |
C14 | 0.1950 (2) | 0.7288 (2) | 0.45910 (12) | 0.0347 (5) | |
H14A | 0.122 (3) | 0.665 (3) | 0.4642 (16) | 0.054 (6)* | |
H14B | 0.158 (3) | 0.819 (3) | 0.4699 (17) | 0.054 (6)* | |
C15 | 0.2427 (2) | 0.7328 (2) | 0.38087 (13) | 0.0426 (5) | |
H15A | 0.304 (3) | 0.814 (3) | 0.3804 (18) | 0.066 (6)* | |
H15B | 0.280 (3) | 0.652 (3) | 0.3716 (18) | 0.066 (6)* | |
C16 | 0.1423 (2) | 0.7499 (2) | 0.32518 (12) | 0.0363 (5) | |
C17 | 0.1271 (2) | 0.6877 (2) | 0.26257 (13) | 0.0422 (5) | |
H17 | 0.169 (2) | 0.617 (2) | 0.2377 (13) | 0.033 (6)* | |
O18 | 0.02589 (17) | 0.72790 (16) | 0.22460 (9) | 0.0467 (4) | |
C19 | −0.0236 (2) | 0.8178 (2) | 0.26580 (14) | 0.0444 (6) | |
H19 | −0.103 (3) | 0.863 (3) | 0.2478 (16) | 0.049 (8)* | |
C20 | 0.0435 (2) | 0.8351 (2) | 0.32708 (13) | 0.0404 (5) | |
H20 | 0.029 (3) | 0.894 (3) | 0.3654 (16) | 0.044 (7)* | |
C21 | 0.7463 (2) | 0.3359 (2) | 0.62195 (12) | 0.0371 (5) | |
H21A | 0.810 (3) | 0.393 (3) | 0.6351 (16) | 0.052 (5)* | |
H21B | 0.791 (3) | 0.266 (3) | 0.6173 (16) | 0.052 (5)* | |
H21C | 0.686 (3) | 0.331 (3) | 0.6612 (17) | 0.052 (5)* | |
C22 | 0.8012 (2) | 0.5468 (2) | 0.30527 (13) | 0.0395 (5) | |
H22A | 0.727 (3) | 0.533 (3) | 0.2718 (17) | 0.053 (4)* | |
H22B | 0.881 (3) | 0.544 (3) | 0.2759 (17) | 0.053 (4)* | |
H22C | 0.792 (3) | 0.626 (3) | 0.3312 (17) | 0.053 (4)* | |
O23 | 0.59733 (12) | 0.26878 (10) | 0.39111 (7) | 0.0211 (3) | |
C24 | 0.55392 (17) | 0.24167 (15) | 0.32376 (9) | 0.0217 (4) | |
C25 | 0.50545 (18) | 0.34673 (15) | 0.28756 (9) | 0.0228 (4) | |
C26 | 0.52443 (16) | 0.43886 (16) | 0.33396 (9) | 0.0209 (4) | |
O27 | 0.56032 (13) | 0.13752 (11) | 0.30220 (7) | 0.0271 (3) | |
C28 | 0.4465 (2) | 0.34514 (19) | 0.21335 (11) | 0.0321 (5) | |
H28A | 0.434 (4) | 0.417 (4) | 0.195 (2) | 0.077 (6)* | |
H28B | 0.375 (4) | 0.296 (3) | 0.215 (2) | 0.077 (6)* | |
H28C | 0.499 (4) | 0.307 (3) | 0.178 (2) | 0.077 (6)* | |
O29 | 0.50180 (13) | 0.55511 (11) | 0.32690 (7) | 0.0258 (3) | |
H29 | 0.481 (3) | 0.569 (3) | 0.2837 (18) | 0.048 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0240 (8) | 0.0201 (8) | 0.0215 (9) | −0.0012 (7) | 0.0001 (7) | −0.0006 (6) |
C2 | 0.0310 (10) | 0.0253 (9) | 0.0196 (8) | 0.0011 (8) | 0.0014 (8) | −0.0005 (7) |
C3 | 0.0316 (10) | 0.0257 (9) | 0.0205 (9) | 0.0010 (8) | −0.0017 (8) | −0.0013 (7) |
C4 | 0.0266 (9) | 0.0231 (9) | 0.0212 (9) | 0.0005 (7) | −0.0032 (7) | −0.0007 (7) |
C5 | 0.0255 (10) | 0.0339 (10) | 0.0310 (10) | −0.0016 (8) | −0.0049 (8) | −0.0019 (9) |
C6 | 0.0274 (11) | 0.0511 (14) | 0.0356 (11) | −0.0073 (10) | 0.0008 (9) | 0.0015 (10) |
