metal-organic compounds
catena-Poly[barium(II)-μ2-(dimethyl sulfoxide)-κ2O:O-bis(μ2-2,4,6-trinitrophenolato-κ4O2,O1:O1,O6)]
aSchool of Chemical Sciences, Goa University, Goa 403206, India
*Correspondence e-mail: srini@unigoa.ac.in
The 6H2N3O7)2(C2H6OS)]n, consists of a barium cation (site symmetry m) and a dimethyl sulfoxide (DMSO) ligand (point group symmetry m) and a 2,4,6-trinitrophenolate anion located in general positions. The S atom and the methyl group of DMSO are disordered over two sets of sites. The DMSO ligand bridges a pair of BaII atoms resulting in a chain extending parallel to the a axis. The unique 2,4,6-trinitrophenolate anion also bridges a pair of BaII ions via the phenolic oxygen atom, with each BaII being additionally bonded to an oxygen atom of an adjacent nitro group. The μ2-monoatomic bridging binding mode of both types of ligands results in the formation of an infinite chain of face-sharing {BaO10} polyhedra flanked by the remaining parts of the 2,4,6-trinitrophenolato and DMSO ligands. In the one-dimensional coordination polymer, parallel chains are interlinked with the aid of C—H⋯O hydrogen bonds.
of the title barium coordination polymer, [Ba(CCCDC reference: 2043610
Structure description
As part of an ongoing research program, we were investigating the synthetic and structural aspects of bivalent metal salts of picric acid (also known as 2,4,6-trinitrophenol) containing zwitterionic glycine ligands (Srinivasan et al., 2019). During the course of these studies, the glycine-free title compound, [Ba(C6H2N3O7)2(C2H6OS)] (1), was obtained serendipitously.
Compound (1) contains a coordinating DMSO molecule but no glycine. A perusal of the Cambridge Structural Database (CSD, version 5.41, update November 2019; Groom et al., 2016) reveals examples of structurally characterized BaII devoid of DMSO (Hughes & Wingfield, 1977; Postma et al., 1983; Chandler et al., 1988; Harrowfield et al., 1995; Hong et al., 2007). In addition, BaII compounds containing DMSO as solvent molecules (Studebaker et al., 2000; Fichtel et al., 2004; Ferrando-Soria et al., 2012), and as monodentate and/or bridging bidentate ligands (Harrowfield et al., 2004; Pi et al., 2009; Gschwind & Jansen 2012) charge-balanced by anions other than picrate are also known. The title compound is a new example of a BaII compound in which both the DMSO and picrate ligands function as μ2-bridges.
The 1) consists of a barium(II) cation and the S and O atom of a dimethyl sulfoxide (DMSO) ligand located on a mirror plane. The 2,4,6-trinitrophenolate anion is located in a general position (Fig. 1). Atom S11 of the DMSO ligand and the attached methyl group (C11) are disordered over two sets of sites. Bond lengths and angles of the picrate anion and the DMSO ligand are in agreement with reported data (Srinivasan et al., 2019, 2020). The central BaII atom exhibits ten-coordination and is bonded to eight oxygen atoms of four symmetry-related picrate anions and two oxygen atoms of two DMSO ligands resulting in a distorted {BaO10} polyhedron (Fig. 2). The deviation of the {BaO10} from a regular shape can be evidenced by the Ba—O bond lengths which range from 2.725 (2) to 2.970 (3) Å and the O—Ba—O bond angles which vary between 57.15 (12) and 151.94 (9)°. Both DMSO and picrate ligands exhibit an μ2-monoatomic bridging binding mode resulting in chains extending parallel to the a axis with an identical Ba⋯Ba separation of 4.1933 (2) Å (Fig. 3). The oxygen O11 atom of DMSO binds with a BaII atom at a Ba1—O11 distance of 2.906 (4) Å and further coordinates with a symmetry-related Baiv [symmetry code: (iv) x + 1, y, z] atom at a shorter distance of 2.783 (4) Å.
of (Binding of the nitro oxygen atom(s) of the picrate ligand is well documented in the literature for potassium picrate (Maartmann-Moe, 1969) and for many alkaline-earth (Harrowfield et al., 1995). In the molecular compounds, [Ba(L)(pic)2] (L = dibenzo-24-crown-8), [Ba(acetone)(pic)2(phen)2] (pic = picrate; phen = 1,10-phenanthroline) and [Ba(L′)(pic)2] (L′ = diaza 21-crown-7 ether), the picrate anion functions as a bidentate and or monodentate ligand (Hughes & Wingfield, 1977; Postma et al., 1983; Chandler et al., 1988). In the water-rich coordination polymer [Ba(H2O)5(C6H2N3O7)2]·H2O, one picrate anion functions as a bidentate ligand via the phenolate oxygen and an adjacent nitro O atom, while the second independent picrate anion functions as a μ2-bridging tridentate ligand (Harrowfield et al., 1995).
In the 1), the phenolate atom O1 makes a short Ba—O1 bond of 2.730 (2) Å and is further linked to a symmetry-related Baii [symmetry code: (ii) x − 1, y, z] atom accompanied by the shortest Ba—O bond of 2.725 (2) Å. Each of the BaII atoms bridged by O1 is further coordinated by an oxygen atom of the nitro group with longer bond lengths [Ba1—O7ii = 2.865 (2) Å; Ba1—O2 = 2.970 (3) Å]. Thus, the unique 2,4,6-trinitrophenolate anion bridges a pair of BaII ions via the phenolic oxygen atom, and each BaII atom is bonded to an oxygen atom of an adjacent nitro group resulting in a μ2-monoatomic bridging bis-bidentate binding mode for this ligand. In the chain, each BaII atom is bonded to eight oxygen atoms of four symmetry-related picrate anions, and a pair of adjacent BaII atoms are bridged by two symmetry-related phenolate oxygen atoms (Fig. 3).
of (A polyhedral chain of face-sharing {BaO9} units flanked by organic ligands was reported recently in the one-dimensional polymeric compound [Ba(H2O)2(NMF)2(4-nba)2] (NMF = N-methylformamide; 4-nba = 4-nitrobenzoate) due to a μ2-binding aqua ligand and a pair of symmetry-related μ2-monoatomic bridging 4-nba ligands (Bhargao & Srinivasan, 2019). Likewise, the monoatomic bridging binding modes of the unique DMSO and the phenolate oxygen atoms of the picrate ligands in the structure of (1) result in the formation of an infinite chain of face-sharing {BaO10} polyhedra flanked by 2,4,6-trinitrophenolate and dimethyl sulfoxide ligands (Fig. 4). In the reported water-rich compound [Ba(H2O)5(C6H2N3O7)2]·H2O, however, the central BaII atom exhibits ten-coordination and is bonded to five monodentate aqua ligands and a bidentate picrate anion (Harrowfield et al., 1995). A second unique picrate anion is a μ2-bridging tridentate ligand and binds to a BaII atom via a phenolate oxygen atom. The cation is also linked to an oxygen atom of an ortho nitro group and is bridged to a second BaII via an oxygen of the nitro group trans to the phenolate oxygen (Fig. 4). In this one-dimensional coordination polymer, discrete {BaO10} polyhedra are bridged by a picrate anion due to the absence of any monoatomic bridge.
The aromatic hydrogen atoms H3 and H5 are attached to the C3 and C5 donor atoms while the nitro oxygen atoms O4 and O6 function as hydrogen acceptors, resulting in interchain C—H⋯O hydrogen bonding interactions. In this way, each chain is linked on either side to two other chains (Table 1, Fig. 5) into a three-dimensional network.
Synthesis and crystallization
To a slurry of barium carbonate (0.395 g, 2 mmol) in water, picric acid (0.916 g, 4 mmol) in water (40 ml) was added and the reaction mixture was heated on a water bath. Brisk effervescence was observed resulting in dissolution of the insoluble carbonate. The reaction mixture was then filtered into a beaker containing glycine (4 mmol, 0.3002 g) in water. The filtrate was left aside for crystallization. A yellow precipitate was filtered off and subsequently dissolved in DMSO (10 ml); this solution was left undisturbed. The crystalline product, which separated after two days, was isolated by filtration, washed with dichloromethane and dried in air; yield 0.95 g. Compound (1) can also be obtained without addition of glycine in the reaction by dissolving barium carbonate in aqueous picric acid to obtain the dipicrate of barium in situ. Concentration of the reaction mixture to a small volume followed by addition of DMSO afforded (1) as above.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2The S11 atom of the DMSO ligand and the attached methyl group (C11—H11) are disordered over two positions in a 0.73:0.27 ratio.
Structural data
CCDC reference: 2043610
https://doi.org/10.1107/S2414314620014984/wm4142sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620014984/wm4142Isup3.hkl
Data collection: APEX3 (Bruker, 2019); cell
SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 1999) and shelXle (Hübschle et al., 2011); software used to prepare material for publication: shelXle (Hübschle et al., 2011) and publCIF (Westrip, 2010).[Ba(C6H2N3O7)2(C2H6OS)] | F(000) = 656 |
Mr = 671.68 | Dx = 1.996 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
a = 4.1933 (2) Å | Cell parameters from 9959 reflections |
b = 24.1526 (13) Å | θ = 3.4–28.3° |
c = 11.0917 (7) Å | µ = 1.96 mm−1 |
β = 95.775 (2)° | T = 293 K |
V = 1117.66 (11) Å3 | Plate, yellow |
Z = 2 | 0.23 × 0.16 × 0.05 mm |
Bruker D8 Quest Eco diffractometer | 2696 reflections with I > 2σ(I) |
Radiation source: Sealed Tube | Rint = 0.045 |
φ and ω scans | θmax = 28.3°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −5→5 |
Tmin = 0.537, Tmax = 0.746 | k = −32→32 |
15884 measured reflections | l = −14→14 |
2860 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.055P)2 + 0.7054P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2860 reflections | Δρmax = 1.73 e Å−3 |
182 parameters | Δρmin = −1.10 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba1 | 0.45109 (5) | 0.250000 | 0.41165 (2) | 0.02648 (9) | |
O1 | 0.9359 (5) | 0.31686 (8) | 0.3517 (2) | 0.0342 (4) | |
O2 | 0.4249 (7) | 0.30881 (12) | 0.1757 (3) | 0.0558 (7) | |
O3 | 0.6121 (10) | 0.33930 (17) | 0.0155 (3) | 0.0842 (12) | |
O4 | 0.7913 (9) | 0.54083 (14) | 0.0692 (4) | 0.0824 (11) | |
O5 | 1.1509 (12) | 0.56275 (15) | 0.2103 (4) | 0.1123 (17) | |
O6 | 1.3008 (10) | 0.44197 (13) | 0.5598 (3) | 0.0835 (12) | |
O7 | 1.4143 (7) | 0.35863 (10) | 0.5130 (2) | 0.0522 (6) | |
O11 | −0.0224 (9) | 0.250000 | 0.5858 (3) | 0.0470 (8) | |
N1 | 0.5951 (7) | 0.33983 (13) | 0.1240 (3) | 0.0433 (6) | |
N2 | 0.9650 (10) | 0.52998 (14) | 0.1609 (4) | 0.0628 (9) | |
N3 | 1.2850 (7) | 0.40289 (11) | 0.4887 (3) | 0.0435 (6) | |
C1 | 0.9409 (7) | 0.36577 (11) | 0.3105 (3) | 0.0312 (5) | |
C2 | 0.7786 (7) | 0.38185 (13) | 0.1958 (3) | 0.0356 (6) | |
C3 | 0.7865 (9) | 0.43382 (14) | 0.1459 (3) | 0.0435 (7) | |
H3 | 0.682230 | 0.441196 | 0.069627 | 0.052* | |
C4 | 0.9522 (9) | 0.47457 (14) | 0.2118 (4) | 0.0465 (8) | |
C5 | 1.1114 (9) | 0.46442 (14) | 0.3244 (3) | 0.0438 (7) | |
H5 | 1.219 (10) | 0.4924 (19) | 0.364 (4) | 0.053* | |
C6 | 1.1081 (8) | 0.41125 (12) | 0.3708 (3) | 0.0363 (6) | |
S11 | 0.1576 (5) | 0.250000 | 0.70846 (17) | 0.0577 (7) | 0.729 (6) |
C11 | 0.031 (2) | 0.3077 (4) | 0.7858 (7) | 0.156 (4) | 0.73 |
H11A | 0.143280 | 0.308937 | 0.865642 | 0.187* | 0.73 |
H11B | 0.076199 | 0.340762 | 0.742520 | 0.187* | 0.73 |
H11C | −0.195036 | 0.305151 | 0.791823 | 0.187* | 0.73 |
S11' | −0.079 (3) | 0.250000 | 0.7161 (8) | 0.143 (6) | 0.271 (6) |
C11' | 0.031 (2) | 0.3077 (4) | 0.7858 (7) | 0.156 (4) | 0.27 |
H11D | −0.010490 | 0.305316 | 0.869186 | 0.187* | 0.27 |
H11E | 0.256229 | 0.313593 | 0.781421 | 0.187* | 0.27 |
H11F | −0.087455 | 0.338061 | 0.747709 | 0.187* | 0.27 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.02267 (13) | 0.02134 (13) | 0.03503 (14) | 0.000 | 0.00095 (8) | 0.000 |
O1 | 0.0308 (10) | 0.0254 (9) | 0.0463 (12) | 0.0007 (8) | 0.0035 (8) | 0.0095 (8) |
O2 | 0.0552 (16) | 0.0523 (16) | 0.0588 (15) | −0.0154 (12) | 0.0002 (12) | 0.0058 (12) |
O3 | 0.125 (3) | 0.088 (3) | 0.0385 (14) | −0.033 (2) | 0.0037 (17) | 0.0009 (15) |
O4 | 0.102 (3) | 0.0507 (18) | 0.092 (2) | 0.0103 (17) | −0.003 (2) | 0.0391 (17) |
O5 | 0.153 (4) | 0.0435 (19) | 0.131 (4) | −0.034 (2) | −0.032 (3) | 0.034 (2) |
O6 | 0.138 (3) | 0.0460 (17) | 0.0609 (18) | 0.0187 (19) | −0.0173 (19) | −0.0189 (14) |
O7 | 0.0638 (16) | 0.0344 (12) | 0.0545 (14) | 0.0111 (11) | −0.0133 (12) | −0.0060 (10) |
O11 | 0.056 (2) | 0.048 (2) | 0.0360 (16) | 0.000 | −0.0012 (14) | 0.000 |
N1 | 0.0485 (16) | 0.0407 (15) | 0.0395 (13) | 0.0030 (12) | −0.0011 (11) | 0.0068 (12) |
N2 | 0.081 (3) | 0.0332 (16) | 0.076 (2) | 0.0000 (16) | 0.013 (2) | 0.0194 (16) |
N3 | 0.0575 (17) | 0.0280 (13) | 0.0444 (14) | 0.0025 (12) | 0.0019 (12) | −0.0029 (11) |
C1 | 0.0303 (13) | 0.0235 (12) | 0.0408 (14) | 0.0041 (10) | 0.0086 (11) | 0.0049 (10) |
C2 | 0.0379 (15) | 0.0301 (14) | 0.0393 (14) | 0.0025 (11) | 0.0062 (11) | 0.0070 (11) |
C3 | 0.0506 (19) | 0.0359 (16) | 0.0447 (16) | 0.0058 (14) | 0.0078 (14) | 0.0135 (13) |
C4 | 0.056 (2) | 0.0278 (15) | 0.057 (2) | 0.0052 (14) | 0.0117 (16) | 0.0147 (14) |
C5 | 0.055 (2) | 0.0252 (14) | 0.0520 (18) | −0.0005 (13) | 0.0081 (15) | 0.0026 (13) |
C6 | 0.0420 (16) | 0.0259 (13) | 0.0415 (15) | 0.0033 (11) | 0.0070 (12) | 0.0023 (11) |
S11 | 0.0417 (12) | 0.0901 (16) | 0.0403 (9) | 0.000 | −0.0005 (7) | 0.000 |
C11 | 0.141 (7) | 0.213 (10) | 0.110 (5) | 0.007 (7) | −0.005 (5) | −0.117 (7) |
S11' | 0.092 (9) | 0.285 (19) | 0.054 (4) | 0.000 | 0.011 (4) | 0.000 |
C11' | 0.141 (7) | 0.213 (10) | 0.110 (5) | 0.007 (7) | −0.005 (5) | −0.117 (7) |
Ba1—O1i | 2.725 (2) | N1—C2 | 1.461 (4) |
Ba1—O1ii | 2.725 (2) | N2—C4 | 1.456 (4) |
Ba1—O1 | 2.730 (2) | N3—C6 | 1.451 (4) |
Ba1—O1iii | 2.730 (2) | C1—C6 | 1.432 (4) |
Ba1—O11iv | 2.783 (4) | C1—C2 | 1.435 (4) |
Ba1—O7ii | 2.865 (2) | C2—C3 | 1.373 (4) |
Ba1—O7i | 2.865 (2) | C3—C4 | 1.372 (5) |
Ba1—O11 | 2.906 (4) | C3—H3 | 0.9300 |
Ba1—O2iii | 2.970 (3) | C4—C5 | 1.379 (5) |
Ba1—O2 | 2.970 (3) | C5—C6 | 1.384 (4) |
Ba1—S11 | 3.629 (2) | C5—H5 | 0.90 (4) |
Ba1—Ba1iv | 4.1933 (2) | S11—C11iii | 1.747 (7) |
O1—C1 | 1.268 (3) | S11—C11 | 1.747 (7) |
O2—N1 | 1.218 (4) | C11—H11A | 0.9600 |
O3—N1 | 1.212 (4) | C11—H11B | 0.9600 |
O4—N2 | 1.218 (5) | C11—H11C | 0.9600 |
O5—N2 | 1.204 (6) | S11'—C11' | 1.637 (9) |
O6—N3 | 1.228 (4) | C11'—H11D | 0.9600 |
O7—N3 | 1.217 (4) | C11'—H11E | 0.9600 |
O11—S11 | 1.488 (4) | C11'—H11F | 0.9600 |
O11—S11' | 1.488 (9) | ||
O1i—Ba1—O1ii | 72.68 (9) | O7i—Ba1—Ba1iv | 95.35 (6) |
O1i—Ba1—O1 | 151.94 (9) | O11—Ba1—Ba1iv | 138.60 (7) |
O1ii—Ba1—O1 | 100.46 (6) | O2iii—Ba1—Ba1iv | 87.04 (6) |
O1i—Ba1—O1iii | 100.46 (6) | O2—Ba1—Ba1iv | 87.04 (6) |
O1ii—Ba1—O1iii | 151.94 (9) | S11—Ba1—Ba1iv | 115.50 (3) |
O1—Ba1—O1iii | 72.52 (9) | C1—O1—Ba1iv | 126.78 (18) |
O1i—Ba1—O11iv | 136.32 (6) | C1—O1—Ba1 | 132.75 (18) |
O1ii—Ba1—O11iv | 136.32 (6) | Ba1iv—O1—Ba1 | 100.46 (6) |
O1—Ba1—O11iv | 67.10 (7) | N1—O2—Ba1 | 137.6 (2) |
O1iii—Ba1—O11iv | 67.10 (7) | N3—O7—Ba1iv | 139.3 (2) |
O1i—Ba1—O7ii | 124.46 (7) | S11—O11—Ba1ii | 158.2 (2) |
O1ii—Ba1—O7ii | 58.69 (7) | S11—O11—Ba1 | 106.9 (2) |
O1—Ba1—O7ii | 67.95 (8) | S11'—O11—Ba1 | 146.2 (5) |
O1iii—Ba1—O7ii | 135.08 (7) | Ba1ii—O11—Ba1 | 94.94 (9) |
O11iv—Ba1—O7ii | 78.34 (6) | O3—N1—O2 | 123.9 (3) |
O1i—Ba1—O7i | 58.69 (7) | O3—N1—C2 | 117.9 (3) |
O1ii—Ba1—O7i | 124.46 (7) | O2—N1—C2 | 118.2 (3) |
O1—Ba1—O7i | 135.08 (7) | O5—N2—O4 | 123.0 (4) |
O1iii—Ba1—O7i | 67.95 (8) | O5—N2—C4 | 118.4 (4) |
O11iv—Ba1—O7i | 78.34 (6) | O4—N2—C4 | 118.6 (4) |
O7ii—Ba1—O7i | 132.66 (11) | O7—N3—O6 | 122.6 (3) |
O1i—Ba1—O11 | 65.44 (7) | O7—N3—C6 | 119.9 (3) |
O1ii—Ba1—O11 | 65.44 (7) | O6—N3—C6 | 117.5 (3) |
O1—Ba1—O11 | 137.49 (6) | O1—C1—C6 | 124.8 (3) |
O1iii—Ba1—O11 | 137.48 (6) | O1—C1—C2 | 123.3 (3) |
O11iv—Ba1—O11 | 94.94 (9) | C6—C1—C2 | 111.9 (3) |
O7ii—Ba1—O11 | 70.84 (6) | C3—C2—C1 | 125.2 (3) |
O7i—Ba1—O11 | 70.84 (6) | C3—C2—N1 | 116.6 (3) |
O1i—Ba1—O2iii | 62.84 (7) | C1—C2—N1 | 118.2 (3) |
O1ii—Ba1—O2iii | 96.33 (7) | C4—C3—C2 | 118.2 (3) |
O1—Ba1—O2iii | 91.77 (8) | C4—C3—H3 | 120.9 |
O1iii—Ba1—O2iii | 57.66 (7) | C2—C3—H3 | 120.9 |
O11iv—Ba1—O2iii | 124.61 (8) | C3—C4—C5 | 121.9 (3) |
O7ii—Ba1—O2iii | 141.74 (8) | C3—C4—N2 | 119.3 (3) |
O7i—Ba1—O2iii | 84.78 (8) | C5—C4—N2 | 118.8 (4) |
O11—Ba1—O2iii | 128.20 (8) | C4—C5—C6 | 118.7 (3) |
O1i—Ba1—O2 | 96.33 (7) | C4—C5—H5 | 119 (3) |
O1ii—Ba1—O2 | 62.84 (7) | C6—C5—H5 | 123 (3) |
O1—Ba1—O2 | 57.66 (7) | C5—C6—C1 | 124.1 (3) |
O1iii—Ba1—O2 | 91.77 (8) | C5—C6—N3 | 116.1 (3) |
O11iv—Ba1—O2 | 124.61 (8) | C1—C6—N3 | 119.7 (3) |
O7ii—Ba1—O2 | 84.78 (8) | O11—S11—C11iii | 107.4 (3) |
O7i—Ba1—O2 | 141.74 (8) | O11—S11—C11 | 107.4 (3) |
O11—Ba1—O2 | 128.20 (8) | C11iii—S11—C11 | 105.9 (7) |
O2iii—Ba1—O2 | 57.15 (12) | O11—S11—Ba1 | 50.03 (16) |
O1i—Ba1—S11 | 83.59 (5) | C11iii—S11—Ba1 | 126.4 (4) |
O1ii—Ba1—S11 | 83.59 (5) | C11—S11—Ba1 | 126.4 (4) |
O1—Ba1—S11 | 123.35 (5) | S11—C11—H11A | 109.5 |
O1iii—Ba1—S11 | 123.35 (5) | S11—C11—H11B | 109.5 |
O11iv—Ba1—S11 | 71.83 (8) | H11A—C11—H11B | 109.5 |
O7ii—Ba1—S11 | 66.89 (6) | S11—C11—H11C | 109.5 |
O7i—Ba1—S11 | 66.89 (6) | H11A—C11—H11C | 109.5 |
O11—Ba1—S11 | 23.10 (8) | H11B—C11—H11C | 109.5 |
O2iii—Ba1—S11 | 144.44 (6) | O11—S11'—C11' | 113.2 (5) |
O2—Ba1—S11 | 144.44 (6) | S11'—C11'—H11D | 109.5 |
O1i—Ba1—Ba1iv | 140.18 (4) | S11'—C11'—H11E | 109.5 |
O1ii—Ba1—Ba1iv | 140.18 (4) | H11D—C11'—H11E | 109.5 |
O1—Ba1—Ba1iv | 39.73 (4) | S11'—C11'—H11F | 109.5 |
O1iii—Ba1—Ba1iv | 39.73 (4) | H11D—C11'—H11F | 109.5 |
O11iv—Ba1—Ba1iv | 43.66 (7) | H11E—C11'—H11F | 109.5 |
O7ii—Ba1—Ba1iv | 95.35 (6) | ||
Ba1—O2—N1—O3 | 144.7 (4) | O5—N2—C4—C5 | 10.7 (7) |
Ba1—O2—N1—C2 | −38.2 (5) | O4—N2—C4—C5 | −170.5 (4) |
Ba1iv—O7—N3—O6 | 173.9 (3) | C3—C4—C5—C6 | 1.3 (6) |
Ba1iv—O7—N3—C6 | −7.2 (6) | N2—C4—C5—C6 | −177.8 (3) |
Ba1iv—O1—C1—C6 | −58.8 (4) | C4—C5—C6—C1 | −1.9 (5) |
Ba1—O1—C1—C6 | 119.2 (3) | C4—C5—C6—N3 | 178.8 (3) |
Ba1iv—O1—C1—C2 | 120.7 (3) | O1—C1—C6—C5 | 179.9 (3) |
Ba1—O1—C1—C2 | −61.3 (4) | C2—C1—C6—C5 | 0.3 (4) |
O1—C1—C2—C3 | −177.7 (3) | O1—C1—C6—N3 | −0.8 (5) |
C6—C1—C2—C3 | 1.9 (4) | C2—C1—C6—N3 | 179.6 (3) |
O1—C1—C2—N1 | 0.9 (4) | O7—N3—C6—C5 | −147.6 (3) |
C6—C1—C2—N1 | −179.5 (3) | O6—N3—C6—C5 | 31.4 (5) |
O3—N1—C2—C3 | 39.9 (5) | O7—N3—C6—C1 | 33.0 (5) |
O2—N1—C2—C3 | −137.3 (3) | O6—N3—C6—C1 | −148.0 (4) |
O3—N1—C2—C1 | −138.8 (4) | Ba1ii—O11—S11—C11iii | 56.7 (4) |
O2—N1—C2—C1 | 44.0 (4) | Ba1—O11—S11—C11iii | −123.3 (4) |
C1—C2—C3—C4 | −2.5 (5) | Ba1ii—O11—S11—C11 | −56.7 (4) |
N1—C2—C3—C4 | 178.9 (3) | Ba1—O11—S11—C11 | 123.3 (4) |
C2—C3—C4—C5 | 0.7 (6) | Ba1ii—O11—S11—Ba1 | 180.000 (2) |
C2—C3—C4—N2 | 179.8 (3) | Ba1ii—O11—S11'—C11' | −112.1 (7) |
O5—N2—C4—C3 | −168.4 (5) | Ba1—O11—S11'—C11' | 67.9 (7) |
O4—N2—C4—C3 | 10.4 (6) |
Symmetry codes: (i) x−1, −y+1/2, z; (ii) x−1, y, z; (iii) x, −y+1/2, z; (iv) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O4v | 0.93 | 2.43 | 3.283 (5) | 153 |
C5—H5···O6vi | 0.90 (4) | 2.63 (4) | 3.492 (5) | 159 (3) |
Symmetry codes: (v) −x+1, −y+1, −z; (vi) −x+3, −y+1, −z+1. |
Acknowledgements
BRS acknowledges the Department of Science & Technology (DST) New Delhi, for the sanction of a Bruker D8 Quest Eco single crystal X-ray diffractometer under the DST–FIST program.
References
Bhargao, P. H. & Srinivasan, B. R. (2019). J. Coord. Chem. 72, 2599–2615. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chandler, C. J., Gable, R. W., Gulbis, J. M. & Mackay, M. F. (1988). Aust. J. Chem. 41, 799–806. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferrando-Soria, J., Rood, M. T. M., Julve, M., Lloret, F., Journaux, Y., Pasán, J., Ruiz-Pérez, C., Fabelo, O. & Pardo, E. (2012). CrystEngComm, 14, 761–764. CAS Google Scholar
Fichtel, K., Hofmann, K. & Behrens, U. (2004). Organometallics, 23, 4166–4168. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gschwind, F. & Jansen, M. (2012). Acta Cryst. E68, m1319. CSD CrossRef IUCr Journals Google Scholar
Harrowfield, J. M., Richmond, W. R., Skelton, B. W. & White, A. H. (2004). Eur. J. Inorg. Chem. pp. 227–230. Web of Science CSD CrossRef Google Scholar
Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem. 48, 1333–1347. CSD CrossRef CAS Web of Science Google Scholar
Hong, P.-Z., Song, W.-D. & Wu, Z.-H. (2007). Acta Cryst. E63, m2296. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Hughes, D. L. & Wingfield, J. N. (1977). J. Chem. Soc. Chem. Commun. pp. 804–805. CSD CrossRef Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Maartmann-Moe, K. (1969). Acta Cryst. B25, 1452–1460. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Pi, C., Wan, L., Liu, W., Pan, Z., Wu, H., Wang, Y., Zheng, W., Weng, L., Chen, Z. & Wu, L. (2009). Inorg. Chem. 48, 2967–2975. Web of Science CSD CrossRef PubMed CAS Google Scholar
Postma, R., Kanters, J. A., Duisenberg, A. J. M., Venkatasubramanian, K. & Poonia, N. S. (1983). Acta Cryst. C39, 1221–1225. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Srinivasan, B. R., Parsekar, N. U., Apreyan, R. A. & Petrosyan, A. M. (2019). Mol. Cryst. Liq. Cryst. 680, 75–84. Web of Science CSD CrossRef CAS Google Scholar
Srinivasan, B. R., Tari, S. P., Parsekar, N. U. & Narvekar, K. U. (2020). Indian J Chem, 59A, 51–56. CAS Google Scholar
Studebaker, D. B., Neumayer, D. A., Hinds, B. J., Stern, C. L. & Marks, T. J. (2000). Inorg. Chem. 39, 3148–3157. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.