organic compounds
1-(3,5-Dinitrobenzoyl)-4-(2-methoxyphenyl)piperazine
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Chemistry, Maharani's Science College for Women, Mysuru-570 001, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com
In the title compound, C18H18N4O6, the piperazine ring adopts a chair conformation, the amidic N atom is planar (sum of angles = 360°) and the non-amidic N atom is pyramidal (343°). There are no hydrogen bonds of any kind in the crystal, but the molecules are linked by two independent π(nitrobenzene)⋯π(methoxybenzene) stacking interactions to form π-stacked sheets with inter-centroid separations of 3.8444 (12) and 3.9197 (12) Å.
Keywords: synthesis; crystal; molecular conformation; π–π stacking.
CCDC reference: 2044513
Structure description
Piperazines are found in a wide range of compounds that are active across a number of different therapeutic areas as they exhibit antibacterial, antidepressant antifungal, antimalarial, antipsychotic, and antitumour activity (Brockunier et al., 2004; Bogatcheva et al., 2006), and a number of these areas have recently been reviewed (Elliott, 2011; Kharb et al., 2012; Asif, 2015; Brito et al., 2019). N-(2-Methoxyphenyl)piperazine has been used as a building block in the synthesis of both 5-HT1 A receptor ligands (Orjales et al., 1995) and dopamine D2 and D3 ligands (Hackling et al., 2003), and also as a building block for the synthesis of derivatives exhibiting antidepressant-like activity (Waszkielewicz et al., 2015). The isomeric N-(4-methoxyphenyl)piperazine has been found to inhibit the re-uptake and accelerate the release of monoamine neurotransmitters such as dopamine and serotonin, with a mechanism of action similar to that of recreational drugs such as amphetamines, but with significantly lower abuse potential (Nagai et al., 2007). We have recently reported the structures of a range of 1-aroyl-4-(4-methoxyphenyl)piperazines (Harish Chinthal et al., 2020), and in a continuation of that work, we report here the structure of the title compound (Fig. 1), which was prepared using a carbodiimide-mediated condensation reaction between N-(2-methoxyphenyl)piperazine and 3,5-dinitrobenzoic acid.
The piperazine ring in the title compound (Fig. 1) adopts a conformation that is close to an ideal chair form. The ring-puckering angle θ (Cremer & Pople, 1975), calculated for the atom sequence (N1,C2,C3,N4,C5,C6) is 12.69 (18)°, whereas this value would be zero for an ideal chair form (Boeyens, 1978). The geometry at the amidic atom N1 is planar within experimental uncertainty, but that at N4 is markedly pyramidal: the exocyclic substituents at both of these atoms occupy equatorial sites. In the dinitrobenezene ring, the two nitro groups are both rotated out of the ring plane; the nitro groups bonded to atoms C13 and C15 make dihedral angles with the ring (C11–C16) of 20.52 (9) and 2.34 (12)°, respectively, with a dihedral angle of 22.09 (10)° between the planes of the two nitro groups, so that the rotations occur in a conrotatory sense. In the 2-methoxybenzene substituent, the methoxy atom C47 is nearly coplanar with the adjacent ring, with a displacement from the ring plane of only 0.308 (5) Å. Associated with this near planarity, the two exocyclic angles at C42 are markedly different. Thus, C41—C42—O42 is 115.51 (16)° and C43—C42—O42 is 124.36 (18)°, as typically found in planar or near-planar alkoxyarenes (Seip & Seip, 1973; Ferguson et al., 1996).
Despite the presence within the molecule of six O atoms and two N atoms, all of which are potential hydrogen-bond acceptors, the structure contains no intermolecular C—H⋯O or C—H⋯N hydrogen bonds, nor are there any C—H⋯π(arene) interactions. However, two π–π stacking interactions are present. The nitrobenzene ring at (x, y, z) makes a dihedral angle of 8.44 (9)° with the methoxybenzene rings at both (x, 1 − y, + z) and (x, 2 − y, + z), i.e. in the molecules related to the reference molecule by the c-glide planes at y = 0.5 and 1, respectively. The ring-centroid separations are 3.9197 (12) and 3.8444 (12) Å, respectively, and the shortest distances between the centroid of one ring and the plane of the other are 3.3822 (8) and 3.2468 (8) Å, respectively, leading to the formation of a π-stacked sheet lying parallel to (100) in the domain 0.25 < x < 0.5 (Fig. 2). Three other sheets of this type pass through the in the domains 0 < x < 0.25, 0.5 < x < 0.75, and 0.75 < x < 1.0, but there are no direction-specific interactions between adjacent sheets.
Synthesis and crystallization
For the synthesis of the title compound, 1-(3-dimethylaminopropyl)-3-ethylcarbodimide (134 mg, 0.7 mmol), 1-hydroxybenzotriazole (68 mg, 0.5 mmol) and triethylamine (0.5 ml, 1.5 mmol) were added to a solution of 3,5-dinitrobenzoic acid (114 mg, 0.5 mmol) in methanol (10 ml). This mixture was heated to 323 K, with stirring, for a few minutes before being set aside at ambient temperature. After two days, a solution of N-(2-methoxyphenyl)piperazine (100 mg, 0.52 mmol) in N,N-dimethylformamide (5 ml) was added and the resulting mixture was stirred overnight at ambient temperature. When the reaction was complete, as judged using thin layer the mixture was quenched with water (10 ml) and extracted with ethyl acetate (20 ml). The organic fraction was separated and washed successively with an aqueous hydrochloric acid solution (1 mol dm−3), a of sodium hydrogen carbonate and finally with brine. The organic phase was dried over anhydrous sodium sulfate, the solvent was removed under reduced pressure, and the resulting product was recrystallized from methanol-ethyl acetate (1:1, v/v), m.p. 390–392 K. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of its ethyl acetate solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 2044513
https://doi.org/10.1107/S2414314620015230/tk4065sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620015230/tk4065Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620015230/tk4065Isup3.cml
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).C18H18N4O6 | F(000) = 1616 |
Mr = 386.36 | Dx = 1.436 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 25.348 (2) Å | Cell parameters from 3854 reflections |
b = 7.3059 (5) Å | θ = 2.6–27.1° |
c = 19.347 (1) Å | µ = 0.11 mm−1 |
β = 94.190 (6)° | T = 296 K |
V = 3573.3 (4) Å3 | Block, yellow |
Z = 8 | 0.46 × 0.32 × 0.22 mm |
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector | 3854 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2600 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ω scans | θmax = 27.9°, θmin = 2.6° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −33→19 |
Tmin = 0.918, Tmax = 0.976 | k = −7→9 |
7735 measured reflections | l = −25→22 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0413P)2 + 2.4765P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3854 reflections | Δρmax = 0.22 e Å−3 |
253 parameters | Δρmin = −0.19 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.59240 (6) | 0.5953 (2) | 0.34788 (7) | 0.0459 (4) | |
C2 | 0.57693 (8) | 0.4792 (3) | 0.28802 (9) | 0.0488 (5) | |
H2A | 0.5431 | 0.4226 | 0.2947 | 0.059* | |
H2B | 0.6028 | 0.3826 | 0.2847 | 0.059* | |
C3 | 0.57283 (7) | 0.5876 (3) | 0.22156 (9) | 0.0453 (5) | |
H3A | 0.5647 | 0.5066 | 0.1825 | 0.054* | |
H3B | 0.5447 | 0.6774 | 0.2226 | 0.054* | |
N4 | 0.62303 (6) | 0.6787 (2) | 0.21428 (7) | 0.0454 (4) | |
C5 | 0.63231 (8) | 0.8121 (3) | 0.27028 (9) | 0.0501 (5) | |
H5A | 0.6030 | 0.8978 | 0.2694 | 0.060* | |
H5B | 0.6643 | 0.8806 | 0.2636 | 0.060* | |
C6 | 0.63767 (8) | 0.7159 (3) | 0.33925 (9) | 0.0500 (5) | |
H6A | 0.6700 | 0.6442 | 0.3426 | 0.060* | |
H6B | 0.6401 | 0.8060 | 0.3762 | 0.060* | |
C17 | 0.56572 (7) | 0.5803 (3) | 0.40509 (9) | 0.0409 (4) | |
O17 | 0.52443 (5) | 0.4943 (2) | 0.40619 (6) | 0.0563 (4) | |
C11 | 0.58807 (7) | 0.6641 (2) | 0.47192 (9) | 0.0391 (4) | |
C12 | 0.55244 (7) | 0.7415 (2) | 0.51449 (9) | 0.0404 (4) | |
H12 | 0.5171 | 0.7561 | 0.4988 | 0.048* | |
C13 | 0.56989 (7) | 0.7962 (2) | 0.58008 (9) | 0.0405 (4) | |
C14 | 0.62151 (7) | 0.7749 (3) | 0.60631 (9) | 0.0444 (5) | |
H14 | 0.6325 | 0.8105 | 0.6512 | 0.053* | |
C15 | 0.65608 (7) | 0.6986 (3) | 0.56286 (9) | 0.0424 (4) | |
C16 | 0.64053 (7) | 0.6426 (3) | 0.49661 (9) | 0.0416 (4) | |
H16 | 0.6649 | 0.5909 | 0.4687 | 0.050* | |
C41 | 0.63414 (7) | 0.7360 (2) | 0.14693 (9) | 0.0417 (4) | |
C42 | 0.68700 (8) | 0.7778 (3) | 0.13438 (10) | 0.0499 (5) | |
C43 | 0.69945 (8) | 0.8298 (3) | 0.06918 (10) | 0.0555 (5) | |
H43 | 0.7342 | 0.8598 | 0.0614 | 0.067* | |
C44 | 0.66072 (9) | 0.8375 (3) | 0.01523 (10) | 0.0545 (5) | |
H44 | 0.6694 | 0.8741 | −0.0286 | 0.065* | |
C45 | 0.60985 (8) | 0.7918 (3) | 0.02602 (10) | 0.0506 (5) | |
H45 | 0.5840 | 0.7940 | −0.0107 | 0.061* | |
C46 | 0.59664 (7) | 0.7421 (3) | 0.09169 (9) | 0.0444 (5) | |
H46 | 0.5618 | 0.7123 | 0.0986 | 0.053* | |
O42 | 0.72307 (6) | 0.7570 (3) | 0.18968 (8) | 0.0780 (5) | |
C47 | 0.77628 (10) | 0.7698 (5) | 0.18064 (16) | 0.1038 (11) | |
H47A | 0.7961 | 0.7520 | 0.2243 | 0.156* | |
H47B | 0.7859 | 0.6778 | 0.1485 | 0.156* | |
H47C | 0.7839 | 0.8888 | 0.1628 | 0.156* | |
N13 | 0.53195 (7) | 0.8793 (2) | 0.62448 (9) | 0.0510 (4) | |
O131 | 0.49148 (6) | 0.9456 (2) | 0.59666 (8) | 0.0682 (4) | |
O132 | 0.54302 (7) | 0.8798 (2) | 0.68663 (7) | 0.0744 (5) | |
N15 | 0.71189 (7) | 0.6755 (3) | 0.58839 (9) | 0.0554 (5) | |
O151 | 0.72524 (7) | 0.7321 (3) | 0.64600 (9) | 0.0911 (6) | |
O152 | 0.74214 (6) | 0.6030 (3) | 0.55072 (8) | 0.0734 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0490 (9) | 0.0525 (10) | 0.0361 (8) | −0.0173 (8) | 0.0028 (7) | −0.0040 (7) |
C2 | 0.0518 (11) | 0.0507 (12) | 0.0442 (11) | −0.0153 (9) | 0.0053 (9) | −0.0092 (9) |
C3 | 0.0437 (10) | 0.0535 (12) | 0.0390 (10) | −0.0098 (9) | 0.0039 (8) | −0.0086 (9) |
N4 | 0.0449 (9) | 0.0556 (10) | 0.0362 (8) | −0.0124 (8) | 0.0061 (7) | −0.0050 (7) |
C5 | 0.0561 (12) | 0.0549 (12) | 0.0398 (10) | −0.0182 (10) | 0.0063 (9) | −0.0046 (9) |
C6 | 0.0510 (12) | 0.0591 (13) | 0.0398 (10) | −0.0185 (10) | 0.0031 (9) | −0.0026 (9) |
C17 | 0.0407 (10) | 0.0440 (11) | 0.0374 (10) | −0.0040 (9) | −0.0012 (8) | 0.0053 (8) |
O17 | 0.0485 (8) | 0.0740 (10) | 0.0465 (8) | −0.0219 (7) | 0.0027 (6) | −0.0025 (7) |
C11 | 0.0422 (10) | 0.0406 (10) | 0.0342 (9) | −0.0085 (8) | 0.0009 (8) | 0.0063 (8) |
C12 | 0.0395 (10) | 0.0431 (11) | 0.0380 (10) | −0.0057 (8) | −0.0004 (8) | 0.0081 (8) |
C13 | 0.0458 (10) | 0.0391 (10) | 0.0367 (9) | −0.0053 (8) | 0.0034 (8) | 0.0069 (8) |
C14 | 0.0522 (12) | 0.0457 (11) | 0.0343 (9) | −0.0115 (9) | −0.0039 (8) | 0.0067 (8) |
C15 | 0.0403 (10) | 0.0447 (11) | 0.0414 (10) | −0.0081 (8) | −0.0031 (8) | 0.0097 (8) |
C16 | 0.0407 (10) | 0.0453 (11) | 0.0388 (10) | −0.0050 (8) | 0.0023 (8) | 0.0053 (8) |
C41 | 0.0453 (11) | 0.0431 (11) | 0.0373 (10) | −0.0001 (8) | 0.0065 (8) | −0.0042 (8) |
C42 | 0.0441 (11) | 0.0623 (13) | 0.0435 (11) | −0.0026 (10) | 0.0044 (9) | −0.0015 (10) |
C43 | 0.0494 (12) | 0.0655 (14) | 0.0535 (12) | −0.0043 (10) | 0.0165 (10) | 0.0001 (11) |
C44 | 0.0712 (15) | 0.0538 (13) | 0.0398 (11) | 0.0026 (11) | 0.0129 (10) | 0.0016 (9) |
C45 | 0.0619 (13) | 0.0500 (12) | 0.0392 (10) | 0.0062 (10) | −0.0012 (9) | −0.0038 (9) |
C46 | 0.0442 (11) | 0.0454 (11) | 0.0435 (11) | 0.0006 (9) | 0.0024 (8) | −0.0077 (9) |
O42 | 0.0442 (9) | 0.1365 (16) | 0.0528 (9) | −0.0127 (9) | 0.0002 (7) | 0.0093 (9) |
C47 | 0.0485 (15) | 0.172 (3) | 0.090 (2) | −0.0117 (18) | −0.0041 (13) | 0.014 (2) |
N13 | 0.0578 (11) | 0.0499 (10) | 0.0455 (10) | −0.0049 (8) | 0.0061 (8) | 0.0001 (8) |
O131 | 0.0630 (10) | 0.0750 (11) | 0.0665 (10) | 0.0149 (9) | 0.0039 (8) | −0.0055 (8) |
O132 | 0.0859 (11) | 0.0987 (13) | 0.0391 (8) | 0.0054 (10) | 0.0084 (7) | −0.0087 (8) |
N15 | 0.0471 (10) | 0.0657 (12) | 0.0513 (11) | −0.0066 (9) | −0.0102 (9) | 0.0101 (9) |
O151 | 0.0624 (11) | 0.1437 (18) | 0.0629 (11) | 0.0005 (11) | −0.0254 (8) | −0.0137 (11) |
O152 | 0.0475 (9) | 0.0979 (13) | 0.0744 (11) | 0.0077 (9) | 0.0014 (8) | 0.0013 (10) |
N1—C17 | 1.343 (2) | C14—C15 | 1.376 (3) |
N1—C2 | 1.466 (2) | C14—H14 | 0.9300 |
N1—C6 | 1.466 (2) | C15—C16 | 1.375 (2) |
C2—C3 | 1.507 (3) | C15—N15 | 1.474 (2) |
C2—H2A | 0.9700 | C16—H16 | 0.9300 |
C2—H2B | 0.9700 | C41—C46 | 1.378 (2) |
C3—N4 | 1.452 (2) | C41—C42 | 1.412 (3) |
C3—H3A | 0.9700 | C42—O42 | 1.364 (2) |
C3—H3B | 0.9700 | C42—C43 | 1.376 (3) |
N4—C41 | 1.416 (2) | C43—C44 | 1.381 (3) |
N4—C5 | 1.463 (2) | C43—H43 | 0.9300 |
C5—C6 | 1.506 (3) | C44—C45 | 1.363 (3) |
C5—H5A | 0.9700 | C44—H44 | 0.9300 |
C5—H5B | 0.9700 | C45—C46 | 1.386 (3) |
C6—H6A | 0.9700 | C45—H45 | 0.9300 |
C6—H6B | 0.9700 | C46—H46 | 0.9300 |
C17—O17 | 1.222 (2) | O42—C47 | 1.376 (3) |
C17—C11 | 1.504 (2) | C47—H47A | 0.9600 |
C11—C12 | 1.386 (2) | C47—H47B | 0.9600 |
C11—C16 | 1.389 (2) | C47—H47C | 0.9600 |
C12—C13 | 1.373 (2) | N13—O132 | 1.215 (2) |
C12—H12 | 0.9300 | N13—O131 | 1.223 (2) |
C13—C14 | 1.377 (3) | N15—O151 | 1.213 (2) |
C13—N13 | 1.467 (2) | N15—O152 | 1.217 (2) |
C17—N1—C2 | 118.83 (15) | C14—C13—N13 | 118.48 (16) |
C17—N1—C6 | 126.05 (15) | C15—C14—C13 | 116.80 (17) |
C2—N1—C6 | 115.10 (14) | C15—C14—H14 | 121.6 |
N1—C2—C3 | 111.60 (16) | C13—C14—H14 | 121.6 |
N1—C2—H2A | 109.3 | C16—C15—C14 | 122.55 (17) |
C3—C2—H2A | 109.3 | C16—C15—N15 | 118.76 (18) |
N1—C2—H2B | 109.3 | C14—C15—N15 | 118.70 (17) |
C3—C2—H2B | 109.3 | C15—C16—C11 | 119.27 (17) |
H2A—C2—H2B | 108.0 | C15—C16—H16 | 120.4 |
N4—C3—C2 | 108.50 (15) | C11—C16—H16 | 120.4 |
N4—C3—H3A | 110.0 | C46—C41—C42 | 117.95 (17) |
C2—C3—H3A | 110.0 | C46—C41—N4 | 123.42 (16) |
N4—C3—H3B | 110.0 | C42—C41—N4 | 118.50 (16) |
C2—C3—H3B | 110.0 | O42—C42—C43 | 124.36 (18) |
H3A—C3—H3B | 108.4 | O42—C42—C41 | 115.51 (16) |
C41—N4—C3 | 117.34 (14) | C43—C42—C41 | 120.09 (18) |
C41—N4—C5 | 116.91 (15) | C42—C43—C44 | 120.42 (19) |
C3—N4—C5 | 109.17 (14) | C42—C43—H43 | 119.8 |
N4—C5—C6 | 110.14 (16) | C44—C43—H43 | 119.8 |
N4—C5—H5A | 109.6 | C45—C44—C43 | 120.17 (18) |
C6—C5—H5A | 109.6 | C45—C44—H44 | 119.9 |
N4—C5—H5B | 109.6 | C43—C44—H44 | 119.9 |
C6—C5—H5B | 109.6 | C44—C45—C46 | 119.96 (19) |
H5A—C5—H5B | 108.1 | C44—C45—H45 | 120.0 |
N1—C6—C5 | 111.15 (15) | C46—C45—H45 | 120.0 |
N1—C6—H6A | 109.4 | C41—C46—C45 | 121.36 (18) |
C5—C6—H6A | 109.4 | C41—C46—H46 | 119.3 |
N1—C6—H6B | 109.4 | C45—C46—H46 | 119.3 |
C5—C6—H6B | 109.4 | C42—O42—C47 | 119.98 (18) |
H6A—C6—H6B | 108.0 | O42—C47—H47A | 109.5 |
O17—C17—N1 | 122.66 (17) | O42—C47—H47B | 109.5 |
O17—C17—C11 | 117.63 (16) | H47A—C47—H47B | 109.5 |
N1—C17—C11 | 119.65 (16) | O42—C47—H47C | 109.5 |
C12—C11—C16 | 119.39 (16) | H47A—C47—H47C | 109.5 |
C12—C11—C17 | 117.14 (16) | H47B—C47—H47C | 109.5 |
C16—C11—C17 | 122.74 (17) | O132—N13—O131 | 124.05 (18) |
C13—C12—C11 | 119.23 (17) | O132—N13—C13 | 117.84 (17) |
C13—C12—H12 | 120.4 | O131—N13—C13 | 118.10 (16) |
C11—C12—H12 | 120.4 | O151—N15—O152 | 123.56 (18) |
C12—C13—C14 | 122.75 (18) | O151—N15—C15 | 117.73 (19) |
C12—C13—N13 | 118.77 (17) | O152—N15—C15 | 118.71 (17) |
C17—N1—C2—C3 | 133.54 (18) | C12—C11—C16—C15 | 0.0 (3) |
C6—N1—C2—C3 | −48.0 (2) | C17—C11—C16—C15 | −169.91 (17) |
N1—C2—C3—N4 | 56.1 (2) | C3—N4—C41—C46 | 13.0 (3) |
C2—C3—N4—C41 | 159.37 (16) | C5—N4—C41—C46 | −119.6 (2) |
C2—C3—N4—C5 | −64.7 (2) | C3—N4—C41—C42 | −162.80 (17) |
C41—N4—C5—C6 | −159.92 (16) | C5—N4—C41—C42 | 64.6 (2) |
C3—N4—C5—C6 | 63.9 (2) | C46—C41—C42—O42 | −175.49 (18) |
C17—N1—C6—C5 | −135.51 (19) | N4—C41—C42—O42 | 0.5 (3) |
C2—N1—C6—C5 | 46.2 (2) | C46—C41—C42—C43 | 2.5 (3) |
N4—C5—C6—N1 | −53.2 (2) | N4—C41—C42—C43 | 178.50 (18) |
C2—N1—C17—O17 | −11.0 (3) | O42—C42—C43—C44 | 176.3 (2) |
C6—N1—C17—O17 | 170.74 (19) | C41—C42—C43—C44 | −1.4 (3) |
C2—N1—C17—C11 | 166.07 (17) | C42—C43—C44—C45 | −0.7 (3) |
C6—N1—C17—C11 | −12.2 (3) | C43—C44—C45—C46 | 1.7 (3) |
O17—C17—C11—C12 | −39.5 (2) | C42—C41—C46—C45 | −1.5 (3) |
N1—C17—C11—C12 | 143.26 (18) | N4—C41—C46—C45 | −177.28 (17) |
O17—C17—C11—C16 | 130.56 (19) | C44—C45—C46—C41 | −0.6 (3) |
N1—C17—C11—C16 | −46.7 (3) | C43—C42—O42—C47 | −6.7 (4) |
C16—C11—C12—C13 | 0.4 (3) | C41—C42—O42—C47 | 171.1 (2) |
C17—C11—C12—C13 | 170.85 (16) | C12—C13—N13—O132 | 159.68 (18) |
C11—C12—C13—C14 | −1.1 (3) | C14—C13—N13—O132 | −19.7 (3) |
C11—C12—C13—N13 | 179.48 (15) | C12—C13—N13—O131 | −21.2 (3) |
C12—C13—C14—C15 | 1.4 (3) | C14—C13—N13—O131 | 159.43 (18) |
N13—C13—C14—C15 | −179.23 (16) | C16—C15—N15—O151 | 177.25 (19) |
C13—C14—C15—C16 | −1.0 (3) | C14—C15—N15—O151 | −2.9 (3) |
C13—C14—C15—N15 | 179.17 (16) | C16—C15—N15—O152 | −2.0 (3) |
C14—C15—C16—C11 | 0.3 (3) | C14—C15—N15—O152 | 177.83 (18) |
N15—C15—C16—C11 | −179.80 (16) |
Acknowledgements
CHC thanks the University of Mysore for research facilities.
Funding information
HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.
References
Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 05. CrossRef Google Scholar
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. Web of Science CrossRef PubMed CAS Google Scholar
Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13–24. Web of Science CrossRef CAS PubMed Google Scholar
Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Elliott, S. (2011). Drug Test. Anal. 3, 430–438. Web of Science CrossRef CAS PubMed Google Scholar
Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hackling, A., Ghosh, R., Perachon, S., Mann, A., Höltje, H. D., Wermuth, C. G., Schwartz, J. C., Sippl, W., Sokoloff, P. & Stark, H. (2003). J. Med. Chem. 46, 3883–3899. Web of Science CrossRef PubMed CAS Google Scholar
Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793. CSD CrossRef IUCr Journals Google Scholar
Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chemica, 4, 2470–2488. CAS Google Scholar
Nagai, F., Nonaka, R., Hisashi, S. & Kamimura, K. (2007). Eur. J. Pharmacol. 559, 132–137. CrossRef PubMed CAS Google Scholar
Orjales, A., Alonso-Cires, L., Labeaga, L. & Corcóstegui, R. (1995). J. Med. Chem. 38, 1273–1277. CrossRef CAS PubMed Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Waszkielewicz, A. M., Pytka, K., Rapacz, A., Wełna, E., Jarzyna, M., Satała, G., Bojarski, A., Sapa, J., Żmudzki, P., Filipek, B. & Marona, H. (2015). Chem. Biol. Drug Des. 85, 326–335. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.