C7 | 0.0269 (9) | 0.0252 (9) | 0.0255 (9) | −0.0016 (7) | 0.0036 (7) | −0.0008 (7) |
C8 | 0.0256 (9) | 0.0180 (8) | 0.0206 (8) | −0.0008 (7) | −0.0006 (7) | −0.0005 (7) |
C9 | 0.0273 (9) | 0.0147 (8) | 0.0195 (8) | 0.0010 (6) | −0.0015 (7) | −0.0012 (6) |
C10 | 0.0263 (9) | 0.0218 (8) | 0.0224 (8) | −0.0006 (7) | −0.0033 (7) | −0.0026 (7) |
C11 | 0.0295 (10) | 0.0281 (9) | 0.0276 (9) | 0.0021 (8) | −0.0004 (7) | −0.0030 (8) |
C12 | 0.0376 (12) | 0.0383 (13) | 0.0695 (18) | 0.0016 (10) | 0.0184 (12) | 0.0015 (12) |
C13 | 0.0331 (10) | 0.0309 (11) | 0.0358 (11) | 0.0066 (9) | −0.0017 (9) | −0.0085 (8) |
C14 | 0.0321 (10) | 0.0346 (11) | 0.0374 (11) | 0.0067 (9) | −0.0001 (9) | −0.0071 (9) |
C15 | 0.0372 (12) | 0.0515 (14) | 0.0393 (12) | 0.0121 (11) | 0.0019 (10) | 0.0029 (11) |
C16 | 0.0388 (12) | 0.0351 (10) | 0.0351 (11) | −0.0006 (9) | 0.0030 (9) | 0.0030 (9) |
C17 | 0.0490 (13) | 0.0400 (12) | 0.0377 (12) | −0.0029 (11) | 0.0054 (10) | 0.0032 (10) |
O18 | 0.0504 (10) | 0.0526 (10) | 0.0371 (8) | −0.0140 (8) | −0.0016 (7) | 0.0023 (7) |
C19 | 0.0394 (13) | 0.0498 (14) | 0.0439 (13) | −0.0018 (10) | −0.0021 (10) | 0.0103 (11) |
C20 | 0.0414 (12) | 0.0399 (12) | 0.0398 (12) | 0.0038 (10) | −0.0014 (10) | 0.0006 (10) |
C21 | 0.0370 (12) | 0.0530 (14) | 0.0214 (10) | 0.0089 (11) | −0.0025 (9) | 0.0007 (9) |
C22 | 0.0391 (12) | 0.0416 (12) | 0.0378 (12) | −0.0005 (10) | 0.0090 (9) | 0.0124 (10) |
O23 | 0.0291 (7) | 0.0148 (6) | 0.0192 (6) | 0.0009 (5) | −0.0029 (5) | −0.0005 (4) |
C24 | 0.0255 (9) | 0.0200 (8) | 0.0196 (8) | −0.0018 (7) | 0.0004 (7) | −0.0013 (6) |
C25 | 0.0275 (9) | 0.0202 (9) | 0.0207 (8) | 0.0004 (7) | −0.0027 (7) | 0.0003 (7) |
C26 | 0.0240 (8) | 0.0180 (8) | 0.0208 (8) | 0.0007 (7) | 0.0008 (7) | 0.0011 (7) |
O27 | 0.0388 (7) | 0.0178 (6) | 0.0247 (6) | 0.0005 (5) | −0.0051 (6) | −0.0038 (5) |
C28 | 0.0453 (12) | 0.0258 (10) | 0.0251 (9) | 0.0035 (9) | −0.0114 (9) | −0.0027 (8) |
O29 | 0.0379 (7) | 0.0177 (6) | 0.0217 (6) | 0.0035 (5) | −0.0040 (6) | 0.0013 (5) |
C1—C10 | 1.519 (2) | C13—H13A | 0.98 (3) |
C1—C2 | 1.521 (2) | C13—H13B | 1.03 (3) |
C1—C9 | 1.555 (2) | C14—C15 | 1.521 (3) |
C1—H1 | 0.96 (2) | C14—H14A | 1.07 (3) |
C2—C3 | 1.327 (3) | C14—H14B | 1.10 (3) |
C2—H2 | 0.98 (2) | C15—C16 | 1.502 (3) |
C3—C4 | 1.502 (3) | C15—H15A | 1.12 (3) |
C3—C21 | 1.509 (3) | C15—H15B | 1.01 (3) |
C4—C5 | 1.530 (3) | C16—C17 | 1.349 (3) |
C4—C8 | 1.530 (2) | C16—C20 | 1.431 (3) |
C4—H4 | 0.97 (2) | C17—O18 | 1.372 (3) |
C5—C6 | 1.548 (3) | C17—H17 | 1.01 (3) |
C5—H5A | 0.97 (2) | O18—C19 | 1.365 (3) |
C5—H5AB | 1.02 (3) | C19—C20 | 1.349 (3) |
C6—C7 | 1.557 (3) | C19—H19 | 1.05 (3) |
C6—H6A | 0.99 (3) | C20—H20 | 0.98 (3) |
C6—H6AB | 1.05 (3) | C21—H21A | 0.97 (3) |
C7—C22 | 1.517 (3) | C21—H21B | 0.92 (3) |
C7—C8 | 1.534 (2) | C21—H21C | 0.97 (3) |
C7—H7 | 1.00 (3) | C22—H22A | 1.02 (3) |
C8—C9 | 1.528 (3) | C22—H22B | 1.02 (3) |
C8—H8 | 1.02 (2) | C22—H22C | 1.01 (3) |
C9—O23 | 1.4613 (19) | O23—C24 | 1.352 (2) |
C9—C26 | 1.507 (2) | C24—O27 | 1.230 (2) |
C10—C11 | 1.329 (3) | C24—C25 | 1.445 (2) |
C10—H10 | 0.99 (3) | C25—C26 | 1.349 (3) |
C11—C12 | 1.503 (3) | C25—C28 | 1.499 (2) |
C11—C13 | 1.514 (3) | C26—O29 | 1.327 (2) |
C12—H12A | 0.83 (5) | C28—H28A | 0.88 (4) |
C12—H12B | 0.95 (5) | C28—H28B | 0.95 (4) |
C12—H12C | 1.10 (5) | C28—H28C | 0.96 (4) |
C13—C14 | 1.536 (3) | O29—H29 | 0.84 (3) |
C10—C1—C2 | 108.67 (15) | C11—C13—C14 | 112.56 (17) |
C10—C1—C9 | 112.79 (14) | C11—C13—H13A | 108.7 (19) |
C2—C1—C9 | 111.31 (15) | C14—C13—H13A | 108.3 (19) |
C10—C1—H1 | 107.0 (14) | C11—C13—H13B | 105.1 (17) |
C2—C1—H1 | 110.1 (14) | C14—C13—H13B | 108.9 (17) |
C9—C1—H1 | 106.9 (14) | H13A—C13—H13B | 113 (3) |
C3—C2—C1 | 125.88 (17) | C15—C14—C13 | 112.82 (19) |
C3—C2—H2 | 117.9 (14) | C15—C14—H14A | 110.7 (16) |
C1—C2—H2 | 116.2 (14) | C13—C14—H14A | 107.4 (17) |
C2—C3—C4 | 120.16 (17) | C15—C14—H14B | 105.3 (16) |
C2—C3—C21 | 122.54 (19) | C13—C14—H14B | 111.4 (16) |
C4—C3—C21 | 117.16 (17) | H14A—C14—H14B | 109 (2) |
C3—C4—C5 | 120.37 (16) | C16—C15—C14 | 113.3 (2) |
C3—C4—C8 | 113.11 (16) | C16—C15—H15A | 108.9 (17) |
C5—C4—C8 | 101.99 (15) | C14—C15—H15A | 103.4 (17) |
C3—C4—H4 | 108.6 (14) | C16—C15—H15B | 107 (2) |
C5—C4—H4 | 106.4 (14) | C14—C15—H15B | 105.6 (19) |
C8—C4—H4 | 105.2 (14) | H15A—C15—H15B | 119 (3) |
C4—C5—C6 | 102.69 (16) | C17—C16—C20 | 105.8 (2) |
C4—C5—H5A | 111.3 (14) | C17—C16—C15 | 126.7 (2) |
C6—C5—H5A | 112.2 (14) | C20—C16—C15 | 127.5 (2) |
C4—C5—H5AB | 108.8 (13) | C16—C17—O18 | 111.0 (2) |
C6—C5—H5AB | 112.4 (13) | C16—C17—H17 | 136.5 (14) |
H5A—C5—H5AB | 109.3 (19) | O18—C17—H17 | 112.5 (14) |
C5—C6—C7 | 107.52 (16) | C19—O18—C17 | 105.96 (18) |
C5—C6—H6A | 111.3 (17) | C20—C19—O18 | 110.6 (2) |
C7—C6—H6A | 108.5 (18) | C20—C19—H19 | 129.1 (17) |
C5—C6—H6AB | 110.9 (16) | O18—C19—H19 | 120.3 (16) |
C7—C6—H6AB | 109.8 (16) | C19—C20—C16 | 106.7 (2) |
H6A—C6—H6AB | 109 (2) | C19—C20—H20 | 127.2 (17) |
C22—C7—C8 | 115.92 (17) | C16—C20—H20 | 126.1 (17) |
C22—C7—C6 | 112.42 (18) | C3—C21—H21A | 111.3 (18) |
C8—C7—C6 | 102.52 (15) | C3—C21—H21B | 110.5 (19) |
C22—C7—H7 | 104.9 (16) | H21A—C21—H21B | 102 (3) |
C8—C7—H7 | 111.4 (16) | C3—C21—H21C | 111.6 (18) |
C6—C7—H7 | 109.8 (16) | H21A—C21—H21C | 109 (2) |
C9—C8—C4 | 110.08 (15) | H21B—C21—H21C | 112 (3) |
C9—C8—C7 | 120.96 (15) | C7—C22—H22A | 111.9 (17) |
C4—C8—C7 | 102.67 (15) | C7—C22—H22B | 106.6 (17) |
C9—C8—H8 | 105.9 (12) | H22A—C22—H22B | 110 (2) |
C4—C8—H8 | 108.2 (12) | C7—C22—H22C | 107.2 (18) |
C7—C8—H8 | 108.6 (12) | H22A—C22—H22C | 110 (2) |
O23—C9—C26 | 101.95 (13) | H22B—C22—H22C | 111 (3) |
O23—C9—C8 | 108.06 (14) | C24—O23—C9 | 109.44 (13) |
C26—C9—C8 | 115.58 (15) | O27—C24—O23 | 118.94 (16) |
O23—C9—C1 | 107.11 (13) | O27—C24—C25 | 129.87 (17) |
C26—C9—C1 | 113.87 (14) | O23—C24—C25 | 111.19 (14) |
C8—C9—C1 | 109.53 (14) | C26—C25—C24 | 106.00 (15) |
C11—C10—C1 | 126.34 (18) | C26—C25—C28 | 130.00 (17) |
C11—C10—H10 | 118.1 (14) | C24—C25—C28 | 124.01 (16) |
C1—C10—H10 | 115.5 (14) | O29—C26—C25 | 131.03 (16) |
C10—C11—C12 | 123.88 (19) | O29—C26—C9 | 117.58 (15) |
C10—C11—C13 | 120.76 (19) | C25—C26—C9 | 111.38 (15) |
C12—C11—C13 | 115.36 (19) | C25—C28—H28A | 114 (3) |
C11—C12—H12A | 111 (3) | C25—C28—H28B | 109 (2) |
C11—C12—H12B | 114 (3) | H28A—C28—H28B | 114 (3) |
H12A—C12—H12B | 125 (4) | C25—C28—H28C | 111 (2) |
C11—C12—H12C | 102 (3) | H28A—C28—H28C | 104 (3) |
H12A—C12—H12C | 106 (4) | H28B—C28—H28C | 103 (3) |
H12B—C12—H12C | 95 (3) | C26—O29—H29 | 109 (2) |
C10—C1—C2—C3 | −109.2 (2) | C1—C10—C11—C12 | −2.5 (3) |
C9—C1—C2—C3 | 15.6 (3) | C1—C10—C11—C13 | 177.95 (18) |
C1—C2—C3—C4 | −4.4 (3) | C10—C11—C13—C14 | 107.9 (2) |
C1—C2—C3—C21 | 180.00 (19) | C12—C11—C13—C14 | −71.7 (3) |
C2—C3—C4—C5 | 142.7 (2) | C11—C13—C14—C15 | −69.9 (3) |
C21—C3—C4—C5 | −41.5 (3) | C13—C14—C15—C16 | 172.2 (2) |
C2—C3—C4—C8 | 21.9 (3) | C14—C15—C16—C17 | −133.3 (2) |
C21—C3—C4—C8 | −162.28 (18) | C14—C15—C16—C20 | 46.9 (3) |
C3—C4—C5—C6 | −165.52 (18) | C20—C16—C17—O18 | 0.3 (3) |
C8—C4—C5—C6 | −39.4 (2) | C15—C16—C17—O18 | −179.6 (2) |
C4—C5—C6—C7 | 16.7 (2) | C16—C17—O18—C19 | −0.5 (3) |
C5—C6—C7—C22 | 137.51 (19) | C17—O18—C19—C20 | 0.5 (3) |
C5—C6—C7—C8 | 12.3 (2) | O18—C19—C20—C16 | −0.4 (3) |
C3—C4—C8—C9 | −50.8 (2) | C17—C16—C20—C19 | 0.1 (3) |
C5—C4—C8—C9 | 178.42 (14) | C15—C16—C20—C19 | 179.9 (2) |
C3—C4—C8—C7 | 179.09 (15) | C26—C9—O23—C24 | −0.34 (18) |
C5—C4—C8—C7 | 48.36 (17) | C8—C9—O23—C24 | −122.55 (15) |
C22—C7—C8—C9 | 77.3 (2) | C1—C9—O23—C24 | 119.52 (15) |
C6—C7—C8—C9 | −159.85 (17) | C9—O23—C24—O27 | 178.94 (16) |
C22—C7—C8—C4 | −159.65 (18) | C9—O23—C24—C25 | −0.9 (2) |
C6—C7—C8—C4 | −36.81 (18) | O27—C24—C25—C26 | −177.91 (19) |
C4—C8—C9—O23 | −54.40 (18) | O23—C24—C25—C26 | 2.0 (2) |
C7—C8—C9—O23 | 65.0 (2) | O27—C24—C25—C28 | 2.5 (3) |
C4—C8—C9—C26 | −167.82 (14) | O23—C24—C25—C28 | −177.65 (18) |
C7—C8—C9—C26 | −48.4 (2) | C24—C25—C26—O29 | 177.21 (18) |
C4—C8—C9—C1 | 61.96 (18) | C28—C25—C26—O29 | −3.2 (4) |
C7—C8—C9—C1 | −178.59 (15) | C24—C25—C26—C9 | −2.2 (2) |
C10—C1—C9—O23 | −163.92 (14) | C28—C25—C26—C9 | 177.4 (2) |
C2—C1—C9—O23 | 73.62 (17) | O23—C9—C26—O29 | −177.86 (14) |
C10—C1—C9—C26 | −52.0 (2) | C8—C9—C26—O29 | −61.0 (2) |
C2—C1—C9—C26 | −174.48 (14) | C1—C9—C26—O29 | 67.2 (2) |
C10—C1—C9—C8 | 79.12 (18) | O23—C9—C26—C25 | 1.60 (19) |
C2—C1—C9—C8 | −43.34 (18) | C8—C9—C26—C25 | 118.51 (17) |
C2—C1—C10—C11 | −88.2 (2) | C1—C9—C26—C25 | −113.39 (17) |
C9—C1—C10—C11 | 147.88 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O29—H29···O27i | 0.84 (3) | 1.80 (3) | 2.6207 (18) | 166 (3) |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Acknowledgements
We gratefully thank Anthony D. Wright for collecting the animal material by SCUBA diving and for providing the sponge sample to the Department of Pharmaceutical Biology, Eberhard Karls University, Tübingen.
References
Balansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2010). Bioorg. Med. Chem. 18, 2912–2919. CrossRef CAS PubMed Google Scholar
Balansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Xiao, X., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2013). Org. Biomol. Chem. 11, 4695–4701. CrossRef CAS PubMed Google Scholar
Barrow, C. J., Blunt, J. W., Munro, M. H. G. & Perry, N. B. (1988). J. Nat. Prod. 51, 1294–1298. CrossRef CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chevallier, C., Bugni, T. S., Feng, X., Harper, M. K., Orendt, A. M. & Ireland, C. M. (2006). J. Org. Chem. 71, 2510–2513. CrossRef PubMed CAS Google Scholar
Coll, J. C., Kearns, P. S., Rideout, J. A. & Hooper, J. (1997). J. Nat. Prod. 60, 1178–1179. CrossRef CAS Google Scholar
Hofheinz, W. & Schönholzer, P. (1977). Helv. Chim. Acta, 60, 1367–1370. CSD CrossRef CAS PubMed Google Scholar
Höller, U., König, G. M. & Wright, A. D. (1997). J. Nat. Prod. 60, 832–835. Google Scholar
Kobayashi, J., Shinonaga, H., Shigemori, H., Umeyama, A., Shoji, N. & Arihara, S. (1995). J. Nat. Prod. 58, 312–318. CrossRef CAS PubMed Google Scholar
Kondo, K., Shigemori, H., Kikuchi, Y., Ishibashi, M., Sasaki, T. & Kobayashi, J. (1992). J. Org. Chem. 57, 2480–2483. CrossRef CAS Google Scholar
Mau, C. M. S., Nakao, Y., Yoshida, W. Y., Scheuer, P. J. & Kelly-Borges, M. (1996). J. Org. Chem. 61, 6302–6304. CrossRef PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2019). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Uenishi, J., Kawahama, R. & Yonemitsu, O. (1997). J. Org. Chem. 62, 1691–1701. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.