metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[barium(II)-μ2-(di­methyl sulfoxide)-κ2O:O-bis­­(μ2-2,4,6-tri­nitro­phenolato-κ4O2,O1:O1,O6)]

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, Goa University, Goa 403206, India
*Correspondence e-mail: srini@unigoa.ac.in

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 October 2020; accepted 10 November 2020; online 13 November 2020)

The asymmetric unit of the title barium coordination polymer, [Ba(C6H2N3O7)2(C2H6OS)]n, consists of a barium cation (site symmetry m) and a dimethyl sulfoxide (DMSO) ligand (point group symmetry m) and a 2,4,6-tri­nitro­phenolate anion located in general positions. The S atom and the methyl group of DMSO are disordered over two sets of sites. The DMSO ligand bridges a pair of BaII atoms resulting in a chain extending parallel to the a axis. The unique 2,4,6-tri­nitro­phenolate anion also bridges a pair of BaII ions via the phenolic oxygen atom, with each BaII being additionally bonded to an oxygen atom of an adjacent nitro group. The μ2-monoatomic bridging binding mode of both types of ligands results in the formation of an infinite chain of face-sharing {BaO10} polyhedra flanked by the remaining parts of the 2,4,6-tri­nitro­phenolato and DMSO ligands. In the one-dimensional coordination polymer, parallel chains are inter­linked with the aid of C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of an ongoing research program, we were investigating the synthetic and structural aspects of bivalent metal salts of picric acid (also known as 2,4,6-tri­nitro­phenol) containing zwitterionic glycine ligands (Srinivasan et al., 2019[Srinivasan, B. R., Parsekar, N. U., Apreyan, R. A. & Petrosyan, A. M. (2019). Mol. Cryst. Liq. Cryst. 680, 75-84.]). During the course of these studies, the glycine-free title compound, [Ba(C6H2N3O7)2(C2H6OS)] (1), was obtained serendipitously.

Compound (1) contains a coordinating DMSO mol­ecule but no glycine. A perusal of the Cambridge Structural Database (CSD, version 5.41, update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals examples of structurally characterized BaII picrates devoid of DMSO (Hughes & Wingfield, 1977[Hughes, D. L. & Wingfield, J. N. (1977). J. Chem. Soc. Chem. Commun. pp. 804-805.]; Postma et al., 1983[Postma, R., Kanters, J. A., Duisenberg, A. J. M., Venkatasubramanian, K. & Poonia, N. S. (1983). Acta Cryst. C39, 1221-1225.]; Chandler et al., 1988[Chandler, C. J., Gable, R. W., Gulbis, J. M. & Mackay, M. F. (1988). Aust. J. Chem. 41, 799-806.]; Harrowfield et al., 1995[Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem. 48, 1333-1347.]; Hong et al., 2007[Hong, P.-Z., Song, W.-D. & Wu, Z.-H. (2007). Acta Cryst. E63, m2296.]). In addition, BaII compounds containing DMSO as solvent mol­ecules (Studebaker et al., 2000[Studebaker, D. B., Neumayer, D. A., Hinds, B. J., Stern, C. L. & Marks, T. J. (2000). Inorg. Chem. 39, 3148-3157.]; Fichtel et al., 2004[Fichtel, K., Hofmann, K. & Behrens, U. (2004). Organometallics, 23, 4166-4168.]; Ferrando-Soria et al., 2012[Ferrando-Soria, J., Rood, M. T. M., Julve, M., Lloret, F., Journaux, Y., Pasán, J., Ruiz-Pérez, C., Fabelo, O. & Pardo, E. (2012). CrystEngComm, 14, 761-764.]), and as monodentate and/or bridging bidentate ligands (Harrowfield et al., 2004[Harrowfield, J. M., Richmond, W. R., Skelton, B. W. & White, A. H. (2004). Eur. J. Inorg. Chem. pp. 227-230.]; Pi et al., 2009[Pi, C., Wan, L., Liu, W., Pan, Z., Wu, H., Wang, Y., Zheng, W., Weng, L., Chen, Z. & Wu, L. (2009). Inorg. Chem. 48, 2967-2975.]; Gschwind & Jansen 2012[Gschwind, F. & Jansen, M. (2012). Acta Cryst. E68, m1319.]) charge-balanced by anions other than picrate are also known. The title compound is a new example of a BaII compound in which both the DMSO and picrate ligands function as μ2-bridges.

The asymmetric unit of (1) consists of a barium(II) cation and the S and O atom of a dimethyl sulfoxide (DMSO) ligand located on a mirror plane. The 2,4,6-tri­nitro­phenolate anion is located in a general position (Fig. 1[link]). Atom S11 of the DMSO ligand and the attached methyl group (C11) are disordered over two sets of sites. Bond lengths and angles of the picrate anion and the DMSO ligand are in agreement with reported data (Srinivasan et al., 2019[Srinivasan, B. R., Parsekar, N. U., Apreyan, R. A. & Petrosyan, A. M. (2019). Mol. Cryst. Liq. Cryst. 680, 75-84.], 2020[Srinivasan, B. R., Tari, S. P., Parsekar, N. U. & Narvekar, K. U. (2020). Indian J Chem, 59A, 51-56.]). The central BaII atom exhibits ten-coordination and is bonded to eight oxygen atoms of four symmetry-related picrate anions and two oxygen atoms of two DMSO ligands resulting in a distorted {BaO10} polyhedron (Fig. 2[link]). The deviation of the {BaO10} coordination polyhedron from a regular shape can be evidenced by the Ba—O bond lengths which range from 2.725 (2) to 2.970 (3) Å and the O—Ba—O bond angles which vary between 57.15 (12) and 151.94 (9)°. Both DMSO and picrate ligands exhibit an μ2-monoatomic bridging binding mode resulting in chains extending parallel to the a axis with an identical Ba⋯Ba separation of 4.1933 (2) Å (Fig. 3[link]). The oxygen O11 atom of DMSO binds with a BaII atom at a Ba1—O11 distance of 2.906 (4) Å and further coordinates with a symmetry-related Baiv [symmetry code: (iv) x + 1, y, z] atom at a shorter distance of 2.783 (4) Å.

[Figure 1]
Figure 1
The coordination environment of the BaII atom in the crystal structure of [Ba(C6H2N3O7)2(C2H6OS)]. Displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms. [Symmetry codes: (i) x, −y + [{1\over 2}], z; (ii) x − 1, y, z; (iii) x, −y + [{1\over 2}], z; (iv) x + 1, y, z.]
[Figure 2]
Figure 2
The distorted {BaO10} coordination polyhedron in the crystal structure of [Ba(C6H2N3O7)2(C2H6OS)]. Symmetry codes are as in Fig. 1[link].
[Figure 3]
Figure 3
(Top) BaII cations bridged by O11 of DMSO, which results in the formation of chains extending along the a-axis direction. For clarity, the disordered S atom and the methyl group of the DMSO ligands as well as the picrate ligands are not displayed; (bottom) the chain showing the μ2-monoatomic bridging binding of the picrate and DMSO ligands. For clarity, only the bridging O11 atom of the DMSO ligands are shown. Each BaII atom in the chain is bonded to ten O atoms (see Fig. 2[link]).

Binding of the nitro oxygen atom(s) of the picrate ligand is well documented in the literature for potassium picrate (Maartmann-Moe, 1969[Maartmann-Moe, K. (1969). Acta Cryst. B25, 1452-1460.]) and for many alkaline-earth picrates (Harrowfield et al., 1995[Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem. 48, 1333-1347.]). In the mol­ecular compounds, [Ba(L)(pic)2] (L = dibenzo-24-crown-8), [Ba(acetone)(pic)2(phen)2] (pic = picrate; phen = 1,10-phenanthroline) and [Ba(L′)(pic)2] (L′ = di­aza 21-crown-7 ether), the picrate anion functions as a bidentate and or monodentate ligand (Hughes & Wingfield, 1977[Hughes, D. L. & Wingfield, J. N. (1977). J. Chem. Soc. Chem. Commun. pp. 804-805.]; Postma et al., 1983[Postma, R., Kanters, J. A., Duisenberg, A. J. M., Venkatasubramanian, K. & Poonia, N. S. (1983). Acta Cryst. C39, 1221-1225.]; Chandler et al., 1988[Chandler, C. J., Gable, R. W., Gulbis, J. M. & Mackay, M. F. (1988). Aust. J. Chem. 41, 799-806.]). In the water-rich coordination polymer [Ba(H2O)5(C6H2N3O7)2]·H2O, one picrate anion functions as a bidentate ligand via the phenolate oxygen and an adjacent nitro O atom, while the second independent picrate anion functions as a μ2-bridg­ing tridentate ligand (Harrowfield et al., 1995[Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem. 48, 1333-1347.]).

In the crystal structure of (1), the phenolate atom O1 makes a short Ba—O1 bond of 2.730 (2) Å and is further linked to a symmetry-related Baii [symmetry code: (ii) x − 1, y, z] atom accompanied by the shortest Ba—O bond of 2.725 (2) Å. Each of the BaII atoms bridged by O1 is further coordinated by an oxygen atom of the nitro group with longer bond lengths [Ba1—O7ii = 2.865 (2) Å; Ba1—O2 = 2.970 (3) Å]. Thus, the unique 2,4,6-tri­nitro­phenolate anion bridges a pair of BaII ions via the phenolic oxygen atom, and each BaII atom is bonded to an oxygen atom of an adjacent nitro group resulting in a μ2-monoatomic bridging bis-bidentate binding mode for this ligand. In the chain, each BaII atom is bonded to eight oxygen atoms of four symmetry-related picrate anions, and a pair of adjacent BaII atoms are bridged by two symmetry-related phenolate oxygen atoms (Fig. 3[link]).

A polyhedral chain of face-sharing {BaO9} units flanked by organic ligands was reported recently in the one-dimensional polymeric compound [Ba(H2O)2(NMF)2(4-nba)2] (NMF = N-methyl­formamide; 4-nba = 4-nitro­benzoate) due to a μ2-binding aqua ligand and a pair of symmetry-related μ2-monoatomic bridging 4-nba ligands (Bhargao & Srinivasan, 2019[Bhargao, P. H. & Srinivasan, B. R. (2019). J. Coord. Chem. 72, 2599-2615.]). Likewise, the monoatomic bridging binding modes of the unique DMSO and the phenolate oxygen atoms of the picrate ligands in the structure of (1) result in the formation of an infinite chain of face-sharing {BaO10} polyhedra flanked by 2,4,6-tri­nitro­phenolate and dimethyl sulfoxide ligands (Fig. 4[link]). In the reported water-rich compound [Ba(H2O)5(C6H2N3O7)2]·H2O, however, the central BaII atom exhibits ten-coordination and is bonded to five monodentate aqua ligands and a bidentate picrate anion (Harrowfield et al., 1995[Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem. 48, 1333-1347.]). A second unique picrate anion is a μ2-bridging tridentate ligand and binds to a BaII atom via a phenolate oxygen atom. The cation is also linked to an oxygen atom of an ortho nitro group and is bridged to a second BaII via an oxygen of the nitro group trans to the phenolate oxygen (Fig. 4[link]). In this one-dimensional coordination polymer, discrete {BaO10} polyhedra are bridged by a picrate anion due to the absence of any monoatomic bridge.

[Figure 4]
Figure 4
Face sharing {BaO10} polyhedra in the crystal structure of (1) (top) versus discrete {BaO10} polyhedra in the crystal structure of [Ba(H2O)5(C6H2N3O7)2]·H2O (bottom).

The aromatic hydrogen atoms H3 and H5 are attached to the C3 and C5 donor atoms while the nitro oxygen atoms O4 and O6 function as hydrogen acceptors, resulting in inter­chain C—H⋯O hydrogen bonding inter­actions. In this way, each chain is linked on either side to two other chains (Table 1[link], Fig. 5[link]) into a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4v 0.93 2.43 3.283 (5) 153
C5—H5⋯O6vi 0.90 (4) 2.63 (4) 3.492 (5) 159 (3)
Symmetry codes: (v) [-x+1, -y+1, -z]; (vi) [-x+3, -y+1, -z+1].
[Figure 5]
Figure 5
Inter­chain C—H⋯O hydrogen bonds, shown as broken pink lines for the C3—H3⋯O4v inter­action on the right and for the C5—H5⋯O6vi inter­action on the left, link adjacent polymeric chains. [Symmetry codes: (v) 1 − x, 1 − y, −z; (vi) 3 − x, 1 − y, 1 − z.]

Synthesis and crystallization

To a slurry of barium carbonate (0.395 g, 2 mmol) in water, picric acid (0.916 g, 4 mmol) in water (40 ml) was added and the reaction mixture was heated on a water bath. Brisk effervescence was observed resulting in dissolution of the insoluble carbonate. The reaction mixture was then filtered into a beaker containing glycine (4 mmol, 0.3002 g) in water. The filtrate was left aside for crystallization. A yellow precipitate was filtered off and subsequently dissolved in DMSO (10 ml); this solution was left undisturbed. The crystalline product, which separated after two days, was isolated by filtration, washed with di­chloro­methane and dried in air; yield 0.95 g. Compound (1) can also be obtained without addition of glycine in the reaction by dissolving barium carbonate in aqueous picric acid to obtain the dipicrate of barium in situ. Concentration of the reaction mixture to a small volume followed by addition of DMSO afforded (1) as above.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ba(C6H2N3O7)2(C2H6OS)]
Mr 671.68
Crystal system, space group Monoclinic, P21/m
Temperature (K) 293
a, b, c (Å) 4.1933 (2), 24.1526 (13), 11.0917 (7)
β (°) 95.775 (2)
V3) 1117.66 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.96
Crystal size (mm) 0.23 × 0.16 × 0.05
 
Data collection
Diffractometer Bruker D8 Quest Eco
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.537, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15884, 2860, 2696
Rint 0.045
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.09
No. of reflections 2860
No. of parameters 182
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.73, −1.10
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The S11 atom of the DMSO ligand and the attached methyl group (C11—H11) are disordered over two positions in a 0.73:0.27 ratio.

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 1999) and shelXle (Hübschle et al., 2011); software used to prepare material for publication: shelXle (Hübschle et al., 2011) and publCIF (Westrip, 2010).

catena-Poly[barium(II)-µ2-(dimethyl sulfoxide)-κ2O:O-bis(µ2-2,4,6-trinitrophenolato-κ4O2,O1:O1,O6)] top
Crystal data top
[Ba(C6H2N3O7)2(C2H6OS)]F(000) = 656
Mr = 671.68Dx = 1.996 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 4.1933 (2) ÅCell parameters from 9959 reflections
b = 24.1526 (13) Åθ = 3.4–28.3°
c = 11.0917 (7) ŵ = 1.96 mm1
β = 95.775 (2)°T = 293 K
V = 1117.66 (11) Å3Plate, yellow
Z = 20.23 × 0.16 × 0.05 mm
Data collection top
Bruker D8 Quest Eco
diffractometer
2696 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.045
φ and ω scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 55
Tmin = 0.537, Tmax = 0.746k = 3232
15884 measured reflectionsl = 1414
2860 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.055P)2 + 0.7054P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2860 reflectionsΔρmax = 1.73 e Å3
182 parametersΔρmin = 1.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.45109 (5)0.2500000.41165 (2)0.02648 (9)
O10.9359 (5)0.31686 (8)0.3517 (2)0.0342 (4)
O20.4249 (7)0.30881 (12)0.1757 (3)0.0558 (7)
O30.6121 (10)0.33930 (17)0.0155 (3)0.0842 (12)
O40.7913 (9)0.54083 (14)0.0692 (4)0.0824 (11)
O51.1509 (12)0.56275 (15)0.2103 (4)0.1123 (17)
O61.3008 (10)0.44197 (13)0.5598 (3)0.0835 (12)
O71.4143 (7)0.35863 (10)0.5130 (2)0.0522 (6)
O110.0224 (9)0.2500000.5858 (3)0.0470 (8)
N10.5951 (7)0.33983 (13)0.1240 (3)0.0433 (6)
N20.9650 (10)0.52998 (14)0.1609 (4)0.0628 (9)
N31.2850 (7)0.40289 (11)0.4887 (3)0.0435 (6)
C10.9409 (7)0.36577 (11)0.3105 (3)0.0312 (5)
C20.7786 (7)0.38185 (13)0.1958 (3)0.0356 (6)
C30.7865 (9)0.43382 (14)0.1459 (3)0.0435 (7)
H30.6822300.4411960.0696270.052*
C40.9522 (9)0.47457 (14)0.2118 (4)0.0465 (8)
C51.1114 (9)0.46442 (14)0.3244 (3)0.0438 (7)
H51.219 (10)0.4924 (19)0.364 (4)0.053*
C61.1081 (8)0.41125 (12)0.3708 (3)0.0363 (6)
S110.1576 (5)0.2500000.70846 (17)0.0577 (7)0.729 (6)
C110.031 (2)0.3077 (4)0.7858 (7)0.156 (4)0.73
H11A0.1432800.3089370.8656420.187*0.73
H11B0.0761990.3407620.7425200.187*0.73
H11C0.1950360.3051510.7918230.187*0.73
S11'0.079 (3)0.2500000.7161 (8)0.143 (6)0.271 (6)
C11'0.031 (2)0.3077 (4)0.7858 (7)0.156 (4)0.27
H11D0.0104900.3053160.8691860.187*0.27
H11E0.2562290.3135930.7814210.187*0.27
H11F0.0874550.3380610.7477090.187*0.27
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.02267 (13)0.02134 (13)0.03503 (14)0.0000.00095 (8)0.000
O10.0308 (10)0.0254 (9)0.0463 (12)0.0007 (8)0.0035 (8)0.0095 (8)
O20.0552 (16)0.0523 (16)0.0588 (15)0.0154 (12)0.0002 (12)0.0058 (12)
O30.125 (3)0.088 (3)0.0385 (14)0.033 (2)0.0037 (17)0.0009 (15)
O40.102 (3)0.0507 (18)0.092 (2)0.0103 (17)0.003 (2)0.0391 (17)
O50.153 (4)0.0435 (19)0.131 (4)0.034 (2)0.032 (3)0.034 (2)
O60.138 (3)0.0460 (17)0.0609 (18)0.0187 (19)0.0173 (19)0.0189 (14)
O70.0638 (16)0.0344 (12)0.0545 (14)0.0111 (11)0.0133 (12)0.0060 (10)
O110.056 (2)0.048 (2)0.0360 (16)0.0000.0012 (14)0.000
N10.0485 (16)0.0407 (15)0.0395 (13)0.0030 (12)0.0011 (11)0.0068 (12)
N20.081 (3)0.0332 (16)0.076 (2)0.0000 (16)0.013 (2)0.0194 (16)
N30.0575 (17)0.0280 (13)0.0444 (14)0.0025 (12)0.0019 (12)0.0029 (11)
C10.0303 (13)0.0235 (12)0.0408 (14)0.0041 (10)0.0086 (11)0.0049 (10)
C20.0379 (15)0.0301 (14)0.0393 (14)0.0025 (11)0.0062 (11)0.0070 (11)
C30.0506 (19)0.0359 (16)0.0447 (16)0.0058 (14)0.0078 (14)0.0135 (13)
C40.056 (2)0.0278 (15)0.057 (2)0.0052 (14)0.0117 (16)0.0147 (14)
C50.055 (2)0.0252 (14)0.0520 (18)0.0005 (13)0.0081 (15)0.0026 (13)
C60.0420 (16)0.0259 (13)0.0415 (15)0.0033 (11)0.0070 (12)0.0023 (11)
S110.0417 (12)0.0901 (16)0.0403 (9)0.0000.0005 (7)0.000
C110.141 (7)0.213 (10)0.110 (5)0.007 (7)0.005 (5)0.117 (7)
S11'0.092 (9)0.285 (19)0.054 (4)0.0000.011 (4)0.000
C11'0.141 (7)0.213 (10)0.110 (5)0.007 (7)0.005 (5)0.117 (7)
Geometric parameters (Å, º) top
Ba1—O1i2.725 (2)N1—C21.461 (4)
Ba1—O1ii2.725 (2)N2—C41.456 (4)
Ba1—O12.730 (2)N3—C61.451 (4)
Ba1—O1iii2.730 (2)C1—C61.432 (4)
Ba1—O11iv2.783 (4)C1—C21.435 (4)
Ba1—O7ii2.865 (2)C2—C31.373 (4)
Ba1—O7i2.865 (2)C3—C41.372 (5)
Ba1—O112.906 (4)C3—H30.9300
Ba1—O2iii2.970 (3)C4—C51.379 (5)
Ba1—O22.970 (3)C5—C61.384 (4)
Ba1—S113.629 (2)C5—H50.90 (4)
Ba1—Ba1iv4.1933 (2)S11—C11iii1.747 (7)
O1—C11.268 (3)S11—C111.747 (7)
O2—N11.218 (4)C11—H11A0.9600
O3—N11.212 (4)C11—H11B0.9600
O4—N21.218 (5)C11—H11C0.9600
O5—N21.204 (6)S11'—C11'1.637 (9)
O6—N31.228 (4)C11'—H11D0.9600
O7—N31.217 (4)C11'—H11E0.9600
O11—S111.488 (4)C11'—H11F0.9600
O11—S11'1.488 (9)
O1i—Ba1—O1ii72.68 (9)O7i—Ba1—Ba1iv95.35 (6)
O1i—Ba1—O1151.94 (9)O11—Ba1—Ba1iv138.60 (7)
O1ii—Ba1—O1100.46 (6)O2iii—Ba1—Ba1iv87.04 (6)
O1i—Ba1—O1iii100.46 (6)O2—Ba1—Ba1iv87.04 (6)
O1ii—Ba1—O1iii151.94 (9)S11—Ba1—Ba1iv115.50 (3)
O1—Ba1—O1iii72.52 (9)C1—O1—Ba1iv126.78 (18)
O1i—Ba1—O11iv136.32 (6)C1—O1—Ba1132.75 (18)
O1ii—Ba1—O11iv136.32 (6)Ba1iv—O1—Ba1100.46 (6)
O1—Ba1—O11iv67.10 (7)N1—O2—Ba1137.6 (2)
O1iii—Ba1—O11iv67.10 (7)N3—O7—Ba1iv139.3 (2)
O1i—Ba1—O7ii124.46 (7)S11—O11—Ba1ii158.2 (2)
O1ii—Ba1—O7ii58.69 (7)S11—O11—Ba1106.9 (2)
O1—Ba1—O7ii67.95 (8)S11'—O11—Ba1146.2 (5)
O1iii—Ba1—O7ii135.08 (7)Ba1ii—O11—Ba194.94 (9)
O11iv—Ba1—O7ii78.34 (6)O3—N1—O2123.9 (3)
O1i—Ba1—O7i58.69 (7)O3—N1—C2117.9 (3)
O1ii—Ba1—O7i124.46 (7)O2—N1—C2118.2 (3)
O1—Ba1—O7i135.08 (7)O5—N2—O4123.0 (4)
O1iii—Ba1—O7i67.95 (8)O5—N2—C4118.4 (4)
O11iv—Ba1—O7i78.34 (6)O4—N2—C4118.6 (4)
O7ii—Ba1—O7i132.66 (11)O7—N3—O6122.6 (3)
O1i—Ba1—O1165.44 (7)O7—N3—C6119.9 (3)
O1ii—Ba1—O1165.44 (7)O6—N3—C6117.5 (3)
O1—Ba1—O11137.49 (6)O1—C1—C6124.8 (3)
O1iii—Ba1—O11137.48 (6)O1—C1—C2123.3 (3)
O11iv—Ba1—O1194.94 (9)C6—C1—C2111.9 (3)
O7ii—Ba1—O1170.84 (6)C3—C2—C1125.2 (3)
O7i—Ba1—O1170.84 (6)C3—C2—N1116.6 (3)
O1i—Ba1—O2iii62.84 (7)C1—C2—N1118.2 (3)
O1ii—Ba1—O2iii96.33 (7)C4—C3—C2118.2 (3)
O1—Ba1—O2iii91.77 (8)C4—C3—H3120.9
O1iii—Ba1—O2iii57.66 (7)C2—C3—H3120.9
O11iv—Ba1—O2iii124.61 (8)C3—C4—C5121.9 (3)
O7ii—Ba1—O2iii141.74 (8)C3—C4—N2119.3 (3)
O7i—Ba1—O2iii84.78 (8)C5—C4—N2118.8 (4)
O11—Ba1—O2iii128.20 (8)C4—C5—C6118.7 (3)
O1i—Ba1—O296.33 (7)C4—C5—H5119 (3)
O1ii—Ba1—O262.84 (7)C6—C5—H5123 (3)
O1—Ba1—O257.66 (7)C5—C6—C1124.1 (3)
O1iii—Ba1—O291.77 (8)C5—C6—N3116.1 (3)
O11iv—Ba1—O2124.61 (8)C1—C6—N3119.7 (3)
O7ii—Ba1—O284.78 (8)O11—S11—C11iii107.4 (3)
O7i—Ba1—O2141.74 (8)O11—S11—C11107.4 (3)
O11—Ba1—O2128.20 (8)C11iii—S11—C11105.9 (7)
O2iii—Ba1—O257.15 (12)O11—S11—Ba150.03 (16)
O1i—Ba1—S1183.59 (5)C11iii—S11—Ba1126.4 (4)
O1ii—Ba1—S1183.59 (5)C11—S11—Ba1126.4 (4)
O1—Ba1—S11123.35 (5)S11—C11—H11A109.5
O1iii—Ba1—S11123.35 (5)S11—C11—H11B109.5
O11iv—Ba1—S1171.83 (8)H11A—C11—H11B109.5
O7ii—Ba1—S1166.89 (6)S11—C11—H11C109.5
O7i—Ba1—S1166.89 (6)H11A—C11—H11C109.5
O11—Ba1—S1123.10 (8)H11B—C11—H11C109.5
O2iii—Ba1—S11144.44 (6)O11—S11'—C11'113.2 (5)
O2—Ba1—S11144.44 (6)S11'—C11'—H11D109.5
O1i—Ba1—Ba1iv140.18 (4)S11'—C11'—H11E109.5
O1ii—Ba1—Ba1iv140.18 (4)H11D—C11'—H11E109.5
O1—Ba1—Ba1iv39.73 (4)S11'—C11'—H11F109.5
O1iii—Ba1—Ba1iv39.73 (4)H11D—C11'—H11F109.5
O11iv—Ba1—Ba1iv43.66 (7)H11E—C11'—H11F109.5
O7ii—Ba1—Ba1iv95.35 (6)
Ba1—O2—N1—O3144.7 (4)O5—N2—C4—C510.7 (7)
Ba1—O2—N1—C238.2 (5)O4—N2—C4—C5170.5 (4)
Ba1iv—O7—N3—O6173.9 (3)C3—C4—C5—C61.3 (6)
Ba1iv—O7—N3—C67.2 (6)N2—C4—C5—C6177.8 (3)
Ba1iv—O1—C1—C658.8 (4)C4—C5—C6—C11.9 (5)
Ba1—O1—C1—C6119.2 (3)C4—C5—C6—N3178.8 (3)
Ba1iv—O1—C1—C2120.7 (3)O1—C1—C6—C5179.9 (3)
Ba1—O1—C1—C261.3 (4)C2—C1—C6—C50.3 (4)
O1—C1—C2—C3177.7 (3)O1—C1—C6—N30.8 (5)
C6—C1—C2—C31.9 (4)C2—C1—C6—N3179.6 (3)
O1—C1—C2—N10.9 (4)O7—N3—C6—C5147.6 (3)
C6—C1—C2—N1179.5 (3)O6—N3—C6—C531.4 (5)
O3—N1—C2—C339.9 (5)O7—N3—C6—C133.0 (5)
O2—N1—C2—C3137.3 (3)O6—N3—C6—C1148.0 (4)
O3—N1—C2—C1138.8 (4)Ba1ii—O11—S11—C11iii56.7 (4)
O2—N1—C2—C144.0 (4)Ba1—O11—S11—C11iii123.3 (4)
C1—C2—C3—C42.5 (5)Ba1ii—O11—S11—C1156.7 (4)
N1—C2—C3—C4178.9 (3)Ba1—O11—S11—C11123.3 (4)
C2—C3—C4—C50.7 (6)Ba1ii—O11—S11—Ba1180.000 (2)
C2—C3—C4—N2179.8 (3)Ba1ii—O11—S11'—C11'112.1 (7)
O5—N2—C4—C3168.4 (5)Ba1—O11—S11'—C11'67.9 (7)
O4—N2—C4—C310.4 (6)
Symmetry codes: (i) x1, y+1/2, z; (ii) x1, y, z; (iii) x, y+1/2, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4v0.932.433.283 (5)153
C5—H5···O6vi0.90 (4)2.63 (4)3.492 (5)159 (3)
Symmetry codes: (v) x+1, y+1, z; (vi) x+3, y+1, z+1.
 

Acknowledgements

BRS acknowledges the Department of Science & Technology (DST) New Delhi, for the sanction of a Bruker D8 Quest Eco single crystal X-ray diffractometer under the DST–FIST program.

References

First citationBhargao, P. H. & Srinivasan, B. R. (2019). J. Coord. Chem. 72, 2599–2615.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandler, C. J., Gable, R. W., Gulbis, J. M. & Mackay, M. F. (1988). Aust. J. Chem. 41, 799–806.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerrando-Soria, J., Rood, M. T. M., Julve, M., Lloret, F., Journaux, Y., Pasán, J., Ruiz-Pérez, C., Fabelo, O. & Pardo, E. (2012). CrystEngComm, 14, 761–764.  CAS Google Scholar
First citationFichtel, K., Hofmann, K. & Behrens, U. (2004). Organometallics, 23, 4166–4168.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGschwind, F. & Jansen, M. (2012). Acta Cryst. E68, m1319.  CSD CrossRef IUCr Journals Google Scholar
First citationHarrowfield, J. M., Richmond, W. R., Skelton, B. W. & White, A. H. (2004). Eur. J. Inorg. Chem. pp. 227–230.  Web of Science CSD CrossRef Google Scholar
First citationHarrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem. 48, 1333–1347.  CSD CrossRef CAS Web of Science Google Scholar
First citationHong, P.-Z., Song, W.-D. & Wu, Z.-H. (2007). Acta Cryst. E63, m2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHughes, D. L. & Wingfield, J. N. (1977). J. Chem. Soc. Chem. Commun. pp. 804–805.  CSD CrossRef Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMaartmann-Moe, K. (1969). Acta Cryst. B25, 1452–1460.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPi, C., Wan, L., Liu, W., Pan, Z., Wu, H., Wang, Y., Zheng, W., Weng, L., Chen, Z. & Wu, L. (2009). Inorg. Chem. 48, 2967–2975.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPostma, R., Kanters, J. A., Duisenberg, A. J. M., Venkatasubramanian, K. & Poonia, N. S. (1983). Acta Cryst. C39, 1221–1225.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrinivasan, B. R., Parsekar, N. U., Apreyan, R. A. & Petrosyan, A. M. (2019). Mol. Cryst. Liq. Cryst. 680, 75–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationSrinivasan, B. R., Tari, S. P., Parsekar, N. U. & Narvekar, K. U. (2020). Indian J Chem, 59A, 51–56.  CAS Google Scholar
First citationStudebaker, D. B., Neumayer, D. A., Hinds, B. J., Stern, C. L. & Marks, T. J. (2000). Inorg. Chem. 39, 3148–3157.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds