organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

The hydro­chloride salt of 4-hy­dr­oxy-N,N-di-n-propyl­tryptamine (4-HO-DPT)

CROSSMARK_Color_square_no_text.svg

aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, LLC, 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 20 November 2020; accepted 22 November 2020; online 27 November 2020)

The title compound, 4-hy­droxy-N,N-di-n-propyl­tryptammonium (4-HO-DPT) chloride {systematic name: N-[2-(4-hy­droxy-1H-indol-3-yl)eth­yl]-N-propyl­propan-1-aminium chloride}, C16H25N2O+·Cl, has a singly protonated trypt­ammonium cation and one chloride anion in the asymmetric unit. A series of N—H⋯Cl and O—H⋯Cl hydrogen bonds connect the ions together in ladder chains along [010].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Psilocybin, N,N-dimethyl-4-phospho­ryloxytryptamine, is a naturally occurring tryptamine found in `magic mushrooms'. When consumed orally, the phosphate group of psilocybin is hydrolyzed to generate psilocin, 4-hy­droxy-N,N-di­methyl­tryptamine. Psilocybin functions as a prodrug of psilocin, its active metabolite, which binds to and stimulates the human serotonin 2a receptor (Geiger et al., 2018[Geiger, H. A., Wurst, M. G. & Daniels, R. N. (2018). ACS Chem. Neurosci. 9, 2438-2447.]), causing profound changes to human consciousness, which are generally described as a `psychedelic' experience. Recently, human serotonin 2a receptor agonists (e.g. LSD, ayahuasca/DMT, psilocybin/psilocin, peyote/mescaline, 5-MeO-DMT) have shown incredible potential for treating a wide variety of the world's most debilitating, intra­ctable, and costly health problems, including anxiety, depression, addiction, post-traumatic stress disorder (PTSD) and inflammation (Johnson & Griffiths, 2017[Johnson, M. W. & Griffiths, R. R. (2017). Neurotherapeutics 14, 734-740.]; Carhart-Harris & Goodwin, 2017[Carhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacol, 42, 2105-2113.]). 4-Hy­droxy-N,N-di-n-propyl­tryptamine (4-HO-DPT) is a structural analogue of psilocin and produces similar (though not identical) psychedelic effects in human subjects (Shulgin & Shulgin, 2016[Shulgin, A. T. & Shulgin, A. (2016). TiKHAL: The Continuation. Isomerdesign. Available at: https://isomerdesign.com/PiHKAL/read.php?domain=tk&id=20. Accessed 5 August 2020.]). The compound 4-HO-DPT is somewhat more hydro­phobic than psilocin on account of substituting the di-n-methyl­amine group with a di-n-propyl­amine group. When used as pharmaceuticals, amines are often converted to their hydro­chloride salts to increase their solubility in water, and thus improving drug delivery (Stahl & Wermuth, 2011[Stahl, P. H. & Wermuth, C. G. (2011). Editors. Pharmaceutical Salts: Properties, Selection and Use, 2nd ed. New York, NY: John Wiley & Sons.]). Herein we report the solid-state structure of 4-hy­droxy-N,N-di-n-propyl­tryptammonium (4-HO-DPT) chloride (Fig. 1[link]), which is the first of a psilocin analogue as its hydro­chloride salt.

[Figure 1]
Figure 1
The mol­ecular structure of 4-hy­droxy-N,N-di-n-propyl­tryptammonium (4-HO-DPT) chloride, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. A hydrogen bond is shown as a dashed line.

The 4-HO-DPT cation and the chloride anion are held together in the asymmetric unit via O—H⋯Cl hydrogen bonds. The cation possesses a near planar indole group, with a mean deviation from planarity of 0.011 Å. The ethyl­amino group is turned away from the plane with a C1—C2—C9—C10 torsion angle of 101.54 (18)°. The N—H of the indole ring, and the N—H of the ammonium group also both hydrogen bond to other symmetry-generated chloride anions through N—H⋯Cl inter­actions (Table 1[link]). The N—H⋯Cl indole-to-chloride hydrogen bond and the O—H⋯Cl hydrogen bond combine to link the ions together in chains with graph-set notation C21(8). The N—H⋯Cl indole-to-chloride hydrogen bonds and the N—H⋯Cl ammonium-to-chloride hydrogen bonds combine to generate rings with graph-set notation R42(18) (Etter, et al. 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). The N—H⋯Cl ammonium-to-chloride hydrogen bonds and O—H⋯Cl hydrogen bonds combine to generate rings with graph-set notation R42(20). The two rings and chains combine to give ladder chains along [010], Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.88 (1) 2.40 (1) 3.2766 (18) 176 (2)
N2—H2⋯Cl1ii 0.98 (1) 2.15 (1) 3.1126 (17) 169 (2)
O1—H1A⋯Cl1 0.86 (1) 2.26 (1) 3.1068 (15) 170 (2)
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+2, -y+1, -z+1].
[Figure 2]
Figure 2
The crystal packing of 4-hy­droxy-N,N-di-n-propyl­tryptammonium (4-HO-DPT) chloride, viewed along the c axis. The hydrogen bonds (Table 1[link]) are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity.

The most closely related structure to the title compound is the two-to-one 4-HO-DPT-to-fumarate salt, which crystallizes as a tetra­hydrate (WUCGAF; Chadeayne et al., 2019b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x191469.]). There are six other structures of 4-hy­droxy-substituted tryptamines that have been reported. These are the active metabolite of psilocybin - psilocin, or 4-hy­droxy-N,N-di­methyl­tryptamine (PSILIN; Petcher & Weber, 1974[Petcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946-948.]), the active metabolite of baeocystin-norpsilocin, or 4-hy­droxy-N-methyl­tryptamine, which has been reported as its freebase (CCDC 1992279; Chadeayne et al., 2020b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589-593.]) and its fumarate salt (CCDC 1992278; Chadeayne et al., 2020b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589-593.]), and the active metabolite of aeruginascin − 4-hy­droxy-N,N,N-tri­methyl­tryptamine (XUXFAA; Chadeayne, Pham, Reid et al., 2020[Chadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020). ACS Omega, 5, 16940-16943.]) which is reported as its iodide salt. The structure of the synthetic psychedelic 4-HO-MiPT has also been reported as its one-to-one hydro­fumarate salt (RONSUL; Chadeayne et al., 2019a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 1316-1320.]) and as its two-to-one fumarate salt (CCDC 1987588; Chadeayne et al., 2 2020a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514-517.]).

Synthesis and crystallization

Freebase 4-hy­droxy-N,N-di-n-propyl­tryptamine (50 mg, 0.19 mmol) was dissolved in di­chloro­methane, and 160 µL of hydorochloric acid (1.25 M in ethanol, 0.20 mmol) were added with stirring at room temperature. The mixture was stirred for 30 minutes, resulting in a white precipitate which was isolated via vacuum filtration and washed with diethyl ether to yield 28 mg of the salt. A second crop was collected by concentrating and cooling the filtrate to give another 13 mg of the salt (73% yield). Crystals suitable for X-ray diffraction studies were grown by the slow evaporation of a methyl­ene chloride/methanol mixture. The sample was analyzed by nuclear magnetic resonance. 1H NMR (400 MHz, D2O): δ 7.07 (s, 1 H, ArH), 7.04–6.96 (m, 2 H, ArH), 6.47 (dd, J = 6.1, 2.4 Hz, 1 H, ArH), 3.42–3.30 (m, 2 H, CH2), 3.20–3.07 (m, 2 H, CH2), 3.00 (dd, J = 10.1, 6.4 Hz, 4 H, CH2), 1.60 (h, J = 6.8 Hz, 4 H, CH2), 0.84 (t, J = 7.4 Hz, 6 H, CH3); 13C NMR (100 MHz, D2O): δ 149.9 (ArC), 138.8 (ArC), 123.3 (ArC), 123.2 (ArC), 115.9 (ArC), 108.5 (ArC), 104.5 (ArC), 103.7 (ArC), 54.7 (AkC), 53.7 (AkC), 21.2 (AkC), 16.8 (AkC), 10.0 (AkC).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H25N2O+·Cl
Mr 296.83
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 273
a, b, c (Å) 7.860 (3), 10.439 (4), 11.713 (5)
α, β, γ (°) 76.236 (14), 73.653 (13), 68.852 (12)
V3) 850.0 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.])
Tmin, Tmax 0.720, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 27008, 3243, 2756
Rint 0.066
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.03
No. of reflections 3243
No. of parameters 192
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.40
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

N-[2-(4-Hydroxy-1H-indol-3-yl)ethyl]-N-propylpropan-1-aminium chloride top
Crystal data top
C16H25N2O+·ClZ = 2
Mr = 296.83F(000) = 320
Triclinic, P1Dx = 1.160 Mg m3
a = 7.860 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.439 (4) ÅCell parameters from 9206 reflections
c = 11.713 (5) Åθ = 2.6–25.8°
α = 76.236 (14)°µ = 0.22 mm1
β = 73.653 (13)°T = 273 K
γ = 68.852 (12)°Block, colourless
V = 850.0 (6) Å30.15 × 0.10 × 0.10 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2756 reflections with I > 2σ(I)
φ and ω scansRint = 0.066
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 26.0°, θmin = 2.6°
Tmin = 0.720, Tmax = 0.745h = 99
27008 measured reflectionsk = 1212
3243 independent reflectionsl = 1414
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.1743P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3243 reflectionsΔρmax = 0.43 e Å3
192 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84351 (5)0.74832 (4)0.23642 (4)0.04716 (14)
N10.7748 (2)0.03222 (14)0.34007 (16)0.0578 (4)
H10.790 (3)0.0454 (14)0.3157 (19)0.069*
N20.75749 (17)0.34070 (13)0.71443 (11)0.0422 (3)
H20.8748 (18)0.314 (2)0.7409 (18)0.063*
O10.77173 (17)0.46842 (11)0.35885 (10)0.0506 (3)
H1A0.797 (3)0.5412 (16)0.3168 (19)0.076*
C10.7077 (2)0.05956 (16)0.45593 (18)0.0531 (4)
H1B0.6684810.0013090.5215240.064*
C20.7068 (2)0.18915 (15)0.46130 (15)0.0416 (3)
C30.77946 (19)0.24542 (15)0.34010 (14)0.0385 (3)
C40.8114 (2)0.37253 (16)0.28523 (14)0.0413 (3)
C50.8792 (2)0.3950 (2)0.16234 (16)0.0547 (4)
H50.8980480.4796410.1255500.066*
C60.9198 (3)0.2913 (2)0.09275 (18)0.0657 (5)
H60.9663380.3084060.0102820.079*
C70.8929 (3)0.1653 (2)0.14258 (18)0.0636 (5)
H70.9217120.0967930.0956940.076*
C80.8204 (2)0.14383 (16)0.26682 (17)0.0480 (4)
C90.6397 (2)0.25770 (17)0.57189 (14)0.0437 (4)
H9A0.5590430.2121720.6331050.052*
H9B0.5675940.3543210.5525230.052*
C100.8050 (2)0.24920 (16)0.62024 (14)0.0437 (4)
H10A0.8602110.1535680.6545190.052*
H10B0.8985010.2744910.5533740.052*
C110.7172 (3)0.49232 (17)0.65963 (16)0.0518 (4)
H11A0.8145550.5011430.5886620.062*
H11B0.5998140.5239160.6339150.062*
C120.7061 (3)0.58502 (19)0.74365 (18)0.0605 (5)
H12A0.8087310.5420650.7849280.073*
H12B0.5901700.5962780.8037820.073*
C130.7149 (3)0.72656 (19)0.6756 (2)0.0640 (5)
H13A0.8298740.7155220.6163650.096*
H13B0.7088330.7834880.7309650.096*
H13C0.6114580.7701550.6364570.096*
C140.6079 (2)0.31594 (18)0.82147 (15)0.0520 (4)
H14A0.4943480.3342550.7943560.062*
H14B0.5818950.3812920.8755630.062*
C150.6587 (3)0.1708 (2)0.88982 (18)0.0638 (5)
H15A0.7836770.1446100.9036780.077*
H15B0.6578520.1062820.8426900.077*
C160.5201 (4)0.1627 (3)1.0100 (2)0.0906 (8)
H16A0.5217500.2262491.0566990.136*
H16B0.5544310.0698631.0530050.136*
H16C0.3968910.1869700.9960330.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0460 (2)0.0406 (2)0.0602 (3)0.01650 (16)0.00926 (17)0.01564 (16)
N10.0652 (9)0.0341 (7)0.0837 (11)0.0083 (6)0.0303 (8)0.0213 (7)
N20.0399 (7)0.0438 (7)0.0419 (7)0.0115 (5)0.0077 (5)0.0087 (5)
O10.0656 (7)0.0389 (6)0.0501 (7)0.0234 (5)0.0027 (5)0.0128 (5)
C10.0553 (9)0.0371 (8)0.0727 (12)0.0163 (7)0.0253 (9)0.0027 (8)
C20.0378 (7)0.0364 (7)0.0535 (9)0.0114 (6)0.0144 (6)0.0070 (6)
C30.0332 (7)0.0372 (7)0.0477 (8)0.0076 (6)0.0108 (6)0.0145 (6)
C40.0375 (7)0.0405 (8)0.0473 (8)0.0106 (6)0.0076 (6)0.0136 (6)
C50.0570 (10)0.0615 (10)0.0472 (9)0.0235 (8)0.0070 (8)0.0091 (8)
C60.0657 (11)0.0873 (14)0.0450 (10)0.0218 (10)0.0056 (8)0.0230 (10)
C70.0618 (11)0.0694 (12)0.0637 (12)0.0038 (9)0.0173 (9)0.0399 (10)
C80.0431 (8)0.0411 (8)0.0640 (10)0.0028 (7)0.0197 (7)0.0223 (7)
C90.0377 (8)0.0469 (8)0.0467 (9)0.0154 (6)0.0054 (6)0.0083 (7)
C100.0375 (7)0.0460 (8)0.0458 (8)0.0088 (6)0.0064 (6)0.0135 (7)
C110.0578 (10)0.0456 (9)0.0511 (10)0.0148 (8)0.0137 (8)0.0056 (7)
C120.0719 (12)0.0498 (10)0.0640 (11)0.0216 (9)0.0160 (9)0.0110 (8)
C130.0618 (11)0.0491 (10)0.0826 (14)0.0203 (9)0.0180 (10)0.0054 (9)
C140.0510 (9)0.0567 (10)0.0459 (9)0.0181 (8)0.0019 (7)0.0120 (7)
C150.0807 (13)0.0597 (11)0.0542 (11)0.0317 (10)0.0108 (9)0.0038 (8)
C160.126 (2)0.0990 (17)0.0581 (13)0.0693 (17)0.0035 (13)0.0071 (12)
Geometric parameters (Å, º) top
N1—H10.880 (9)C9—H9B0.9700
N1—C11.369 (3)C9—C101.524 (2)
N1—C81.369 (3)C10—H10A0.9700
N2—H20.980 (9)C10—H10B0.9700
N2—C101.510 (2)C11—H11A0.9700
N2—C111.512 (2)C11—H11B0.9700
N2—C141.502 (2)C11—C121.502 (3)
O1—H1A0.856 (10)C12—H12A0.9700
O1—C41.3700 (19)C12—H12B0.9700
C1—H1B0.9300C12—C131.518 (3)
C1—C21.366 (2)C13—H13A0.9600
C2—C31.441 (2)C13—H13B0.9600
C2—C91.501 (2)C13—H13C0.9600
C3—C41.407 (2)C14—H14A0.9700
C3—C81.413 (2)C14—H14B0.9700
C4—C51.382 (2)C14—C151.504 (3)
C5—H50.9300C15—H15A0.9700
C5—C61.401 (3)C15—H15B0.9700
C6—H60.9300C15—C161.524 (3)
C6—C71.371 (3)C16—H16A0.9600
C7—H70.9300C16—H16B0.9600
C7—C81.401 (3)C16—H16C0.9600
C9—H9A0.9700
C1—N1—H1126.0 (15)N2—C10—H10A108.6
C1—N1—C8109.42 (14)N2—C10—H10B108.6
C8—N1—H1124.6 (15)C9—C10—H10A108.6
C10—N2—H2103.4 (12)C9—C10—H10B108.6
C10—N2—C11111.53 (13)H10A—C10—H10B107.6
C11—N2—H2105.8 (12)N2—C11—H11A108.8
C14—N2—H2108.7 (12)N2—C11—H11B108.8
C14—N2—C10114.06 (13)H11A—C11—H11B107.7
C14—N2—C11112.56 (13)C12—C11—N2113.84 (14)
C4—O1—H1A109.4 (16)C12—C11—H11A108.8
N1—C1—H1B124.9C12—C11—H11B108.8
C2—C1—N1110.22 (16)C11—C12—H12A109.4
C2—C1—H1B124.9C11—C12—H12B109.4
C1—C2—C3106.02 (15)C11—C12—C13111.01 (17)
C1—C2—C9126.16 (16)H12A—C12—H12B108.0
C3—C2—C9127.82 (13)C13—C12—H12A109.4
C4—C3—C2134.47 (14)C13—C12—H12B109.4
C4—C3—C8118.35 (15)C12—C13—H13A109.5
C8—C3—C2107.17 (14)C12—C13—H13B109.5
O1—C4—C3116.94 (14)C12—C13—H13C109.5
O1—C4—C5123.52 (15)H13A—C13—H13B109.5
C5—C4—C3119.54 (15)H13A—C13—H13C109.5
C4—C5—H5119.8H13B—C13—H13C109.5
C4—C5—C6120.47 (17)N2—C14—H14A108.8
C6—C5—H5119.8N2—C14—H14B108.8
C5—C6—H6119.0N2—C14—C15113.64 (15)
C7—C6—C5121.98 (18)H14A—C14—H14B107.7
C7—C6—H6119.0C15—C14—H14A108.8
C6—C7—H7121.3C15—C14—H14B108.8
C6—C7—C8117.46 (16)C14—C15—H15A109.6
C8—C7—H7121.3C14—C15—H15B109.6
N1—C8—C3107.18 (16)C14—C15—C16110.23 (18)
N1—C8—C7130.64 (16)H15A—C15—H15B108.1
C7—C8—C3122.18 (17)C16—C15—H15A109.6
C2—C9—H9A109.6C16—C15—H15B109.6
C2—C9—H9B109.6C15—C16—H16A109.5
C2—C9—C10110.36 (12)C15—C16—H16B109.5
H9A—C9—H9B108.1C15—C16—H16C109.5
C10—C9—H9A109.6H16A—C16—H16B109.5
C10—C9—H9B109.6H16A—C16—H16C109.5
N2—C10—C9114.75 (12)H16B—C16—H16C109.5
N1—C1—C2—C30.34 (18)C4—C3—C8—N1178.94 (13)
N1—C1—C2—C9178.71 (14)C4—C3—C8—C70.6 (2)
N2—C11—C12—C13165.62 (15)C4—C5—C6—C70.6 (3)
N2—C14—C15—C16168.13 (17)C5—C6—C7—C80.8 (3)
O1—C4—C5—C6178.91 (16)C6—C7—C8—N1178.09 (18)
C1—N1—C8—C30.20 (18)C6—C7—C8—C31.4 (3)
C1—N1—C8—C7179.73 (17)C8—N1—C1—C20.34 (19)
C1—C2—C3—C4178.89 (16)C8—C3—C4—O1179.49 (13)
C1—C2—C3—C80.21 (16)C8—C3—C4—C50.7 (2)
C1—C2—C9—C10101.54 (18)C9—C2—C3—C40.1 (3)
C2—C3—C4—O11.9 (2)C9—C2—C3—C8178.82 (14)
C2—C3—C4—C5177.84 (15)C10—N2—C11—C12168.69 (14)
C2—C3—C8—N10.01 (17)C10—N2—C14—C1561.10 (19)
C2—C3—C8—C7179.57 (15)C11—N2—C10—C972.81 (17)
C2—C9—C10—N2167.42 (13)C11—N2—C14—C15170.53 (15)
C3—C2—C9—C1079.62 (19)C14—N2—C10—C956.08 (18)
C3—C4—C5—C61.3 (3)C14—N2—C11—C1261.62 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.88 (1)2.40 (1)3.2766 (18)176 (2)
N2—H2···Cl1ii0.98 (1)2.15 (1)3.1126 (17)169 (2)
O1—H1A···Cl10.86 (1)2.26 (1)3.1068 (15)170 (2)
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

Funding information

Funding for this research was provided by: Division of Chemistry (grant No. CHE-1429086).

References

First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationCarhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacol, 42, 2105–2113.  CAS Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 1316–1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x191469.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514–517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589–593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020). ACS Omega, 5, 16940–16943.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGeiger, H. A., Wurst, M. G. & Daniels, R. N. (2018). ACS Chem. Neurosci. 9, 2438–2447.  CrossRef CAS PubMed Google Scholar
First citationJohnson, M. W. & Griffiths, R. R. (2017). Neurotherapeutics 14, 734-740.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPetcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946–948.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShulgin, A. T. & Shulgin, A. (2016). TiKHAL: The Continuation. Isomerdesign. Available at: https://isomerdesign.com/PiHKAL/read.php?domain=tk&id=20. Accessed 5 August 2020.  Google Scholar
First citationStahl, P. H. & Wermuth, C. G. (2011). Editors. Pharmaceutical Salts: Properties, Selection and Use, 2nd ed. New York, NY: John Wiley & Sons.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds