organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(3,5-Di­nitro­benzo­yl)-4-(2-meth­­oxy­phen­yl)piper­azine

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Chemistry, Maharani's Science College for Women, Mysuru-570 001, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 12 November 2020; accepted 16 November 2020; online 20 November 2020)

In the title compound, C18H18N4O6, the piperazine ring adopts a chair conformation, the amidic N atom is planar (sum of angles = 360°) and the non-amidic N atom is pyramidal (343°). There are no hydrogen bonds of any kind in the crystal, but the mol­ecules are linked by two independent π(nitro­benzene)⋯π(meth­oxy­benzene) stacking inter­actions to form π-stacked sheets with inter-centroid separations of 3.8444 (12) and 3.9197 (12) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Piperazines are found in a wide range of compounds that are active across a number of different therapeutic areas as they exhibit anti­bacterial, anti­depressant anti­fungal, anti­malarial, anti­psychotic, and anti­tumour activity (Brockunier et al., 2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]; Bogatcheva et al., 2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]), and a number of these areas have recently been reviewed (Elliott, 2011[Elliott, S. (2011). Drug Test. Anal. 3, 430-438.]; Kharb et al., 2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chemica, 4, 2470-2488.]; Asif, 2015[Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 05.]; Brito et al., 2019[Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13-24.]). N-(2-Meth­oxy­phen­yl)piperazine has been used as a building block in the synthesis of both 5-HT1 A receptor ligands (Orjales et al., 1995[Orjales, A., Alonso-Cires, L., Labeaga, L. & Corcóstegui, R. (1995). J. Med. Chem. 38, 1273-1277.]) and dopamine D2 and D3 ligands (Hackling et al., 2003[Hackling, A., Ghosh, R., Perachon, S., Mann, A., Höltje, H. D., Wermuth, C. G., Schwartz, J. C., Sippl, W., Sokoloff, P. & Stark, H. (2003). J. Med. Chem. 46, 3883-3899.]), and also as a building block for the synthesis of derivatives exhibiting anti­depressant-like activity (Waszkielewicz et al., 2015[Waszkielewicz, A. M., Pytka, K., Rapacz, A., Wełna, E., Jarzyna, M., Satała, G., Bojarski, A., Sapa, J., Żmudzki, P., Filipek, B. & Marona, H. (2015). Chem. Biol. Drug Des. 85, 326-335.]). The isomeric N-(4-meth­oxy­phen­yl)piperazine has been found to inhibit the re-uptake and accelerate the release of mono­amine neurotransmitters such as dopamine and serotonin, with a mechanism of action similar to that of recreational drugs such as amphetamines, but with significantly lower abuse potential (Nagai et al., 2007[Nagai, F., Nonaka, R., Hisashi, S. & Kamimura, K. (2007). Eur. J. Pharmacol. 559, 132-137.]). We have recently reported the structures of a range of 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines (Harish Chinthal et al., 2020[Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779-1793.]), and in a continuation of that work, we report here the structure of the title compound (Fig. 1[link]), which was prepared using a carbodi­imide-mediated condensation reaction between N-(2-meth­oxy­phen­yl)piperazine and 3,5-di­nitro­benzoic acid.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The piperazine ring in the title compound (Fig. 1[link]) adopts a conformation that is close to an ideal chair form. The ring-puckering angle θ (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]), calculated for the atom sequence (N1,C2,C3,N4,C5,C6) is 12.69 (18)°, whereas this value would be zero for an ideal chair form (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). The geometry at the amidic atom N1 is planar within experimental uncertainty, but that at N4 is markedly pyramidal: the exocyclic substituents at both of these atoms occupy equatorial sites. In the di­nitro­benezene ring, the two nitro groups are both rotated out of the ring plane; the nitro groups bonded to atoms C13 and C15 make dihedral angles with the ring (C11–C16) of 20.52 (9) and 2.34 (12)°, respectively, with a dihedral angle of 22.09 (10)° between the planes of the two nitro groups, so that the rotations occur in a conrotatory sense. In the 2-meth­oxy­benzene substituent, the meth­oxy atom C47 is nearly coplanar with the adjacent ring, with a displacement from the ring plane of only 0.308 (5) Å. Associated with this near planarity, the two exocyclic angles at C42 are markedly different. Thus, C41—C42—O42 is 115.51 (16)° and C43—C42—O42 is 124.36 (18)°, as typically found in planar or near-planar alk­oxy­arenes (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]).

Despite the presence within the mol­ecule of six O atoms and two N atoms, all of which are potential hydrogen-bond acceptors, the structure contains no inter­molecular C—H⋯O or C—H⋯N hydrogen bonds, nor are there any C—H⋯π(arene) inter­actions. However, two ππ stacking inter­actions are present. The nitro­benzene ring at (x, y, z) makes a dihedral angle of 8.44 (9)° with the meth­oxy­benzene rings at both (x, 1 − y, [{1\over 2}] + z) and (x, 2 − y, [{1\over 2}] + z), i.e. in the mol­ecules related to the reference mol­ecule by the c-glide planes at y = 0.5 and 1, respectively. The ring-centroid separations are 3.9197 (12) and 3.8444 (12) Å, respectively, and the shortest distances between the centroid of one ring and the plane of the other are 3.3822 (8) and 3.2468 (8) Å, respectively, leading to the formation of a π-stacked sheet lying parallel to (100) in the domain 0.25 < x < 0.5 (Fig. 2[link]). Three other sheets of this type pass through the unit cell, in the domains 0 < x < 0.25, 0.5 < x < 0.75, and 0.75 < x < 1.0, but there are no direction-specific inter­actions between adjacent sheets.

[Figure 2]
Figure 2
A view of the mol­ecular packing of the title compound showing the formation of a π-stacked sheet lying parallel to (100). For the sake of clarity, the H atoms have been omitted.

Synthesis and crystallization

For the synthesis of the title compound, 1-(3-di­methyl­amino­prop­yl)-3-ethyl­carbodimide (134 mg, 0.7 mmol), 1-hy­droxy­benzotriazole (68 mg, 0.5 mmol) and tri­ethyl­amine (0.5 ml, 1.5 mmol) were added to a solution of 3,5-di­nitro­benzoic acid (114 mg, 0.5 mmol) in methanol (10 ml). This mixture was heated to 323 K, with stirring, for a few minutes before being set aside at ambient temperature. After two days, a solution of N-(2-meth­oxy­phen­yl)piperazine (100 mg, 0.52 mmol) in N,N-di­methyl­formamide (5 ml) was added and the resulting mixture was stirred overnight at ambient temperature. When the reaction was complete, as judged using thin layer chromatography, the mixture was quenched with water (10 ml) and extracted with ethyl acetate (20 ml). The organic fraction was separated and washed successively with an aqueous hydro­chloric acid solution (1 mol dm−3), a saturated solution of sodium hydrogen carbonate and finally with brine. The organic phase was dried over anhydrous sodium sulfate, the solvent was removed under reduced pressure, and the resulting product was recrystallized from methanol-ethyl acetate (1:1, v/v), m.p. 390–392 K. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of its ethyl acetate solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C18H18N4O6
Mr 386.36
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 25.348 (2), 7.3059 (5), 19.347 (1)
β (°) 94.190 (6)
V3) 3573.3 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.46 × 0.32 × 0.22
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.918, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 7735, 3854, 2600
Rint 0.016
(sin θ/λ)max−1) 0.657
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.02
No. of reflections 3854
No. of parameters 253
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.19
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

1-(3,5-dinitrobenzoyl)-4-(2-methoxyphenyl)piperazine top
Crystal data top
C18H18N4O6F(000) = 1616
Mr = 386.36Dx = 1.436 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.348 (2) ÅCell parameters from 3854 reflections
b = 7.3059 (5) Åθ = 2.6–27.1°
c = 19.347 (1) ŵ = 0.11 mm1
β = 94.190 (6)°T = 296 K
V = 3573.3 (4) Å3Block, yellow
Z = 80.46 × 0.32 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
3854 independent reflections
Radiation source: Enhance (Mo) X-ray Source2600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 3319
Tmin = 0.918, Tmax = 0.976k = 79
7735 measured reflectionsl = 2522
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0413P)2 + 2.4765P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3854 reflectionsΔρmax = 0.22 e Å3
253 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.59240 (6)0.5953 (2)0.34788 (7)0.0459 (4)
C20.57693 (8)0.4792 (3)0.28802 (9)0.0488 (5)
H2A0.54310.42260.29470.059*
H2B0.60280.38260.28470.059*
C30.57283 (7)0.5876 (3)0.22156 (9)0.0453 (5)
H3A0.56470.50660.18250.054*
H3B0.54470.67740.22260.054*
N40.62303 (6)0.6787 (2)0.21428 (7)0.0454 (4)
C50.63231 (8)0.8121 (3)0.27028 (9)0.0501 (5)
H5A0.60300.89780.26940.060*
H5B0.66430.88060.26360.060*
C60.63767 (8)0.7159 (3)0.33925 (9)0.0500 (5)
H6A0.67000.64420.34260.060*
H6B0.64010.80600.37620.060*
C170.56572 (7)0.5803 (3)0.40509 (9)0.0409 (4)
O170.52443 (5)0.4943 (2)0.40619 (6)0.0563 (4)
C110.58807 (7)0.6641 (2)0.47192 (9)0.0391 (4)
C120.55244 (7)0.7415 (2)0.51449 (9)0.0404 (4)
H120.51710.75610.49880.048*
C130.56989 (7)0.7962 (2)0.58008 (9)0.0405 (4)
C140.62151 (7)0.7749 (3)0.60631 (9)0.0444 (5)
H140.63250.81050.65120.053*
C150.65608 (7)0.6986 (3)0.56286 (9)0.0424 (4)
C160.64053 (7)0.6426 (3)0.49661 (9)0.0416 (4)
H160.66490.59090.46870.050*
C410.63414 (7)0.7360 (2)0.14693 (9)0.0417 (4)
C420.68700 (8)0.7778 (3)0.13438 (10)0.0499 (5)
C430.69945 (8)0.8298 (3)0.06918 (10)0.0555 (5)
H430.73420.85980.06140.067*
C440.66072 (9)0.8375 (3)0.01523 (10)0.0545 (5)
H440.66940.87410.02860.065*
C450.60985 (8)0.7918 (3)0.02602 (10)0.0506 (5)
H450.58400.79400.01070.061*
C460.59664 (7)0.7421 (3)0.09169 (9)0.0444 (5)
H460.56180.71230.09860.053*
O420.72307 (6)0.7570 (3)0.18968 (8)0.0780 (5)
C470.77628 (10)0.7698 (5)0.18064 (16)0.1038 (11)
H47A0.79610.75200.22430.156*
H47B0.78590.67780.14850.156*
H47C0.78390.88880.16280.156*
N130.53195 (7)0.8793 (2)0.62448 (9)0.0510 (4)
O1310.49148 (6)0.9456 (2)0.59666 (8)0.0682 (4)
O1320.54302 (7)0.8798 (2)0.68663 (7)0.0744 (5)
N150.71189 (7)0.6755 (3)0.58839 (9)0.0554 (5)
O1510.72524 (7)0.7321 (3)0.64600 (9)0.0911 (6)
O1520.74214 (6)0.6030 (3)0.55072 (8)0.0734 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0490 (9)0.0525 (10)0.0361 (8)0.0173 (8)0.0028 (7)0.0040 (7)
C20.0518 (11)0.0507 (12)0.0442 (11)0.0153 (9)0.0053 (9)0.0092 (9)
C30.0437 (10)0.0535 (12)0.0390 (10)0.0098 (9)0.0039 (8)0.0086 (9)
N40.0449 (9)0.0556 (10)0.0362 (8)0.0124 (8)0.0061 (7)0.0050 (7)
C50.0561 (12)0.0549 (12)0.0398 (10)0.0182 (10)0.0063 (9)0.0046 (9)
C60.0510 (12)0.0591 (13)0.0398 (10)0.0185 (10)0.0031 (9)0.0026 (9)
C170.0407 (10)0.0440 (11)0.0374 (10)0.0040 (9)0.0012 (8)0.0053 (8)
O170.0485 (8)0.0740 (10)0.0465 (8)0.0219 (7)0.0027 (6)0.0025 (7)
C110.0422 (10)0.0406 (10)0.0342 (9)0.0085 (8)0.0009 (8)0.0063 (8)
C120.0395 (10)0.0431 (11)0.0380 (10)0.0057 (8)0.0004 (8)0.0081 (8)
C130.0458 (10)0.0391 (10)0.0367 (9)0.0053 (8)0.0034 (8)0.0069 (8)
C140.0522 (12)0.0457 (11)0.0343 (9)0.0115 (9)0.0039 (8)0.0067 (8)
C150.0403 (10)0.0447 (11)0.0414 (10)0.0081 (8)0.0031 (8)0.0097 (8)
C160.0407 (10)0.0453 (11)0.0388 (10)0.0050 (8)0.0023 (8)0.0053 (8)
C410.0453 (11)0.0431 (11)0.0373 (10)0.0001 (8)0.0065 (8)0.0042 (8)
C420.0441 (11)0.0623 (13)0.0435 (11)0.0026 (10)0.0044 (9)0.0015 (10)
C430.0494 (12)0.0655 (14)0.0535 (12)0.0043 (10)0.0165 (10)0.0001 (11)
C440.0712 (15)0.0538 (13)0.0398 (11)0.0026 (11)0.0129 (10)0.0016 (9)
C450.0619 (13)0.0500 (12)0.0392 (10)0.0062 (10)0.0012 (9)0.0038 (9)
C460.0442 (11)0.0454 (11)0.0435 (11)0.0006 (9)0.0024 (8)0.0077 (9)
O420.0442 (9)0.1365 (16)0.0528 (9)0.0127 (9)0.0002 (7)0.0093 (9)
C470.0485 (15)0.172 (3)0.090 (2)0.0117 (18)0.0041 (13)0.014 (2)
N130.0578 (11)0.0499 (10)0.0455 (10)0.0049 (8)0.0061 (8)0.0001 (8)
O1310.0630 (10)0.0750 (11)0.0665 (10)0.0149 (9)0.0039 (8)0.0055 (8)
O1320.0859 (11)0.0987 (13)0.0391 (8)0.0054 (10)0.0084 (7)0.0087 (8)
N150.0471 (10)0.0657 (12)0.0513 (11)0.0066 (9)0.0102 (9)0.0101 (9)
O1510.0624 (11)0.1437 (18)0.0629 (11)0.0005 (11)0.0254 (8)0.0137 (11)
O1520.0475 (9)0.0979 (13)0.0744 (11)0.0077 (9)0.0014 (8)0.0013 (10)
Geometric parameters (Å, º) top
N1—C171.343 (2)C14—C151.376 (3)
N1—C21.466 (2)C14—H140.9300
N1—C61.466 (2)C15—C161.375 (2)
C2—C31.507 (3)C15—N151.474 (2)
C2—H2A0.9700C16—H160.9300
C2—H2B0.9700C41—C461.378 (2)
C3—N41.452 (2)C41—C421.412 (3)
C3—H3A0.9700C42—O421.364 (2)
C3—H3B0.9700C42—C431.376 (3)
N4—C411.416 (2)C43—C441.381 (3)
N4—C51.463 (2)C43—H430.9300
C5—C61.506 (3)C44—C451.363 (3)
C5—H5A0.9700C44—H440.9300
C5—H5B0.9700C45—C461.386 (3)
C6—H6A0.9700C45—H450.9300
C6—H6B0.9700C46—H460.9300
C17—O171.222 (2)O42—C471.376 (3)
C17—C111.504 (2)C47—H47A0.9600
C11—C121.386 (2)C47—H47B0.9600
C11—C161.389 (2)C47—H47C0.9600
C12—C131.373 (2)N13—O1321.215 (2)
C12—H120.9300N13—O1311.223 (2)
C13—C141.377 (3)N15—O1511.213 (2)
C13—N131.467 (2)N15—O1521.217 (2)
C17—N1—C2118.83 (15)C14—C13—N13118.48 (16)
C17—N1—C6126.05 (15)C15—C14—C13116.80 (17)
C2—N1—C6115.10 (14)C15—C14—H14121.6
N1—C2—C3111.60 (16)C13—C14—H14121.6
N1—C2—H2A109.3C16—C15—C14122.55 (17)
C3—C2—H2A109.3C16—C15—N15118.76 (18)
N1—C2—H2B109.3C14—C15—N15118.70 (17)
C3—C2—H2B109.3C15—C16—C11119.27 (17)
H2A—C2—H2B108.0C15—C16—H16120.4
N4—C3—C2108.50 (15)C11—C16—H16120.4
N4—C3—H3A110.0C46—C41—C42117.95 (17)
C2—C3—H3A110.0C46—C41—N4123.42 (16)
N4—C3—H3B110.0C42—C41—N4118.50 (16)
C2—C3—H3B110.0O42—C42—C43124.36 (18)
H3A—C3—H3B108.4O42—C42—C41115.51 (16)
C41—N4—C3117.34 (14)C43—C42—C41120.09 (18)
C41—N4—C5116.91 (15)C42—C43—C44120.42 (19)
C3—N4—C5109.17 (14)C42—C43—H43119.8
N4—C5—C6110.14 (16)C44—C43—H43119.8
N4—C5—H5A109.6C45—C44—C43120.17 (18)
C6—C5—H5A109.6C45—C44—H44119.9
N4—C5—H5B109.6C43—C44—H44119.9
C6—C5—H5B109.6C44—C45—C46119.96 (19)
H5A—C5—H5B108.1C44—C45—H45120.0
N1—C6—C5111.15 (15)C46—C45—H45120.0
N1—C6—H6A109.4C41—C46—C45121.36 (18)
C5—C6—H6A109.4C41—C46—H46119.3
N1—C6—H6B109.4C45—C46—H46119.3
C5—C6—H6B109.4C42—O42—C47119.98 (18)
H6A—C6—H6B108.0O42—C47—H47A109.5
O17—C17—N1122.66 (17)O42—C47—H47B109.5
O17—C17—C11117.63 (16)H47A—C47—H47B109.5
N1—C17—C11119.65 (16)O42—C47—H47C109.5
C12—C11—C16119.39 (16)H47A—C47—H47C109.5
C12—C11—C17117.14 (16)H47B—C47—H47C109.5
C16—C11—C17122.74 (17)O132—N13—O131124.05 (18)
C13—C12—C11119.23 (17)O132—N13—C13117.84 (17)
C13—C12—H12120.4O131—N13—C13118.10 (16)
C11—C12—H12120.4O151—N15—O152123.56 (18)
C12—C13—C14122.75 (18)O151—N15—C15117.73 (19)
C12—C13—N13118.77 (17)O152—N15—C15118.71 (17)
C17—N1—C2—C3133.54 (18)C12—C11—C16—C150.0 (3)
C6—N1—C2—C348.0 (2)C17—C11—C16—C15169.91 (17)
N1—C2—C3—N456.1 (2)C3—N4—C41—C4613.0 (3)
C2—C3—N4—C41159.37 (16)C5—N4—C41—C46119.6 (2)
C2—C3—N4—C564.7 (2)C3—N4—C41—C42162.80 (17)
C41—N4—C5—C6159.92 (16)C5—N4—C41—C4264.6 (2)
C3—N4—C5—C663.9 (2)C46—C41—C42—O42175.49 (18)
C17—N1—C6—C5135.51 (19)N4—C41—C42—O420.5 (3)
C2—N1—C6—C546.2 (2)C46—C41—C42—C432.5 (3)
N4—C5—C6—N153.2 (2)N4—C41—C42—C43178.50 (18)
C2—N1—C17—O1711.0 (3)O42—C42—C43—C44176.3 (2)
C6—N1—C17—O17170.74 (19)C41—C42—C43—C441.4 (3)
C2—N1—C17—C11166.07 (17)C42—C43—C44—C450.7 (3)
C6—N1—C17—C1112.2 (3)C43—C44—C45—C461.7 (3)
O17—C17—C11—C1239.5 (2)C42—C41—C46—C451.5 (3)
N1—C17—C11—C12143.26 (18)N4—C41—C46—C45177.28 (17)
O17—C17—C11—C16130.56 (19)C44—C45—C46—C410.6 (3)
N1—C17—C11—C1646.7 (3)C43—C42—O42—C476.7 (4)
C16—C11—C12—C130.4 (3)C41—C42—O42—C47171.1 (2)
C17—C11—C12—C13170.85 (16)C12—C13—N13—O132159.68 (18)
C11—C12—C13—C141.1 (3)C14—C13—N13—O13219.7 (3)
C11—C12—C13—N13179.48 (15)C12—C13—N13—O13121.2 (3)
C12—C13—C14—C151.4 (3)C14—C13—N13—O131159.43 (18)
N13—C13—C14—C15179.23 (16)C16—C15—N15—O151177.25 (19)
C13—C14—C15—C161.0 (3)C14—C15—N15—O1512.9 (3)
C13—C14—C15—N15179.17 (16)C16—C15—N15—O1522.0 (3)
C14—C15—C16—C110.3 (3)C14—C15—N15—O152177.83 (18)
N15—C15—C16—C11179.80 (16)
 

Acknowledgements

CHC thanks the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

First citationAsif, M. (2015). Int. J. Adv. Sci. Res. 1, 05.  CrossRef Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13–24.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationElliott, S. (2011). Drug Test. Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHackling, A., Ghosh, R., Perachon, S., Mann, A., Höltje, H. D., Wermuth, C. G., Schwartz, J. C., Sippl, W., Sokoloff, P. & Stark, H. (2003). J. Med. Chem. 46, 3883–3899.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793.  CSD CrossRef IUCr Journals Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chemica, 4, 2470–2488.  CAS Google Scholar
First citationNagai, F., Nonaka, R., Hisashi, S. & Kamimura, K. (2007). Eur. J. Pharmacol. 559, 132–137.  CrossRef PubMed CAS Google Scholar
First citationOrjales, A., Alonso-Cires, L., Labeaga, L. & Corcóstegui, R. (1995). J. Med. Chem. 38, 1273–1277.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWaszkielewicz, A. M., Pytka, K., Rapacz, A., Wełna, E., Jarzyna, M., Satała, G., Bojarski, A., Sapa, J., Żmudzki, P., Filipek, B. & Marona, H. (2015). Chem. Biol. Drug Des. 85, 326–335.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds